CN110262223A - A kind of comprehensive model modelling approach of hydraulic turbine based on Fractional Order PID speed-regulating system - Google Patents
A kind of comprehensive model modelling approach of hydraulic turbine based on Fractional Order PID speed-regulating system Download PDFInfo
- Publication number
- CN110262223A CN110262223A CN201910643191.6A CN201910643191A CN110262223A CN 110262223 A CN110262223 A CN 110262223A CN 201910643191 A CN201910643191 A CN 201910643191A CN 110262223 A CN110262223 A CN 110262223A
- Authority
- CN
- China
- Prior art keywords
- speed control
- control system
- model
- turbine
- fractional
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 58
- 238000000034 method Methods 0.000 claims abstract description 50
- 238000013178 mathematical model Methods 0.000 claims abstract description 17
- 238000004088 simulation Methods 0.000 claims abstract description 15
- 230000004044 response Effects 0.000 claims abstract description 10
- 230000003044 adaptive effect Effects 0.000 claims abstract description 9
- 238000005094 computer simulation Methods 0.000 claims abstract description 6
- 241000255588 Tephritidae Species 0.000 claims description 48
- 230000001052 transient effect Effects 0.000 claims description 20
- 238000004804 winding Methods 0.000 claims description 18
- 238000013528 artificial neural network Methods 0.000 claims description 13
- 230000001133 acceleration Effects 0.000 claims description 12
- 230000005284 excitation Effects 0.000 claims description 10
- 230000008569 process Effects 0.000 claims description 9
- 230000008859 change Effects 0.000 claims description 6
- 230000001360 synchronised effect Effects 0.000 claims description 5
- 230000004913 activation Effects 0.000 claims description 3
- 238000013016 damping Methods 0.000 claims description 3
- 238000006073 displacement reaction Methods 0.000 claims description 3
- 230000004907 flux Effects 0.000 claims description 3
- 230000005484 gravity Effects 0.000 claims description 3
- 230000003068 static effect Effects 0.000 claims description 3
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 abstract 2
- 230000033228 biological regulation Effects 0.000 description 15
- 238000005457 optimization Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 5
- 230000001105 regulatory effect Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000739 chaotic effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B11/00—Automatic controllers
- G05B11/01—Automatic controllers electric
- G05B11/36—Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential
- G05B11/42—Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential for obtaining a characteristic which is both proportional and time-dependent, e.g. P. I., P. I. D.
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/20—Hydro energy
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Control Of Eletrric Generators (AREA)
Abstract
本发明提供了一种一种自适应分数阶PID调速系统的水轮机综合性模型建模方法,包括以下步骤:步骤1:建立基于分数阶PID调速系统的水轮机调速器仿真分析数学模型,并利用混合算法优化所述的基于分数阶PID调速系统的目标函数;步骤2:建立水轮机调速系统的机械液压系统和引水系统数学模型;步骤3:建立水轮机发电机模型;本发明利用MATLAB仿真建模,在前人研究的基础上对经典PID调速系统进行了改进,根据实例分析,建立起了能够反映水轮机调速系统和发电机系统各项参数综合性模型,在实际应用中对实际水轮机组的运行情况,面对负荷波动时水轮机各项参数的变化有良好的反应,为事故预测与系统安全运行提供保障。
The invention provides a comprehensive model modeling method for a hydraulic turbine of an adaptive fractional-order PID speed control system, comprising the following steps: Step 1: establishing a simulation analysis mathematical model of the hydraulic turbine speed governor based on the fractional-order PID speed control system; And use the hybrid algorithm to optimize the objective function based on the fractional-order PID speed control system; Step 2: Establish the mathematical model of the mechanical hydraulic system and the water diversion system of the turbine speed control system; Step 3: Establish the turbine generator model; The present invention uses MATLAB Simulation modeling, on the basis of previous research, the classic PID speed control system has been improved. According to the analysis of examples, a comprehensive model that can reflect the parameters of the turbine speed control system and the generator system is established. The actual operation of the hydro turbine unit has a good response to the changes of various parameters of the hydro turbine when the load fluctuates, which provides a guarantee for the accident prediction and the safe operation of the system.
Description
技术领域:Technical field:
本发明涉及水电站力学,水轮机调速系统原理,具体涉及一种基于分数阶PID调速系统的水轮机综合性模型建模方法。The invention relates to the mechanics of hydropower stations and the principle of a water turbine speed regulating system, in particular to a hydraulic turbine comprehensive model modeling method based on a fractional-order PID speed regulating system.
背景技术Background technique
传统的水轮机调速系统控制结构一般采用经典水轮机调速系统,即并联PID调速系统控制,具有简单易操作等优势,随着电力系统的发展,对水电机组的稳定性要求也在不断提高,但是,并联PID调速系统控制的水轮机系统存在以下问题:The control structure of the traditional hydraulic turbine speed control system generally adopts the classic hydraulic turbine speed control system, that is, the parallel PID speed control system control, which has the advantages of being simple and easy to operate. However, the turbine system controlled by the parallel PID speed control system has the following problems:
1.启动时稳定慢;1. Stable and slow at startup;
2.出现系统负荷波动时稳定性差,面对电力系统的突发事件自我调节能力不足等问题。2. The stability is poor when the system load fluctuates, and the self-regulation ability is insufficient in the face of emergencies in the power system.
面对经典水轮机调速系统的缺点,大量学者提出了先进的智能化控制方式,如模糊PID控制、BP神经网络控制、混沌粒子群控制等,这些研究对水轮机调速系统进一步优化,使水轮机的调速性能有了明显改善。Facing the shortcomings of the classical hydraulic turbine speed control system, a large number of scholars have proposed advanced intelligent control methods, such as fuzzy PID control, BP neural network control, chaotic particle swarm control, etc. The speed control performance has been significantly improved.
考虑到国内水轮机的控制方式多采用以并联PID调速系统控制控制为基础的调节方式,为了能够快速响应系统要求,尽可能的给电力系统带来更小的冲击,水轮机的调速系统的优化就显得至关重要。Considering that the control methods of domestic water turbines mostly use the control method based on the parallel PID speed control system control, in order to respond quickly to the system requirements and bring as little impact to the power system as possible, the optimization of the speed control system of the water turbine is carried out. becomes crucial.
仿真建模方面对水轮机的非线性机理建模研究已经有了很大进展,但没有深入分析负荷波动对水轮机调速系统的影响;目前一般将负荷和发电机模型等效为一阶的传递函数,反映的实际问题局限性比较大,在反映水轮机调速性能的基础上对于水轮机发电机特性、动态负荷模型以及电力系统故障时对水轮机调速系统的影响上有待于进一步分析。In terms of simulation modeling, great progress has been made in modeling the nonlinear mechanism of hydraulic turbines, but the impact of load fluctuations on the speed control system of hydraulic turbines has not been thoroughly analyzed. At present, the load and generator models are generally equivalent to first-order transfer functions. , the actual problems reflected are relatively limited, and on the basis of reflecting the speed regulation performance of the turbine, the influence of the turbine generator characteristics, the dynamic load model and the power system failure on the turbine speed regulation system needs to be further analyzed.
发明内容SUMMARY OF THE INVENTION
本发明是为了解决水轮机的非线性机理建模中并不能反映动态负荷时水轮机各项重要参数变化的问题,提出一种基于分数阶PID调速系统的水轮机综合性模型建模方法。In order to solve the problem that the nonlinear mechanism modeling of the hydraulic turbine cannot reflect the changes of various important parameters of the hydraulic turbine under dynamic load, the invention proposes a comprehensive model modeling method of the hydraulic turbine based on the fractional-order PID speed regulating system.
为实现以上目的,本发明采用以下技术方案:To achieve the above object, the present invention adopts the following technical solutions:
一种自适应分数阶PID调速系统的水轮机综合性模型建模方法,包括以下步骤:A hydraulic turbine comprehensive model modeling method for an adaptive fractional-order PID speed control system, comprising the following steps:
步骤1:建立基于分数阶PID调速系统的水轮机调速器仿真分析数学模型,并利用混合算法优化所述的基于分数阶PID调速系统的目标函数;Step 1: establish a simulation analysis mathematical model of the turbine governor based on the fractional-order PID speed control system, and use a hybrid algorithm to optimize the objective function based on the fractional-order PID speed control system;
步骤2:建立水轮机调速系统的机械液压系统和引水系统数学模型;Step 2: Establish the mathematical model of the mechanical hydraulic system and the water diversion system of the turbine speed control system;
步骤3:建立水轮机发电机模型,将传统的一阶水轮机发电机模型扩展到5阶水轮机模型,并由此引入励磁机模型和动态负荷模型;Step 3: establish a turbine generator model, extend the traditional first-order turbine generator model to a fifth-order turbine model, and introduce the exciter model and the dynamic load model from this;
所述步骤1具体包括以下步骤:The step 1 specifically includes the following steps:
步骤1.1:由经典PID调速系统得到分数阶PID调速系统,具体方法为:Step 1.1: Obtain the fractional-order PID speed control system from the classical PID speed control system. The specific method is:
经典PID调速系统的微分表达式为:The differential expression of the classical PID speed control system is:
u(t)=kpe(t)+kiDe(t)+kdDe(t);u(t)=k p e(t)+ ki De(t)+k d De(t);
其中,kp表示比例参数,整定范围为0.5~20;ki表示积分参数,整定范围为0.05s-1~10s-1,kd表示微分参数,整定范围为0~5s;Among them, kp represents the proportional parameter, the setting range is 0.5~20; ki is the integral parameter, the setting range is 0.05s-1~10s-1, kd is the differential parameter, the setting range is 0~5s;
将kp、ki、kd三个调节参数分别替换为暂态转差系数bt、缓冲时间常数Td、加速度时间常数Tn,具体的:Replace the three adjustment parameters kp, ki, and kd with transient slip coefficient bt, buffer time constant Td, and acceleration time constant Tn, respectively. Specifically:
经典PID调速系统的传递函数为:The transfer function of the classic PID speed control system is:
其中,bt为暂态转差系数,取0~1.0;Td为缓冲时间常数,整定范围为2s~20s,Tn为加速度时间常数,整定范围为0~2s,pc和P分别为机组功率给定和机组功率,yc和y分别为导叶开度给定和导叶度,fc和f分别为频率给定和机组频率,Δf为频差,Δf'为经过频率死区ef后的频率偏差;Among them, bt is the transient slip coefficient, taking 0 to 1.0; Td is the buffer time constant, the setting range is 2s~20s, Tn is the acceleration time constant, the setting range is 0~2s, pc and P are the unit power given respectively and unit power, y c and y are the guide vane opening and guide vane degrees, respectively, fc and f are the frequency setting and unit frequency, respectively, Δf is the frequency difference, and Δf' is the frequency after passing through the frequency dead zone e f deviation;
将上述经典PID调速系统的微分表达式经过Laplace变换为分数阶PID调速系统的微分表达式:The differential expression of the above classical PID speed control system is transformed into the differential expression of the fractional order PID speed control system through Laplace:
u(t)=kpe(t)+kiDαe(t)+kdDμe(t); (4)u(t)=k p e(t)+ ki D α e(t)+k d D μ e(t); (4)
其中α,μ>0,α为积分阶次,μ为微分阶次;Where α, μ>0, α is the integral order, μ is the differential order;
分数阶PID调速系统的传递函数为:The transfer function of fractional order PID speed control system is:
步骤1.2:定义分数阶PID调速系统的目标函数,具体方法为:Step 1.2: Define the objective function of the fractional-order PID speed control system, the specific method is:
利用双误差积分作为步骤1.1所述的分数阶PID调速系统的目标函数:Use the double error integral as the objective function of the fractional-order PID speed control system described in step 1.1:
其中,e(t)表示实际输出与期望输出的偏差,t为时间,ISE表示平方偏差积分;Among them, e(t) represents the deviation between the actual output and the expected output, t is the time, and I SE represents the square deviation integral;
步骤1.3:利用混合算法优化步骤1.2所述的基于分数阶PID调速系统的目标函数,具体方法为:Step 1.3: Use the hybrid algorithm to optimize the objective function of the fractional-order PID speed control system described in Step 1.2. The specific method is:
将kp、ki、kd、α、μ五个参数组成初始果蝇位置,使果蝇按味道浓度进行寻优,利用BP神经网络的深度搜索特性对kp、ki、kd、α、μ五个参数优化求解,具体包括以下步骤:Five parameters of k p , ki , k d , α and μ are used to form the initial fruit fly position, so that the fruit fly can be optimized according to the taste concentration . The five parameters of α and μ are optimized and solved, including the following steps:
步骤1.3.1:初始化果蝇种群规模groupsize(400)和最大迭代次数maxnum(400),随机产生果蝇种群位置(Xaxis,Yaxis),迭代步进值R定义为(0.85-1);Step 1.3.1: Initialize the fruit fly population size groupsize(400) and the maximum number of iterations maxnum(400), randomly generate the fruit fly population position (X axis , Y axis ), and the iteration step value R is defined as (0.85-1);
步骤1.3.2:随机化果蝇种群位置与方向,根据果蝇种群位置与原点距离DDist判定果蝇种群味道浓度值Si;Step 1.3.2: Randomize the position and direction of the fruit fly population, and determine the taste concentration value S i of the fruit fly population according to the distance D Dist between the fruit fly population position and the origin;
步骤1.3.3:计算果蝇个体的味道浓度,将果蝇种群味道浓度值Si代入味道浓度判定函数Ffunction中,并从每个果蝇群体中找到味道浓度最优个体;Step 1.3.3: Calculate the taste concentration of individual fruit flies, substitute the taste concentration value S i of the fruit fly population into the taste concentration determination function F function , and find the optimal individual of taste concentration from each fruit fly population;
保留下最优味道浓度bbestsmell与对应的(Xi,Yi)位置,果蝇群体Ssmell飞向该坐标,bbest indes表示最优果蝇位置;Retain the optimal taste concentration b bestsmell and the corresponding (X i , Y i ) position, the fruit fly population S smell flies to this coordinate, and b best indes represents the optimal fruit fly position;
步骤1.3.4:将步骤1.3.3得到的果蝇位置坐标(Xi,Yi)输入BP神经网络的隐藏层nnet (2)(k),定义输入输出;Step 1.3.4: Input the position coordinates (X i , Y i ) of the fruit fly obtained in step 1.3.3 into the hidden layer n net (2) (k) of the BP neural network to define the input and output;
其中,i=1,2,…,Q,根据被控对象复杂程度定义n,Q值,Zj (2)为优化后果蝇种群(Xi,Yi)位置,wij (2)为隐藏层加权系数,Zi(k)(2)取活化函数Sigmoid函数;Among them, i=1,2,...,Q, the value of n and Q is defined according to the complexity of the controlled object, Z j (2) is the optimal position of the fruit fly population (X i , Y i ), w ij (2) is the hidden Layer weighting coefficient, Z i (k) (2) Take the activation function Sigmoid function;
步骤1.3.5:定义BP神经网络输出层nnet (3)(k),更新果蝇个体,选取E(k)为性能误差指标,同时保留味道最浓果蝇个体的位置坐标(Xi,Yi);Step 1.3.5: Define the output layer n net (3) (k) of the BP neural network, update the individual fruit fly, select E(k) as the performance error index, and keep the position coordinates (X i , Y i );
步骤1.3.6:通过判断上一步计算的性能指标,在达到最大迭代次数时输出最优参数kp,ki,kd,α,μ,结束进程,否则,转入步骤1.3.2,直至达到最大迭代次数时输出最优参数kp,ki,kd,α,μ,结束进程。Step 1.3.6: By judging the performance index calculated in the previous step, when the maximum number of iterations is reached, output the optimal parameters k p , k i , k d , α, μ, and end the process, otherwise, go to step 1.3.2, until When the maximum number of iterations is reached, output the optimal parameters k p , k i , k d , α, μ, and end the process.
所述步骤2具体包括以下步骤:The step 2 specifically includes the following steps:
步骤2.1:建立水轮机调速系统的机械液压系统的数学模型,具体采用以下方法:Step 2.1: Establish the mathematical model of the mechanical hydraulic system of the turbine speed control system, specifically using the following methods:
机械液压系统的作用为把电气信号转换并放大成具有一定操作力的机械位移信号;由于二级接力器响应时间常数Ty1远小于主接力器响应时间常数Ty,在建模中通常将其简化为一个惯性环节,其中,y是机械液压系统输出信号,也可表示导叶开度相对大小,根据水轮机调节特性,加入了频率死区和饱和限制环节,主配压阀和接力器线性部分传递函数为:The function of the mechanical hydraulic system is to convert and amplify the electrical signal into a mechanical displacement signal with a certain operating force; since the response time constant T y1 of the secondary relay is much smaller than the response time constant T y of the main relay, it is usually used in modeling. Simplified as an inertia link, where y is the output signal of the mechanical hydraulic system, and can also represent the relative size of the guide vane opening. According to the adjustment characteristics of the turbine, the frequency dead zone and saturation limit links are added, and the main pressure distribution valve and the servomotor linear part The transfer function is:
步骤2.2:建立水轮机调速系统的引水系统的数学模型,具体采用以下方法:Step 2.2: Establish the mathematical model of the water diversion system of the turbine speed control system, using the following methods:
根据引水压力管道长度的不同,仿真建模上,在700m以下采用刚性水锤模型,大于700m时采用弹性水锤,在引水系统中水流水力变化过程由以下方程描述:According to the length of the water diversion pressure pipeline, in the simulation modeling, the rigid water hammer model is used below 700 m, and the elastic water hammer is used when it is greater than 700 m. The hydraulic change process of the water flow in the water diversion system is described by the following equation:
运动方程:Equation of motion:
其中H为水头,Q为水流量,S为水管道横截面积,t为时间,g为重力加速度;Where H is the water head, Q is the water flow, S is the cross-sectional area of the water pipe, t is the time, and g is the acceleration of gravity;
流量方程:Flow equation:
其中a为水流加速度;where a is the water flow acceleration;
将压力引水管道中水击方程经Taylor级数展开取n=0和n=1项得刚性水锤GA1和弹性水锤GA2传递函数:The transfer functions of rigid water hammer G A1 and elastic water hammer G A2 are obtained by expanding the water hammer equation in the pressure diversion pipeline through Taylor series and taking the terms n=0 and n=1:
其中TW为刚性水击时间常数,Tr=2L/V为弹性水击时间常数,L为压力引水管道管道长度,V为水流波速,H0为水头、Q0为流量、V0为水流基速。where T W is the rigid water hammer time constant, Tr=2L/V is the elastic water hammer time constant, L is the length of the pressure diversion pipeline, V is the water flow wave velocity, H 0 is the water head, Q 0 is the flow rate, and V 0 is the flow base speed.
所述步骤3具体包括以下步骤:The step 3 specifically includes the following steps:
建立水轮机发电机模型,将传统的一阶水轮机发电机模型扩展到5阶水轮机模型,并由此引入励磁机模型和动态负荷模型;具体方法为:The turbine generator model is established, the traditional first-order turbine generator model is extended to the fifth-order turbine model, and the exciter model and dynamic load model are introduced from this; the specific methods are as follows:
步骤3.1:传统的水轮机发电机模型使用的一阶模型为:Step 3.1: The first-order model used by the traditional hydro-turbine generator model is:
其中,f为机组频率,p为机组输入功率差值,Tn为机组惯性时间常数,一般Tn为3s~12s,en为机组静态频率自调节系数,en取0.5~2.0s;Among them, f is the frequency of the unit, p is the input power difference of the unit, Tn is the inertia time constant of the unit, generally T n is 3s ~ 12s, e n is the static frequency self-adjustment coefficient of the unit, and e n is 0.5 ~ 2.0s;
上述一阶模型并不能反映实际的水轮发电机参数以及励磁系统参数,本文通过MATLAB/Simulink仿真平台建立五阶空间状态方程的同步电机模型等效为水轮发电机模型,定义了水轮机的基本参数特性,考虑了定、转子磁场和阻尼绕组的动态特性,模型的等效电路表示在转子参考系(dq框架)中。The above first-order model cannot reflect the actual parameters of the hydro-generator and excitation system. In this paper, the synchronous motor model of the fifth-order space state equation established by the MATLAB/Simulink simulation platform is equivalent to the hydro-generator model, which defines the basic parameters of the hydro-turbine. Parametric characteristics, considering the dynamic characteristics of stator and rotor magnetic fields and damping windings, the equivalent circuit of the model is represented in the rotor reference frame (dq frame).
其中,定子电压方程为:Among them, the stator voltage equation is:
其中Ud为定子d轴电压,Uq为定子q轴电压,φd和φq表示dp轴磁链,id和iq为等效dq坐标系下电流,ra为等效电阻,dq轴次暂态电动势为E″d和E″q,X”d和X”q为dq次暂态电抗;where U d is the stator d-axis voltage, U q is the stator q-axis voltage, φ d and φ q represent the dp -axis flux linkage, id and i q are the currents in the equivalent dq coordinate system, ra is the equivalent resistance, dq The axial sub-transient electromotive force is E″ d and E″ q , X” d and X” q are dq sub-transient reactance;
转子f绕组、dq绕组电压方程及转子运动方程为:The rotor f winding, dq winding voltage equation and rotor motion equation are:
其中d轴和q轴时间常数(全部以s为单位),d轴瞬态开路(Tdo')或短路(Td')时间常数,d轴次瞬态开路(Tdo”)或短路(Td”)时间常数,q轴瞬态开路(Tqo')或短路(Tq')时间常数(仅限圆形转子),q轴次瞬态开路(Tqo”)或短路(Tq”)时间常数。E’q为暂态电动势,Ee为dq绕组电动势,X’d为d轴暂态电抗,Xd和Xq为dq轴电抗,W为转子机械角速度,Tj为发电机组的惯性时间常数,Tm为原动机机械转矩,为作用在转子轴上的不平衡转矩。where d-axis and q-axis time constants (all in s), d-axis transient open (Tdo') or short-circuit (Td') time constants, and d-axis sub-transient open (Tdo") or short-circuit (Td") time constants Time constant, q-axis transient open (Tqo') or short-circuit (Tq') time constant (round rotor only), q-axis sub-transient open (Tqo") or short-circuit (Tq") time constant. E' q is the transient electromotive force, E e is the dq winding electromotive force, X' d is the d-axis transient reactance, X d and X q are the dq-axis reactance, W is the rotor mechanical angular velocity, and T j is the inertia time constant of the generator set , T m is the mechanical torque of the prime mover, is the unbalanced torque acting on the rotor shaft.
本发明的有益效果为:The beneficial effects of the present invention are:
本发明所述的建立基于分数阶PID调速系统的水轮机调速器仿真分析数学模型,利用MATLAB仿真建模,在前人研究的基础上对经典PID调速系统进行了改进,根据实例分析,建立起了能够反映水轮机调速系统和发电机系统各项参数综合性模型,对于水轮机机组容量,频率,转子绕组,定子绕组,励磁绕组,磁极对数,输出电压电流情况,励磁电压情况,负荷变化情况能够具体分析,在很大程度上能够仿真各类水电站实际运行时的暂稳态变化,弥补了传统水轮机建模的缺陷;在实际应用中对实际水轮机组的运行情况,面对负荷波动时水轮机各项参数的变化有良好的反应,为事故预测与系统安全运行提供保障。The mathematical model of the simulation analysis of the hydraulic turbine governor based on the fractional-order PID speed control system is established, and the MATLAB simulation model is used to improve the classical PID speed control system on the basis of the previous research. According to the analysis of examples, A comprehensive model that can reflect various parameters of the turbine speed control system and generator system has been established. For the turbine unit capacity, frequency, rotor winding, stator winding, excitation winding, number of pole pairs, output voltage and current, excitation voltage, load The change situation can be analyzed in detail, and to a large extent, it can simulate the temporary steady state changes in the actual operation of various hydropower stations, making up for the shortcomings of traditional turbine modeling; in practical applications, the operation of the actual turbine unit is faced with load fluctuations. The change of various parameters of the turbine has a good response, which provides a guarantee for the accident prediction and the safe operation of the system.
附图说明:Description of drawings:
图1为本发明的方法流程图;Fig. 1 is the method flow chart of the present invention;
图2为本发明所述的建立基于分数阶PID调速系统的水轮机调速器仿真分析数学模型,并利用混合算法优化所述的基于分数阶PID调速系统的目标函数的方法流程图;Fig. 2 is the establishment of the hydraulic turbine governor simulation analysis mathematical model based on fractional-order PID speed control system according to the present invention, and utilizes hybrid algorithm to optimize the method flow chart of the objective function based on fractional-order PID speed control system;
图3为本发明所述的利用混合算法优化所述的基于分数阶PID调速系统的目标函数的方法流程图;Fig. 3 is the method flow chart of utilizing the hybrid algorithm to optimize the described objective function based on fractional order PID speed regulation system of the present invention;
图4为负载扰动时经典PID调速系统与分数阶PID调速系统控制结果对比示意图;Figure 4 is a schematic diagram of the comparison of the control results between the classical PID speed control system and the fractional-order PID speed control system when the load is disturbed;
图5为负载扰动时FOA-PID调速系统与BP-PID调速系统控制结果对比示意图;Figure 5 is a schematic diagram of the comparison of the control results of the FOA-PID speed control system and the BP-PID speed control system when the load is disturbed;
图6为负载扰动时BP-PID调速系统与BPFOA-FOPID调速系统控制结果对比示意图;Figure 6 is a schematic diagram of the comparison of the control results between the BP-PID speed control system and the BPFOA-FOPID speed control system when the load is disturbed;
图7负载投切时水轮机励磁电压、有功、转速变化;Figure 7. Turbine excitation voltage, active power, and rotational speed changes during load switching;
图8为负载投入时三相电流变化;Figure 8 shows the three-phase current changes when the load is turned on;
图9为负载部分切除时三相电流变化;Figure 9 shows the three-phase current changes when the load is partially cut off;
图10为BPFOA-PID双目标优化控制结果对比示意图;Figure 10 is a schematic diagram showing the comparison of BPFOA-PID dual-objective optimization control results;
图11为BPFOA-FOPID自适应寻优结果的示意图。Figure 11 is a schematic diagram of the BPFOA-FOPID adaptive optimization result.
具体实施方式:Detailed ways:
如图1所示:本发明所述的一种自适应分数阶PID调速系统的水轮机综合性模型建模方法,其特征在于,包括以下步骤:As shown in Figure 1 : a hydraulic turbine comprehensive model modeling method of an adaptive fractional-order PID speed control system according to the present invention is characterized in that, comprising the following steps:
步骤1:建立基于分数阶PID调速系统的水轮机调速器仿真分析数学模型,并利用混合算法优化所述的基于分数阶PID调速系统的目标函数;Step 1: establish a simulation analysis mathematical model of the turbine governor based on the fractional-order PID speed control system, and use a hybrid algorithm to optimize the objective function based on the fractional-order PID speed control system;
步骤2:建立水轮机调速系统的机械液压系统和引水系统数学模型;Step 2: Establish the mathematical model of the mechanical hydraulic system and the water diversion system of the turbine speed control system;
步骤3:建立水轮机发电机模型,将传统的一阶水轮机发电机模型扩展到5阶水轮机模型,并由此引入励磁机模型和动态负荷模型;Step 3: establish a turbine generator model, extend the traditional first-order turbine generator model to a fifth-order turbine model, and introduce the exciter model and the dynamic load model from this;
如图2所示:所述步骤1具体包括以下步骤:As shown in Figure 2, the step 1 specifically includes the following steps:
步骤1.1:由经典PID调速系统得到分数阶PID调速系统,具体方法为:Step 1.1: Obtain the fractional-order PID speed control system from the classical PID speed control system. The specific method is:
经典PID调速系统的微分表达式为:The differential expression of the classical PID speed control system is:
u(t)=kpe(t)+kiDe(t)+kdDe(t); (1)u(t)=k p e(t)+ ki De(t)+k d De(t); (1)
其中,kp表示比例参数,整定范围为0.5~20;ki表示积分参数,整定范围为0.05s-1~10s-1;kd表示微分参数,整定范围为0~5s;Among them, kp represents the proportional parameter, and the setting range is 0.5~20; ki represents the integral parameter, and the setting range is 0.05s-1~10s-1; kd represents the differential parameter, and the setting range is 0~5s;
然后将kp、ki、kd三个调节参数分别替换为暂态转差系数bt、缓冲时间常数Td、加速度时间常数Tn,具体的:Then replace the three adjustment parameters k p , k i and k d with transient slip coefficient b t , buffer time constant T d , acceleration time constant T n , specifically:
经典PID调速系统的传递函数为:The transfer function of the classic PID speed control system is:
其中,bt为暂态转差系数,取0~1.0;Td为缓冲时间常数,整定范围为2s~20s;Tn为加速度时间常数,整定范围为0~2s;pc和P分别为机组功率给定和机组功率(用于功率调节模式);yc和y分别为导叶开度给定和导叶度;频率调节模式和开度调节模式;fc和f分别为频率给定和机组(或电网)频率;Δf为频差;Δf'为经过频率死区ef后的频率偏差;Among them, bt is the transient slip coefficient, taking 0 to 1.0; Td is the buffer time constant, and the setting range is 2s to 20s; Tn is the acceleration time constant, and the setting range is 0 to 2s; pc and P are the unit power given respectively. and unit power (for power regulation mode); y c and y are the guide vane opening and guide vane degree, respectively; frequency regulation mode and opening regulation mode; fc and f are the frequency reference and unit (or grid), respectively ) frequency; Δf is the frequency difference; Δf' is the frequency deviation after passing through the frequency dead zone ef ;
将经典PID调速系统的微分表达式(式(1))为经过Laplace变换后分数阶PID调速系统的微分表达式为:The differential expression of the classical PID speed control system (formula (1)) is transformed into the differential expression of the fractional order PID speed control system after Laplace transformation as:
u(t)=kpe(t)+kiDαe(t)+kdDμe(t); (4)u(t)=k p e(t)+ ki D α e(t)+k d D μ e(t); (4)
其中α,μ>0,α为积分阶次,μ为微分阶次,当α和μ的值都为1时,则式(4)变为经典PID调速系统(式(1)),分数阶微积分的引入使传统的PID调节更具应用性与灵活性;Where α, μ>0, α is the integral order, μ is the differential order, when the values of α and μ are both 1, then the formula (4) becomes the classic PID speed control system (formula (1)), the fraction The introduction of first-order calculus makes the traditional PID adjustment more applicable and flexible;
分数阶PID调速系统的传递函数为:The transfer function of fractional order PID speed control system is:
步骤1.2:定义分数阶PID调速系统的目标函数,具体方法为:Step 1.2: Define the objective function of the fractional-order PID speed control system, the specific method is:
为了优化被控水轮机系统的调速性能,利用双误差积分作为步骤1.1所述的分数阶PID调速系统的目标函数:In order to optimize the speed regulation performance of the controlled hydraulic turbine system, the double error integral is used as the objective function of the fractional-order PID speed regulation system described in step 1.1:
其中,e(t)表示实际输出与期望输出的偏差,t为时间,ISE表示平方偏差积分,其值越小,说明系统的响应速度越快;ITAE是时间与平方偏差积分,其值越小,反映系统稳定性越好;Among them, e(t) represents the deviation between the actual output and the expected output, t is the time, I SE represents the square deviation integral, the smaller the value, the faster the response of the system; I TAE is the time and the square deviation integral, its value The smaller the value, the better the stability of the system;
如图3所示:步骤1.3:利用混合算法优化步骤1.2所述的基于分数阶PID调速系统的目标函数,具体方法为:As shown in Figure 3: Step 1.3: Use the hybrid algorithm to optimize the objective function of the fractional-order PID speed control system described in Step 1.2. The specific method is:
将kp、ki、kd、α、μ五个参数组成初始果蝇位置,使果蝇按味道浓度进行寻优,利用BP神经网络的深度搜索特性对kp、ki、kd、α、μ五个参数优化求解,具体包括以下步骤:Five parameters of k p , ki , k d , α and μ are used to form the initial fruit fly position, so that the fruit fly can be optimized according to the taste concentration . The five parameters of α and μ are optimized and solved, including the following steps:
步骤1.3.1:初始化果蝇种群规模groupsize(400)和最大迭代次数maxnum(400),随机产生果蝇种群位置(Xaxis,Yaxis),迭代步进值R定义为(0.85-1);Step 1.3.1: Initialize the fruit fly population size groupsize(400) and the maximum number of iterations maxnum(400), randomly generate the fruit fly population position (X axis , Y axis ), and the iteration step value R is defined as (0.85-1);
步骤1.3.2:随机化果蝇种群位置与方向,根据果蝇种群位置与原点距离DDist判定果蝇种群味道浓度值Si;Step 1.3.2: Randomize the position and direction of the fruit fly population, and determine the taste concentration value S i of the fruit fly population according to the distance D Dist between the fruit fly population position and the origin;
步骤1.3.3:计算果蝇个体的味道浓度,将果蝇种群味道浓度值Si代入味道浓度判定函数Ffunction中,并从每个果蝇群体中找到味道浓度最优个体;Step 1.3.3: Calculate the taste concentration of individual fruit flies, substitute the taste concentration value S i of the fruit fly population into the taste concentration determination function F function , and find the optimal individual of taste concentration from each fruit fly population;
保留下最优味道浓度bbestsmell与对应的(Xi,Yi)位置,果蝇群体Ssmell飞向该坐标,bbest indes表示最优果蝇位置;Retain the optimal taste concentration b bestsmell and the corresponding (X i , Y i ) position, the fruit fly population S smell flies to this coordinate, and b best indes represents the optimal fruit fly position;
步骤1.3.4:将步骤1.3.3得到的果蝇位置坐标(Xi,Yi)输入BP神经网络的隐藏层nnet (2)(k),定义输入输出;Step 1.3.4: Input the position coordinates (X i , Y i ) of the fruit fly obtained in step 1.3.3 into the hidden layer n net (2) (k) of the BP neural network to define the input and output;
其中,i=1,2,…,Q,根据被控对象复杂程度定义n,Q值,Zj (2)为优化后果蝇种群(Xi,Yi)位置,wij (2)为隐藏层加权系数,Zi(k)(2)取活化函数Sigmoid函数;Among them, i=1,2,...,Q, the value of n and Q is defined according to the complexity of the controlled object, Z j (2) is the optimal position of the fruit fly population (X i , Y i ), w ij (2) is the hidden Layer weighting coefficient, Z i (k) (2) Take the activation function Sigmoid function;
步骤1.3.5:定义BP神经网络输出层nnet (3)(k),更新果蝇个体,选取E(k)为性能误差指标,同时保留味道最浓果蝇个体的位置坐标(Xi,Yi);Step 1.3.5: Define the output layer n net (3) (k) of the BP neural network, update the individual fruit fly, select E(k) as the performance error index, and keep the position coordinates (X i , Y i );
步骤1.3.6:通过判断上一步计算的性能指标,在达到最大迭代次数时输出最优参数kp,ki,kd,α,μ,结束进程,否则,转入步骤1.3.2,直至达到最大迭代次数时输出最优参数kp,ki,kd,α,μ,结束进程。Step 1.3.6: By judging the performance index calculated in the previous step, when the maximum number of iterations is reached, output the optimal parameters k p , k i , k d , α, μ, and end the process, otherwise, go to step 1.3.2, until When the maximum number of iterations is reached, output the optimal parameters k p , k i , k d , α, μ, and end the process.
所述步骤2具体包括以下步骤:The step 2 specifically includes the following steps:
步骤2.1:建立水轮机调速系统的机械液压系统的数学模型,具体采用以下方法:Step 2.1: Establish the mathematical model of the mechanical hydraulic system of the turbine speed control system, specifically using the following methods:
机械液压系统的作用为把电气信号转换并放大成具有一定操作力的机械位移信号;由于二级接力器响应时间常数Ty1远小于主接力器响应时间常数Ty,在建模中通常将其简化为一个惯性环节,其中,y是机械液压系统输出信号,也可表示导叶开度相对大小,根据水轮机调节特性,加入了频率死区和饱和限制环节,主配压阀和接力器线性部分传递函数为:The function of the mechanical hydraulic system is to convert and amplify the electrical signal into a mechanical displacement signal with a certain operating force; since the response time constant T y1 of the secondary relay is much smaller than the response time constant T y of the main relay, it is usually used in modeling. Simplified as an inertia link, where y is the output signal of the mechanical hydraulic system, and can also represent the relative size of the guide vane opening. According to the adjustment characteristics of the turbine, the frequency dead zone and saturation limit links are added, and the main pressure distribution valve and the servomotor linear part The transfer function is:
步骤2.2:建立水轮机调速系统的引水系统的数学模型,具体采用以下方法:Step 2.2: Establish the mathematical model of the water diversion system of the turbine speed control system, using the following methods:
水轮机调速系统的引水系统的数学模型建立,根据引水压力管道长度的不同,仿真建模上一般在700m以下采用刚性水锤模型,大于700m时出于精度的考虑一般采用弹性水锤,在引水系统中水流水力变化过程由以下方程描述:The mathematical model of the water diversion system of the turbine speed control system is established. According to the length of the water diversion pressure pipeline, the rigid water hammer model is generally used for simulation modeling below 700 m, and the elastic water hammer is generally used for accuracy considerations when it is greater than 700 m. The hydraulic change process of water flow in the system is described by the following equation:
运动方程:Equation of motion:
其中H为水头,Q为水流量,S为水管道横截面积,t为时间,g为重力加速度;Where H is the water head, Q is the water flow, S is the cross-sectional area of the water pipe, t is the time, and g is the acceleration of gravity;
流量方程:Flow equation:
其中a为水流加速度;where a is the water flow acceleration;
将压力引水管道中水击方程经Taylor级数展开取n=0和n=1项得刚性水锤GA1和弹性水锤GA2传递函数:The transfer functions of rigid water hammer G A1 and elastic water hammer G A2 are obtained by expanding the water hammer equation in the pressure diversion pipeline through Taylor series and taking the terms n=0 and n=1:
其中TW为刚性水击时间常数,Tr=2L/V为弹性水击时间常数,L为压力引水管道管道长度,V为水流波速,H0为水头、Q0为流量、V0为水流基速。where T W is the rigid water hammer time constant, Tr=2L/V is the elastic water hammer time constant, L is the length of the pressure diversion pipeline, V is the water flow wave velocity, H 0 is the water head, Q 0 is the flow rate, and V 0 is the flow base speed.
所述步骤3具体包括以下步骤:The step 3 specifically includes the following steps:
建立水轮机发电机模型,将传统的一阶水轮机发电机模型扩展到5阶水轮机模型,并由此引入励磁机模型和动态负荷模型;Establish a turbine generator model, extend the traditional first-order turbine generator model to a fifth-order turbine model, and introduce the exciter model and dynamic load model from this;
具体方法为:传统的水轮机发电机模型通常使用一阶模型:The specific method is: the traditional hydro-turbine generator model usually uses a first-order model:
f为机组频率;p为机组输入功率差值;Tn为机组(负荷)惯性时间常数(动态频率特性时间常数),一般Tn为3s~12s;en为机组(负荷)静态频率自调节(特性)系数,随负载性质不同而不同,一般取en为0.5~2.0s;f is the unit frequency; p is the unit input power difference; Tn is the unit (load) inertia time constant (dynamic frequency characteristic time constant), generally Tn is 3s ~ 12s; en is the unit (load) static frequency self-adjustment (characteristic) The coefficient varies with the nature of the load. Generally, en is taken as 0.5 to 2.0s;
上述一阶模型并不能反映实际的水轮发电机参数以及励磁系统参数,本文通过MATLAB/Simulink仿真平台建立五阶空间状态方程的同步电机模型等效为水轮发电机模型,定义了水轮机的基本参数特性,考虑了定、转子磁场和阻尼绕组的动态特性,模型的等效电路表示在转子参考系(dq框架)中。The above first-order model cannot reflect the actual parameters of the hydro-generator and excitation system. In this paper, the synchronous motor model of the fifth-order space state equation established by the MATLAB/Simulink simulation platform is equivalent to the hydro-generator model, which defines the basic parameters of the hydro-turbine. Parametric characteristics, considering the dynamic characteristics of stator and rotor magnetic fields and damping windings, the equivalent circuit of the model is represented in the rotor reference frame (dq frame).
其中,定子电压方程为:Among them, the stator voltage equation is:
其中Ud为定子d轴电压,Uq为定子q轴电压,φd和φq表示dp轴磁链,id和iq为等效dq坐标系下电流,ra为等效电阻,dq轴次暂态电动势为E″d和E″q,X”d和X″q为dq次暂态电抗;where U d is the stator d-axis voltage, U q is the stator q-axis voltage, φ d and φ q represent the dp -axis flux linkage, id and i q are the currents in the equivalent dq coordinate system, ra is the equivalent resistance, dq Axial sub-transient electromotive force is E″ d and E″ q , X″ d and X″ q are dq sub-transient reactance;
转子f绕组、dq绕组电压方程及转子运动方程为:The rotor f winding, dq winding voltage equation and rotor motion equation are:
其中d轴和q轴时间常数(全部以s为单位),d轴瞬态开路(Tdo')或短路(Td')时间常数,d轴次瞬态开路(Tdo”)或短路(Td”)时间常数,q轴瞬态开路(Tqo')或短路(Tq')时间常数(仅限圆形转子),q轴次瞬态开路(Tqo”)或短路(Tq”)时间常数。E’q为暂态电动势,Ee为dq绕组电动势,X’d为d轴暂态电抗,Xd和Xq为dq轴电抗,W为转子机械角速度,Tj为发电机组的惯性时间常数,Tm为原动机机械转矩,为作用在转子轴上的不平衡转矩;where d-axis and q-axis time constants (all in s), d-axis transient open (Tdo') or short-circuit (Td') time constants, and d-axis sub-transient open (Tdo") or short-circuit (Td") time constants Time constant, q-axis transient open (Tqo') or short-circuit (Tq') time constant (round rotor only), q-axis sub-transient open (Tqo") or short-circuit (Tq") time constant. E' q is the transient electromotive force, E e is the dq winding electromotive force, X' d is the d-axis transient reactance, X d and X q are the dq-axis reactance, W is the rotor mechanical angular velocity, and T j is the inertia time constant of the generator set , T m is the mechanical torque of the prime mover, is the unbalanced torque acting on the rotor shaft;
励磁系统采用的是IEEE典型直流励磁机;当电力系统负荷突然增、减时,对发电机进行强行励磁、减磁,以提高电力系统的稳定性。The excitation system adopts the IEEE typical DC exciter; when the load of the power system increases or decreases suddenly, the generator is forcibly excited and demagnetized to improve the stability of the power system.
本发明提出的一种基于分数阶PID调速系统的水轮机综合性模型建模方法,根据实例分析,利用MATLAB平台仿真实验,取水轮机调速系统传递参数(见表1)作为仿真算例,由于水轮机组的转速特性,对调速系统设置了转速±0.001(pu)的死区,其中水轮机发电机部分参数见表2。A comprehensive model modeling method of a hydraulic turbine based on a fractional-order PID speed control system proposed by the present invention, according to the analysis of the example, using the MATLAB platform simulation experiment, taking the transmission parameters of the hydraulic turbine speed control system (see Table 1) as a simulation example, because For the speed characteristics of the hydraulic turbine unit, a dead zone of ±0.001 (pu) is set for the speed control system, and some parameters of the hydraulic turbine generator are shown in Table 2.
表1水轮机调速系统参数Table 1 Parameters of turbine speed control system
其中Eqy为流量偏差相对值对接力器行程偏差相对值的传递系数,Eqh为流量偏差相对值对水头偏差相对值的传递系数,Ey为水轮机转矩偏差相对值对接力器行程偏差相对值的传递系数,Eh水轮机转矩偏差相对值对水头偏差相对值的传递系数。Where E qy is the transfer coefficient of the relative value of flow deviation to the relative value of the stroke deviation of the cooperator, E qh is the transmission coefficient of the relative value of the flow deviation to the relative value of the head deviation, E y is the relative value of the torque deviation of the turbine to the stroke deviation of the cooperator E h is the transfer coefficient of the relative value of the turbine torque deviation to the relative value of the head deviation.
表2水轮机发电机参数Table 2 Turbine generator parameters
其中Pn为额定功率,Vn为额定线电压,Fn为额定频率,P为磁极对数,H为惯性系数,d轴同步电抗Xd,瞬态电抗Xd'和次瞬态电抗Xd”,q轴同步电抗Xq,瞬态电抗Xq'(仅当圆形转子)和次瞬态电抗Xq”,最后是泄漏电抗X1,Wref为额定转速,Vref额定励磁电压。where P n is rated power, V n is rated line voltage, F n is rated frequency, P is the number of pole pairs, H is inertia coefficient, d-axis synchronous reactance Xd, transient reactance Xd' and sub-transient reactance Xd", The q-axis synchronous reactance Xq, the transient reactance Xq' (only when the rotor is round) and the sub-transient reactance Xq", and finally the leakage reactance X1, W ref is the rated speed, and V ref is the rated excitation voltage.
由表1和表2对比可知:本发明在目前研究状态的基础上对水轮机调速系统进行了改进,对比目前主流调速系统调速结果如图4-图6所示;负荷部分根据水轮机运行特性按照带40%和75%两种负荷的工况下投入、切除情况进行仿真分析,水轮机的各项仿真结果如图7-图9所示。It can be seen from the comparison between Table 1 and Table 2: the present invention improves the speed regulation system of the turbine on the basis of the current research state, and the speed regulation results of the current mainstream speed regulation system are shown in Figure 4-Figure 6; the load part is based on the operation of the turbine. The characteristics are simulated and analyzed according to the input and cut conditions under two load conditions, 40% and 75%. The simulation results of the turbine are shown in Figures 7-9.
相比于经典水轮机调速系统,本发明提出的一种基于分数阶PID调速系统的水轮机综合性模型建模方法,基于分数阶PID调速系统由于可控参数的增多,在调节时间与超调量两个方面均优于经典水轮机调速系统;采用FOA算法和BP神经网络算法的自适应PID控制对比PID和FOPID控制的调速时间、超调量明显减少,但以上四种控制都具有系统震荡次数多的缺陷;传统的调速方式至少震荡4次以上系统才开始趋于稳定,采用混合果蝇算法(BP-FOA)控制的双目标FOPID优化控制器进一步减少了调节时间和超调量同时大幅度减少了震荡次数,仅仅需要2次系统就已经平稳,具体调速优化如图10所示。Compared with the classical hydraulic turbine speed control system, a hydraulic turbine comprehensive model modeling method based on the fractional-order PID speed control system proposed by the present invention is based on the fractional-order PID speed control system due to the increase of controllable parameters. Compared with the PID and FOPID control, the adaptive PID control using the FOA algorithm and the BP neural network algorithm has significantly reduced speed regulation time and overshoot, but the above four kinds of control all have the advantages of The defect of many system oscillations; the traditional speed regulation method oscillates more than 4 times before the system begins to stabilize. The dual-objective FOPID optimization controller controlled by the hybrid fruit fly algorithm (BP-FOA) further reduces the adjustment time and overshoot At the same time, the number of oscillations is greatly reduced, and the system is stable after only 2 times. The specific speed regulation optimization is shown in Figure 10.
如图11所示:通过对FOA算法、BP神经网络算法以及本文设计的BP-FOA算法进行自适应寻优参数分析,由于设置的高迭代步进值,果蝇算法的全局寻优能力增强,但迭代次数多,寻优时间长;BP神经网络算法的寻优能力强、收敛速度快,但易陷入局部最优,在面对负荷波动运行时出现不稳定现象;BP-FOA算法在全局寻优能力强的基础上利用BP神经网络的快速收敛性进一步减少了自适应调整时间,提高了24.58%,面对负荷波动表现出更强的适应性与稳定性。As shown in Figure 11: By analyzing the adaptive optimization parameters of the FOA algorithm, the BP neural network algorithm and the BP-FOA algorithm designed in this paper, due to the high iterative step value set, the global optimization ability of the fruit fly algorithm is enhanced. However, the number of iterations is large, and the optimization time is long; the BP neural network algorithm has strong optimization ability and fast convergence speed, but it is easy to fall into local optimum, and it will appear unstable when running in the face of load fluctuations; BP-FOA algorithm in the global search On the basis of strong optimization ability, the rapid convergence of BP neural network further reduces the self-adaptive adjustment time by 24.58%, and shows stronger adaptability and stability in the face of load fluctuations.
通过表3、表4对比可以看出经过混合果蝇算法双目标控制FOPID调节器在优化调速时间和控制超调方面有比较明显的优势,在目前主流BP神经网络控制算法的基础上减少了46.86%的超调δ,缩短了36.59%的调节时间Ts,其中Tr为上升时间,Tp为峰值时间。Through the comparison of Table 3 and Table 4, it can be seen that the dual-objective control FOPID regulator with the mixed fruit fly algorithm has obvious advantages in optimizing the speed regulation time and control overshoot. On the basis of the current mainstream BP neural network control algorithm, the 46.86% overshoot δ, shortening the adjustment time T s by 36.59 %, where Tr is the rise time and T p is the peak time.
表3负载扰动下不同控制器指标仿真结果对比Table 3 Comparison of simulation results of different controller indicators under load disturbance
表4负载扰动下不同控制器优化参数对比Table 4 Comparison of optimization parameters of different controllers under load disturbance
测试经BPFOA-FOPID双目标优化的水轮机模型初始带40%负载,在30s投入再35%负载,60s切除35%负载。在30s和60s的投切负荷时转速波动在±2%,3.9s时稳定,大大提高了系统稳定能力;由于采用的直流励磁机,在负荷增减时对发电机采用强励和减励,基本能够反映励磁机运行工况;发电机在负荷波动时输出出力及输出电流情况基本保持平稳,体现良好的输出性能。The hydraulic turbine model optimized by BPFOA-FOPID dual objective is tested with 40% load initially, 35% load is put in at 30s, and 35% load is cut off at 60s. The speed fluctuation is ±2% when the load is switched on and off at 30s and 60s, and it is stable at 3.9s, which greatly improves the stability of the system; due to the DC exciter used, the generator is strongly excited and reduced when the load is increased or decreased. It can basically reflect the operating conditions of the exciter; the output output and output current of the generator are basically stable when the load fluctuates, reflecting good output performance.
本次建模分析在建立了综合性水轮机模型的基础上对比了PID、FOPID、FOA算法以及BP神经网络控制四种主流单目标控制方法,提出了混合算法BPFOA-FOPID双目标函数控制方式,测试了其在面对负荷波动时,对水轮机调速系统控制的速动性与稳定性。仿真结果表明BPFOA-FOPID双目标控制方式下水轮机调节时间和超调量明显减少,对比常规的控制方式,体现出较强的鲁棒性与适应性。This modeling analysis compares the four mainstream single-objective control methods of PID, FOPID, FOA algorithm and BP neural network control on the basis of establishing a comprehensive turbine model, and proposes a hybrid algorithm BPFOA-FOPID dual-objective function control method. In the face of load fluctuations, the speed and stability of the control of the turbine speed control system are improved. The simulation results show that under the BPFOA-FOPID dual-objective control method, the adjustment time and overshoot of the turbine are significantly reduced. Compared with the conventional control method, it shows stronger robustness and adaptability.
本专利利用MATLAB仿真建模,在前人研究的基础上对水轮机调速系统进行了改进,根据实例分析,建立起了能够反映水轮机调速系统和发电机系统各项参数综合性模型,对于水轮机机组容量,频率,转子绕组,定子绕组,励磁绕组,磁极对数,输出电压电流情况,励磁电压情况,负荷变化情况能够具体分析,在很大程度上能够仿真各类水电站实际运行时的暂稳态变化,弥补了传统水轮机建模的缺陷。在实际应用中对实际水轮机组的运行情况,面对负荷波动时水轮机各项参数的变化有良好的反应,为事故预测与系统安全运行提供保障。This patent uses MATLAB simulation modeling to improve the hydraulic turbine speed control system on the basis of previous research. The unit capacity, frequency, rotor winding, stator winding, excitation winding, number of pole pairs, output voltage and current, excitation voltage, and load changes can be analyzed in detail, and to a large extent can simulate the temporary stability of various hydropower stations during actual operation. The state change makes up for the defects of traditional turbine modeling. In practical application, it has a good response to the operation of the actual hydraulic turbine unit and the changes of various parameters of the hydraulic turbine when the load fluctuates, which provides a guarantee for accident prediction and safe operation of the system.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910643191.6A CN110262223B (en) | 2019-07-16 | 2019-07-16 | Water turbine comprehensive model modeling method based on fractional PID speed regulation system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910643191.6A CN110262223B (en) | 2019-07-16 | 2019-07-16 | Water turbine comprehensive model modeling method based on fractional PID speed regulation system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110262223A true CN110262223A (en) | 2019-09-20 |
CN110262223B CN110262223B (en) | 2022-10-18 |
Family
ID=67926550
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910643191.6A Expired - Fee Related CN110262223B (en) | 2019-07-16 | 2019-07-16 | Water turbine comprehensive model modeling method based on fractional PID speed regulation system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110262223B (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110989345A (en) * | 2019-11-28 | 2020-04-10 | 国网福建省电力有限公司 | Water turbine system control parameter optimization method based on biophysical optimization algorithm |
CN111259864A (en) * | 2020-03-04 | 2020-06-09 | 哈尔滨理工大学 | Method for identifying running state of water turbine |
CN111736466A (en) * | 2020-06-08 | 2020-10-02 | 武汉理工大学 | A kind of optimal control method and system for fast discharge system of semi-submersible platform |
CN112000017A (en) * | 2020-09-08 | 2020-11-27 | 金陵科技学院 | Global stabilization control method of fractional order water turbine adjusting system |
CN112733424A (en) * | 2020-12-12 | 2021-04-30 | 国网新源控股有限公司回龙分公司 | Modeling simulation method and system for pumped storage power station generator |
CN112966394A (en) * | 2021-03-31 | 2021-06-15 | 华中科技大学 | Simulation method and system for dynamic characteristics of hydroelectric generator group under hydraulic coupling condition |
CN114640140A (en) * | 2022-04-09 | 2022-06-17 | 昆明理工大学 | Method for establishing load frequency joint control strategy considering hybrid energy storage auxiliary power grid |
CN117650583A (en) * | 2024-01-30 | 2024-03-05 | 三峡金沙江云川水电开发有限公司 | Hydropower station one-pipe multi-machine grid-connection multi-target coordination optimization control method and system |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010229962A (en) * | 2009-03-30 | 2010-10-14 | Mitsubishi Electric Corp | Hydraulic turbine and speed governing controller for pump turbine |
CN102175445A (en) * | 2011-02-24 | 2011-09-07 | 华中科技大学 | Simulation test device for hydroturbine speed-regulating system |
CN102352812A (en) * | 2011-07-18 | 2012-02-15 | 华北电力大学 | Sliding mode-based hydro turbine governing system dead zone nonlinear compensation method |
CN103590969A (en) * | 2013-11-20 | 2014-02-19 | 华中科技大学 | PID hydraulic turbine governor parameter optimization method based on multi-working-condition time domain response |
CN103942625A (en) * | 2014-04-23 | 2014-07-23 | 天津大学 | Hydropower station plant dam structure vibration response prediction method based on FOA-GRNN |
CN106125552A (en) * | 2016-08-08 | 2016-11-16 | 国家电网公司 | Pump-storage generator governing system fuzzy score rank PID control method |
CN106849814A (en) * | 2017-03-27 | 2017-06-13 | 无锡开放大学 | Leapfroged Fuzzy Neural PID linear synchronous generator control method based on fruit bat |
CN107834610A (en) * | 2017-11-29 | 2018-03-23 | 西南交通大学 | A kind of mains frequency dynamic analysing method for considering hydraulic turbine water hammer effect |
CN108564235A (en) * | 2018-07-13 | 2018-09-21 | 中南民族大学 | A kind of improved FOA-BPNN exit times prediction technique |
CN109634116A (en) * | 2018-09-04 | 2019-04-16 | 贵州大学 | A kind of acceleration adaptive stabilizing method of fractional order mechanical centrifugal governor system |
-
2019
- 2019-07-16 CN CN201910643191.6A patent/CN110262223B/en not_active Expired - Fee Related
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010229962A (en) * | 2009-03-30 | 2010-10-14 | Mitsubishi Electric Corp | Hydraulic turbine and speed governing controller for pump turbine |
CN102175445A (en) * | 2011-02-24 | 2011-09-07 | 华中科技大学 | Simulation test device for hydroturbine speed-regulating system |
CN102352812A (en) * | 2011-07-18 | 2012-02-15 | 华北电力大学 | Sliding mode-based hydro turbine governing system dead zone nonlinear compensation method |
CN103590969A (en) * | 2013-11-20 | 2014-02-19 | 华中科技大学 | PID hydraulic turbine governor parameter optimization method based on multi-working-condition time domain response |
CN103942625A (en) * | 2014-04-23 | 2014-07-23 | 天津大学 | Hydropower station plant dam structure vibration response prediction method based on FOA-GRNN |
CN106125552A (en) * | 2016-08-08 | 2016-11-16 | 国家电网公司 | Pump-storage generator governing system fuzzy score rank PID control method |
CN106849814A (en) * | 2017-03-27 | 2017-06-13 | 无锡开放大学 | Leapfroged Fuzzy Neural PID linear synchronous generator control method based on fruit bat |
CN107834610A (en) * | 2017-11-29 | 2018-03-23 | 西南交通大学 | A kind of mains frequency dynamic analysing method for considering hydraulic turbine water hammer effect |
CN108564235A (en) * | 2018-07-13 | 2018-09-21 | 中南民族大学 | A kind of improved FOA-BPNN exit times prediction technique |
CN109634116A (en) * | 2018-09-04 | 2019-04-16 | 贵州大学 | A kind of acceleration adaptive stabilizing method of fractional order mechanical centrifugal governor system |
Non-Patent Citations (1)
Title |
---|
蔡超豪等: "具有区域极点偏置的水轮机调速系统的H2/H∞混合控制", 《电力科学与工程》 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110989345A (en) * | 2019-11-28 | 2020-04-10 | 国网福建省电力有限公司 | Water turbine system control parameter optimization method based on biophysical optimization algorithm |
CN111259864A (en) * | 2020-03-04 | 2020-06-09 | 哈尔滨理工大学 | Method for identifying running state of water turbine |
CN111736466A (en) * | 2020-06-08 | 2020-10-02 | 武汉理工大学 | A kind of optimal control method and system for fast discharge system of semi-submersible platform |
CN111736466B (en) * | 2020-06-08 | 2021-09-10 | 武汉理工大学 | Optimal control method and system for quick load shedding system of semi-submersible platform |
CN112000017A (en) * | 2020-09-08 | 2020-11-27 | 金陵科技学院 | Global stabilization control method of fractional order water turbine adjusting system |
CN112733424A (en) * | 2020-12-12 | 2021-04-30 | 国网新源控股有限公司回龙分公司 | Modeling simulation method and system for pumped storage power station generator |
CN112966394A (en) * | 2021-03-31 | 2021-06-15 | 华中科技大学 | Simulation method and system for dynamic characteristics of hydroelectric generator group under hydraulic coupling condition |
CN112966394B (en) * | 2021-03-31 | 2024-04-23 | 华中科技大学 | Simulation method and system for dynamic characteristics of hydroelectric generating set under hydraulic coupling condition |
CN114640140A (en) * | 2022-04-09 | 2022-06-17 | 昆明理工大学 | Method for establishing load frequency joint control strategy considering hybrid energy storage auxiliary power grid |
CN117650583A (en) * | 2024-01-30 | 2024-03-05 | 三峡金沙江云川水电开发有限公司 | Hydropower station one-pipe multi-machine grid-connection multi-target coordination optimization control method and system |
CN117650583B (en) * | 2024-01-30 | 2024-04-26 | 三峡金沙江云川水电开发有限公司 | Hydropower station one-pipe multi-machine grid-connection multi-target coordination optimization control method and system |
Also Published As
Publication number | Publication date |
---|---|
CN110262223B (en) | 2022-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110262223B (en) | Water turbine comprehensive model modeling method based on fractional PID speed regulation system | |
CN111027177B (en) | A method for optimizing frequency regulation parameters of pumped storage unit and frequency regulation method | |
Munteanu et al. | Energy-reliability optimization of wind energy conversion systems by sliding mode control | |
Ceballos et al. | Efficiency optimization in low inertia wells turbine-oscillating water column devices | |
Mehedi et al. | Simulation analysis and experimental evaluation of improved field-oriented controlled induction motors incorporating intelligent controllers | |
Guo et al. | Nonlinear modeling and operation stability of variable speed pumped storage power station | |
Zhang et al. | Control optimisation for pumped storage unit in micro‐grid with wind power penetration using improved grey wolf optimiser | |
CN101915203A (en) | Damping Injection Control Method for Improving Power Angle Oscillation of Hydrogenerator Units | |
CN105262145A (en) | An optimal selection method for new energy mixed system control parameters | |
Lv et al. | Characteristic analysis and optimal regulation of primary frequency regulation condition in low water head area based on hydraulic‐mechanical‐electrical coupling model of pumped storage unit | |
Gil-González et al. | Standard passivity-based control for multi-hydro-turbine governing systems with surge tank | |
CN112464391A (en) | Method for establishing Hamilton model of diesel generator set | |
Wang et al. | Governor tuning and digital deflector control of Pelton turbine with multiple needles for power system studies | |
CN104980069A (en) | Multipurpose optimization method for double closed-loop speed governing system of brushless DC motor | |
CN114114922A (en) | A method for optimizing control parameters of hydraulic turbine regulating system | |
CN102661243B (en) | A predictive correction pitch control method for doubly-fed induction wind turbines | |
Yang et al. | Evaluating fast power response of variable speed pumped storage plants to balance wind power variations | |
CN118965644A (en) | A method, device and medium for numerical simulation of dynamic characteristics of variable speed pumped storage power station | |
Mohale et al. | Small signal stability analysis of damping controller for SSO mitigation in a large rated asynchronous hydro unit | |
Teng et al. | Mechanism and Characteristics analysis of Ultra-low Frequency Oscillation phenomenon in a Power Grid with a High Proportion of Hydropower | |
Zhang et al. | Enhanced wind turbine maximum wind-energy capture based on the inverse-system method | |
Mohammadi et al. | Platform for design, simulation, and experimental evaluation of small wind turbines | |
Ramanath et al. | An extremely low-cost wind emulator | |
Wang et al. | Study on the influence of parallel fuzzy PID control on the regulating system of a bulb tubular turbine generator unit | |
Ounnas et al. | Optimal reference model based fuzzy tracking control for wind energy conversion system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20221018 |
|
CF01 | Termination of patent right due to non-payment of annual fee |