CN110252343A - 一种FeS-GQDs复合纳米材料及其制备方法和应用 - Google Patents
一种FeS-GQDs复合纳米材料及其制备方法和应用 Download PDFInfo
- Publication number
- CN110252343A CN110252343A CN201910635079.8A CN201910635079A CN110252343A CN 110252343 A CN110252343 A CN 110252343A CN 201910635079 A CN201910635079 A CN 201910635079A CN 110252343 A CN110252343 A CN 110252343A
- Authority
- CN
- China
- Prior art keywords
- fes
- gqds
- composite nano
- nano materials
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 52
- 239000002086 nanomaterial Substances 0.000 title claims abstract description 51
- 238000002360 preparation method Methods 0.000 title claims abstract description 25
- 230000015556 catabolic process Effects 0.000 claims abstract description 23
- 238000006731 degradation reaction Methods 0.000 claims abstract description 23
- STZCRXQWRGQSJD-GEEYTBSJSA-M methyl orange Chemical compound [Na+].C1=CC(N(C)C)=CC=C1\N=N\C1=CC=C(S([O-])(=O)=O)C=C1 STZCRXQWRGQSJD-GEEYTBSJSA-M 0.000 claims abstract description 16
- 229940012189 methyl orange Drugs 0.000 claims abstract description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 16
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 15
- 230000003197 catalytic effect Effects 0.000 claims abstract description 15
- 229910021389 graphene Inorganic materials 0.000 claims abstract description 14
- 239000002096 quantum dot Substances 0.000 claims abstract description 12
- 239000000463 material Substances 0.000 claims abstract description 10
- 238000002156 mixing Methods 0.000 claims abstract description 10
- 239000007864 aqueous solution Substances 0.000 claims abstract description 6
- 239000012153 distilled water Substances 0.000 claims abstract description 3
- 238000006243 chemical reaction Methods 0.000 claims description 14
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 12
- 229910052979 sodium sulfide Inorganic materials 0.000 claims description 8
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 claims description 7
- 229910000359 iron(II) sulfate Inorganic materials 0.000 claims description 7
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- 230000001699 photocatalysis Effects 0.000 claims description 5
- 238000000502 dialysis Methods 0.000 claims description 3
- 239000002114 nanocomposite Substances 0.000 claims description 3
- 239000002994 raw material Substances 0.000 claims description 3
- GRVFOGOEDUUMBP-UHFFFAOYSA-N sodium sulfide (anhydrous) Chemical compound [Na+].[Na+].[S-2] GRVFOGOEDUUMBP-UHFFFAOYSA-N 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 15
- 238000006555 catalytic reaction Methods 0.000 abstract description 6
- 239000003054 catalyst Substances 0.000 abstract description 4
- 230000007613 environmental effect Effects 0.000 abstract description 4
- 238000002474 experimental method Methods 0.000 abstract description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 238000012545 processing Methods 0.000 abstract description 3
- 238000012360 testing method Methods 0.000 abstract description 3
- 238000003912 environmental pollution Methods 0.000 abstract description 2
- 239000002957 persistent organic pollutant Substances 0.000 abstract description 2
- 239000007795 chemical reaction product Substances 0.000 abstract 1
- 238000001816 cooling Methods 0.000 abstract 1
- 239000010842 industrial wastewater Substances 0.000 abstract 1
- 239000005416 organic matter Substances 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 18
- 239000013078 crystal Substances 0.000 description 9
- 239000008367 deionised water Substances 0.000 description 8
- 229910021641 deionized water Inorganic materials 0.000 description 8
- VDQVEACBQKUUSU-UHFFFAOYSA-M disodium;sulfanide Chemical compound [Na+].[Na+].[SH-] VDQVEACBQKUUSU-UHFFFAOYSA-M 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 5
- SURQXAFEQWPFPV-UHFFFAOYSA-L iron(2+) sulfate heptahydrate Chemical compound O.O.O.O.O.O.O.[Fe+2].[O-]S([O-])(=O)=O SURQXAFEQWPFPV-UHFFFAOYSA-L 0.000 description 4
- 238000002604 ultrasonography Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 2
- 241000209094 Oryza Species 0.000 description 2
- 235000007164 Oryza sativa Nutrition 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000003344 environmental pollutant Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000010525 oxidative degradation reaction Methods 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 231100000719 pollutant Toxicity 0.000 description 2
- 150000003254 radicals Chemical class 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000002351 wastewater Substances 0.000 description 2
- 239000012028 Fenton's reagent Substances 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 238000009303 advanced oxidation process reaction Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000149 chemical water pollutant Substances 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- -1 graphite alkenes Chemical class 0.000 description 1
- 238000007172 homogeneous catalysis Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000010815 organic waste Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000007146 photocatalysis Methods 0.000 description 1
- 239000011941 photocatalyst Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 231100000701 toxic element Toxicity 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/02—Sulfur, selenium or tellurium; Compounds thereof
- B01J27/04—Sulfides
- B01J27/043—Sulfides with iron group metals or platinum group metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/20—Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
- B01J35/23—Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/391—Physical properties of the active metal ingredient
- B01J35/393—Metal or metal oxide crystallite size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/30—Treatment of water, waste water, or sewage by irradiation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
- C02F1/722—Oxidation by peroxides
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
- C02F1/725—Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/308—Dyes; Colorants; Fluorescent agents
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/34—Organic compounds containing oxygen
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/38—Organic compounds containing nitrogen
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/40—Organic compounds containing sulfur
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2305/00—Use of specific compounds during water treatment
- C02F2305/10—Photocatalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nanotechnology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Water Supply & Treatment (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Toxicology (AREA)
- Catalysts (AREA)
- Compounds Of Iron (AREA)
Abstract
本发明公开了一种FeS‑GQDs复合纳米材料及其制备方法和应用,方法包括:将石墨烯量子点溶解在蒸馏水中,再将FeSO4的水溶液和Na2S的水溶液加入混合,反应10 h,待反应产物冷却后,进行透析,制得FeS‑GQDs复合纳米材料。与其他催化材料的制备方法相比,本发明操作简单,催化效率高,减少了二次环境污染问题。该FeS‑GQDs复合纳米材料通过催化降解甲基橙的实验为测试,综合评定了其在有机物降解方面的催化活性,为含有有机污染物的工业废水的处理提供了可靠实验依据;为石墨烯基类Fenton催化剂的生产及在环境领域的应用提供了新的思路。
Description
技术领域
本发明涉及水处理技术领域,具体涉及一种FeS-GQDs复合纳米材料及其制备方法和应用。
背景技术
石墨烯量子点(GQDs)是一种新型的纳米材料,由于良好的发光性、低毒性、溶解性、化学惰性等特殊性质,使其在医学领域、环境领域、电子领域拥有巨大的潜在应用,也引起了众多研究者的关注。2012年,Zhuo等运用超声波制备出GQDs,发现所制备的GQDs可以表现出激发独立的下转换和上转换光致发光(PL)的行为。同时进一步与二氧化钛结合,制备出金红石复合光催化剂(TiO2/GQDs),其光催化效率在可见光下,为之前亚甲蓝降解的9倍。这种纳米材料具有许多优异的半导体量子点的光学性能,如荧光强度高,易生物耦合等优点。GQDs在表面上具有大量的羧基,使得它们具有良好的水溶性,并且能够与各种无机材料,聚合物,抗体和生物分子结合。同时,石墨烯类纳米材料是化学界当前最热门的研究材料,并且GQDs本身不含有任何有毒元素,显示出良好的生物相容性。其具有制备方法简单,成本低,可大规模制备等一系列优点。
近年来,随着医药工业的迅速发展,工业有机废水对环境的污染日益加剧, 也将产生负面的环境效应。芬顿(Fenton)法是一种深度氧化技术,即利用Fe离子和H2O2之间的链反应催化生成具有强氧化性的OH自由基,以达到氧化降解污染物的目的。特别适用于难生物降解或难以化学氧化的有机废水,如垃圾渗滤液的氧化处理,是一种很有应用前景的废水处理技术。但传统Fenton法存在以下缺陷:处理高浓度污染物时H2O2用量大,适用pH范围小(一般须在pH<3时进行),导致废水处理成本较高;常规的Fenton试剂属于均相催化体系,其回收成本较高,易引起二次污染等。近年来,将纳米材料运用于类Fenton反应的研究日益增多。
发明内容
针对现有问题的不足,本发明的目的是提供一种工艺简单、成本低且高性能的类Fenton催化剂制备的新方法,利用石墨烯量子点为原材料,与FeS制备光催化纳米复合材料,催化降解水中的甲基橙燃料,制备程序简单且降解效率明显,并减少了二次环境污染问题。该方法为石墨烯基类Fenton催化剂的生产及在环境领域的应用提供了新的思路。
本发明的第二个目的是提供一种FeS-GQDs复合纳米材料。
本发明的第三个目的是提供FeS-GQDs复合纳米材料的应用。
为解决上述技术问题,本发明提供了如下技术方案:
一种FeS-GQDs复合纳米材料,利用石墨烯量子点为原材料,与FeS制备光催化纳米复合材料;所述FeS-GQDs复合纳米材料呈球形,粒径在10-12 nm。
一种FeS-GQDs复合纳米材料的制备方法,包括如下步骤:取GQDs溶解在蒸馏水中,再将FeSO4 .7H2O的水溶液和Na2S.9H2O的水溶液加入混合,在通氮气保护下反应10 h,然后进行透析,将透析袋内的产物真空干燥,制得FeS-GQDs复合纳米材料。
作为本申请的优选技术方案,所述GQDs通过自下而上的方法合成。
作为本申请的优选技术方案,所述混合,其是在转速为100-1000 rpm的条件下搅拌混合。
优选的,其是在转速为600 r/min的条件下搅拌混合。
作为本申请的优选技术方案,所述反应中GQDs与FeSO4 .7H2O的质量比为1:1-1:10,其中,FeSO4 .7H2O与Na2S.9H2O的质量比为1:1。
优选的,所述石墨烯量子点与FeSO4 .7H2O、Na2S.9H2O的质量比为1:5:5。
作为本申请的优选技术方案,所述反应温度为25-150 ℃。
优选的,其是在60 ℃条件下反应的。
作为本申请的优选技术方案,所述透析,其使用透析袋的截留分子量为1000-50000 Da。
优选的,其是在截留分子量为8000-14000条件下透析2 h。
上述制备方法制得的纳米复合材料,其可循利用。
本发明还保护上述FeS-GQDs复合纳米材料通过芬顿反应在催化降解甲基橙中的应用。
有益效果
本发明中,石墨烯量子点是一种性能优异的新型碳材料,利用石墨烯量子点复合FeS纳米粒子,提高了其光催化活性,利用Fe离子和H2O2之间的链反应催化生成具有强氧化性的OH自由基,以达到氧化降解污染物的目的,并且不具污染性,制备过程简单,效率高,且此材料的亮点在于可回收循环利用,多次循环之后,仍可达到较高的催化效果,给水处理方面应用提供了新方案。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。其中:
图1是本发明实施例1的FeS-GQDs复合纳米材料的透射电子显微镜图;
图2是本发明实施例1的FeS-GQDs复合纳米材料的傅立叶变换红外光谱图;
图3是本发明实施例1的FeS-GQDs复合纳米材料的X射线衍射光谱图;
图4是本发明实施例1的FeS-GQDs复合纳米材料的类芬顿法催化降解甲基橙效果图;
图5是本发明实施例1的FeS-GQDs复合纳米材料在不同反应时间点催化降解甲基橙的效率;
图6是本发明实施例1的FeS-GQDs复合纳米材料的循环使用效果。
具体实施方式
以下结合实施例对本发明做进一步详细说明。所用试剂或者仪器设备未注明生产厂商的,均视为可以通过市场购买的常规产品。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广,因此本发明不受下面公开的具体实施例的限制。
其次,此处所称的“一个实施例”或“实施例”是指可包含于本发明至少一个实现方式中的特定特征、结构或特性。在本说明书中不同地方出现的“在一个实施例中”并非均指同一个实施例,也不是单独的或选择性的与其他实施例互相排斥的实施例。
实施例1
FeS-GQD复合纳米材料的制备:
步骤1,称取0.6 g的FeSO4 .7H2O晶体置于50 mL的干净烧杯中,加入30 mL的去离子水,完全溶解。
步骤2,称取0.6 g的Na2S晶体置于50 mL的干净烧杯中,加入30 mL的去离子水,完全溶解。
步骤3,取已制备好的15 mg/mL的石墨烯量子点8 mL,与上述FeSO4.7H2O溶液及Na2S溶液混合,超声均匀分散,然后在通氮气保护下60 ℃下恒温加热10 h。
步骤4,反应结束后,待合成产物冷却至室温,将得到的黑色溶液。
步骤5,将得到的黑色溶液在截留分子量为8000-14000条件下透析2 h,取出后真空干燥,最终得到FeS-GQDs复合纳米材料。
实施例2
FeS-GQDs复合纳米材料的制备:
步骤1,称取1.2 g的FeSO4 .7H2O晶体置于50 mL的干净烧杯中,加入30 mL的去离子水,完全溶解。
步骤2,称取1.2 g的Na2S晶体置于50 mL的干净烧杯中,加入30 mL的去离子水,完全溶解。
步骤3,取已制备好的15 mg/mL的石墨烯量子点8 mL,与上述FeSO4.7H2O溶液及Na2S溶液混合,超声均匀分散,然后在通氮气保护下60 ℃下恒温加热10 h。
步骤4,反应结束后,待合成产物冷却至室温,将得到的黑色溶液。
步骤5,将得到的黑色溶液在截留分子量为8000-14000条件下透析2 h,取出后真空干燥,最终得到FeS-GQDs复合纳米材料。
实施例3
FeS-GQDs复合纳米材料的制备:
步骤1,称取0.3 g的FeSO4 .7H2O晶体置于50 mL的干净烧杯中,加入30 mL的去离子水,完全溶解。
步骤2,称取0.3 g的Na2S晶体置于50 mL的干净烧杯中,加入30 mL的去离子水,完全溶解。
步骤3,取已制备好的15 mg/mL的石墨烯量子点8 mL,与上述FeSO4.7H2O溶液及Na2S溶液混合,超声均匀分散,然后在通氮气保护下80 ℃下恒温加热10 h。
步骤4,反应结束后,待合成产物冷却至室温,将得到的黑色溶液。
步骤5,将得到的黑色溶液在截留分子量为8000-14000条件下透析2 h,取出后真空干燥,最终得到FeS-GQDs复合纳米材料。
实施例4
FeS-GQDs复合纳米材料的制备:
步骤1,称取0.12 g的FeSO4 .7H2O晶体置于50 mL的干净烧杯中,加入30 mL的去离子水,完全溶解。
步骤2,称取0.12 g的Na2S晶体置于50 mL的干净烧杯中,加入30 mL的去离子水,完全溶解。
步骤3,取已制备好的15 mg/mL的石墨烯量子点8 mL,与上述FeSO4.7H2O溶液及Na2S溶液混合,超声均匀分散,然后在通氮气保护下125 ℃下恒温加热10 h。
步骤4,反应结束后,待合成产物冷却至室温,将得到的黑色溶液。
步骤5,将得到的黑色溶液在截留分子量为8000-14000条件下透析2 h,取出后真空干燥,最终得到FeS-GQDs复合纳米材料。
表1 不同质量比制备的FeS-GQDs复合纳米材料催化效率的影响
GQDs:FeSO<sub>4</sub><sup>.</sup>7H<sub>2</sub>O | 1:1 | 1:2.5 | 1:5 | 1:10 |
催化效率/ % | 76.8 | 82.5 | 97.1 | 89.3 |
从表1可知,合成FeS-GQDs复合纳米材料的最佳投料比为1:5。
实施例5
实施例1所制备的FeS-GQDs复合纳米材料,应用于模拟有机污染物甲基橙的降解方法,以及FeS-GQDs的剂量、H2O2剂量、pH值、温度对芬顿法催化甲基橙降解的影响。
(1)FeS-GQDs催化降解甲基橙的过程及实验方法
将100 mL 10 ppm甲基橙加入到250 mL圆底烧瓶中用1 M HCl调pH值为3,然后置于60℃油浴搅拌;向反应液中依次加入1 mL 3 % H2O2、1 mL 0.2 mg/mL FeS-GQDs,反应2小时,前30 min每隔5 min取一次样,之后每隔15 min取一次样,测定其在不同时间的紫外可见吸收光谱图。
(2)FeS-GQDs剂量对甲基橙降解效率的影响
与(1)相比,其他条件不变,仅改变FeS-GQDs的剂量为0.2 mL、0.5 mL、1mL,0.2 mg/mL。
(3)H2O2剂量对甲基橙降解效率的影响
与(1)相比,其他条件不变,仅改变H2O2的剂量为0.1 mL、0.2 mL、0.5 mL、1 mL,0.2mg/mL。
(4)pH值对甲基橙降解效率的影响
与(1)相比,其他条件不变,仅改变pH值为2,3,7。
温度对甲基橙降解效率的影响
与(1)相比,其他条件不变,仅改变温度为40、50、60、70、100、150℃。
实施例6
如图1所示,是本发明实施例1的FeS-GQDs复合纳米材料的透射电子显微镜图,图像中显示FeS-GQDs呈球形,均匀分散,大小约为10-12nm。FeS-GQDs粒径分布窄主要是由于GQDs粒径均匀,是FeS共沉淀的模板。图中FeS的典型晶格间距表明FeS-GQDs纳米复合物已经形成。
实施例7
如图2所示,是本发明实施例1的FeS-GQDs复合纳米材料的傅立叶变换红外光谱图,将3430 cm-1 (-OH)、1606 cm-1 (C=O)、1425 cm-1 (C-C)峰分配给GQDs的含氧官能团和芳香骨架。对于FeS-GQDs复合材料,在500 cm-1左右处出现的峰值,表明硫化物的生成,证明FeS-GQDs复合材料的成功制备。
实施例8
如图3所示,是本发明实施例1的FeS-GQDs复合纳米材料的X射线衍射光谱图,图中2θ的峰值特征27.9°、37.6°、46.4°、52.8°显示出对应于FeS晶体的特征峰,且FeS-GQDs复合纳米材料未出现明显的杂质峰,表明材料的成功制备。
实施例9
如图4所示,是本发明实施例1的FeS-GQDs复合纳米材料的类芬顿法催化降解甲基橙的最优效果图,降解率几乎接近100%,反应体系中,FeS-GQDs催化剂的最优含量为20 μM,H2O2的最优含量为20 μM,最优pH值为3,最优温度为60℃。
实施例10
如图5所示,是本发明实施例1的FeS-GQDs复合纳米材料在不同反应时间点催化降解甲基橙的效率图,从图中可以看出,在已筛选处的最优条件下进行催化测试,前20 min内,甲基橙的降解速率较快,之后的20 min内也保持了较快的降解速率,从第50-100 min降解速率减慢,并逐渐趋于饱和状态,表明大部分甲基橙已被催化降解。
实施例11
如图6所示,是本发明实施例1的FeS-GQDs复合纳米材料的循环使用效果图,从图中可以看出,在已筛选处的最优条件下进行催化测试,经过8次循环降解实验,FeS-GQDs复合纳米材料仍然保持了较高的降解效率,接近100%,表明FeS-GQDs复合纳米材料具有可循环利用性能,这也是本发明专利中的一个亮点。
本发明的保护内容不局限于以上实施例。在不背离发明构思的精神和范围下,本领域技术人员能够想到的变化和优点都被包括在本发明中,并且以所附的权利要求为保护范围。
Claims (8)
1. 一种FeS-GQDs复合纳米材料,其特征在于,利用石墨烯量子点为原材料,与FeS制备光催化纳米复合材料;所述FeS-GQDs复合纳米材料呈球形,粒径在10-12 nm。
2.权利要求1所述的FeS-GQDs复合纳米材料的制备方法,其特征在于,包括如下步骤:
取GQDs溶解在蒸馏水中,再将FeSO4 .7H2O的水溶液和Na2S.9H2O的水溶液加入混合,在通氮气保护下反应10 h,然后进行透析,将透析袋内的产物真空干燥,制得FeS-GQDs复合纳米材料。
3. 根据权利要求2所述FeS-GQDs复合纳米材料的制备方法,其特征在于,所述混合,其是在转速为100-1000 rpm的条件下搅拌混合。
4.根据权利要求2所述FeS-GQDs复合纳米材料的制备方法,其特征在于,GQDs与FeSO4 .7H2O的质量比为1:1-1:10,其中,FeSO4 .7H2O与Na2S.9H2O的质量比为1:1。
5. 根据权利要求2所述FeS-GQDs复合纳米材料的制备方法,其特征在于,所述反应温度为25-150 ℃。
6. 根据权利要求2所述FeS-GQDs复合纳米材料的制备方法,其特征在于,所述透析,其使用透析袋的截留分子量为1000-50000 Da。
7.根据权利要求2所述FeS-GQDs复合纳米材料的制备方法制得的纳米复合材料。
8.权利要求1所述的FeS-GQDs复合纳米材料通过芬顿反应在催化降解甲基橙中的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910635079.8A CN110252343A (zh) | 2019-07-15 | 2019-07-15 | 一种FeS-GQDs复合纳米材料及其制备方法和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910635079.8A CN110252343A (zh) | 2019-07-15 | 2019-07-15 | 一种FeS-GQDs复合纳米材料及其制备方法和应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110252343A true CN110252343A (zh) | 2019-09-20 |
Family
ID=67926045
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910635079.8A Pending CN110252343A (zh) | 2019-07-15 | 2019-07-15 | 一种FeS-GQDs复合纳米材料及其制备方法和应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110252343A (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112403495A (zh) * | 2020-11-03 | 2021-02-26 | 浙江大学 | 层状矿物与铁的多硫化物插层复合材料及其方法和应用 |
CN112642483A (zh) * | 2020-12-27 | 2021-04-13 | 上海应用技术大学 | 一种N-GQDs-PS@CdS核壳纳米催化剂及其制备方法与应用 |
CN113289654A (zh) * | 2021-05-06 | 2021-08-24 | 浙江理工大学 | 一种氮掺杂石墨烯量子点-铁离子复合纳米酶及其制备和应用 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106994355A (zh) * | 2017-04-17 | 2017-08-01 | 桂林理工大学 | 一种石墨烯量子点/SnS2纳米片复合光催化剂的制备方法 |
CN107720930A (zh) * | 2017-11-20 | 2018-02-23 | 华东理工大学 | 一种含硫化物的工业废水处理用试剂及其反应方法 |
-
2019
- 2019-07-15 CN CN201910635079.8A patent/CN110252343A/zh active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106994355A (zh) * | 2017-04-17 | 2017-08-01 | 桂林理工大学 | 一种石墨烯量子点/SnS2纳米片复合光催化剂的制备方法 |
CN107720930A (zh) * | 2017-11-20 | 2018-02-23 | 华东理工大学 | 一种含硫化物的工业废水处理用试剂及其反应方法 |
Non-Patent Citations (1)
Title |
---|
陈海: "非均相类-Fenton体系和活化过硫酸盐体系氧化降解2,4-二氯苯氧乙酸", 《中国优秀博硕士学位论文全文数据库(博士) 工程科技Ⅰ辑》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112403495A (zh) * | 2020-11-03 | 2021-02-26 | 浙江大学 | 层状矿物与铁的多硫化物插层复合材料及其方法和应用 |
CN112642483A (zh) * | 2020-12-27 | 2021-04-13 | 上海应用技术大学 | 一种N-GQDs-PS@CdS核壳纳米催化剂及其制备方法与应用 |
CN113289654A (zh) * | 2021-05-06 | 2021-08-24 | 浙江理工大学 | 一种氮掺杂石墨烯量子点-铁离子复合纳米酶及其制备和应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mahdavi et al. | Enhanced photocatalytic degradation of toxic contaminants using Dy2O3-SiO2 ceramic nanostructured materials fabricated by a new, simple and rapid sonochemical approach | |
Sharma et al. | Photoremediation of toxic dye from aqueous environment using monometallic and bimetallic quantum dots based nanocomposites | |
Kargar et al. | Synthesis of modified beta bismuth oxide by titanium oxide and highly efficient solar photocatalytic properties on hydroxychloroquine degradation and pathways | |
Nasiri et al. | CoFe 2 O 4@ methylcelloluse as a new magnetic nano biocomposite for sonocatalytic degradation of reactive blue 19 | |
CN110252343A (zh) | 一种FeS-GQDs复合纳米材料及其制备方法和应用 | |
Al-Musawi et al. | Capability of copper–nickel ferrite nanoparticles loaded onto multi-walled carbon nanotubes to degrade acid blue 113 dye in the sonophotocatalytic treatment process | |
CN103551150A (zh) | 一种基于碳质材料的磁性复合光催化剂的制备方法 | |
CN109174161B (zh) | 可磁分离TNTs/g-C3N4纳米复合材料的制备方法和应用 | |
Rasheed et al. | Highly efficient photocatalytic degradation of the Tetracycline hydrochloride on the α-Fe2O3@ CN composite under the visible light | |
Amini et al. | Removal of azo dyes pollutants: photo catalyst and magnetic investigation of iron oxide-zinc sulfide nanocomposites | |
CN109576332B (zh) | 一种生物还原制备磁性纳米四氧化三铁的方法 | |
Al-Musawi et al. | Synthesis of a doped α-Fe2O3/g-C3N4 catalyst for high-efficiency degradation of diazinon contaminant from liquid wastes | |
Zangeneh et al. | A reusable visible driven N and C–N doped TiO2 magnetic nanocomposites for photodegradation of direct red 16 azo dye in water and wastewater | |
Abarna et al. | Influence of jute template on the surface, optical and photocatalytic properties of sol-gel derived mesoporous zinc oxide | |
Zhang et al. | A facile fabrication of ZnFe2O4/Sepiolite composite with excellent photocatalytic performance on the removal of tetracycline hydrochloride | |
Derakhshani et al. | Biosynthesis of MnFe2O4@ TiO2 magnetic nanocomposite using oleaster tree bark for efficient photocatalytic degradation of humic acid in aqueous solutions | |
Sharma et al. | Ingeniously designed Silica nanostructures as an exceptional support: Opportunities, potential challenges and future prospects for viable degradation of pesticides | |
Tanji et al. | Combined natural mineral@ ZnCoO system for photocatalytic degradation of malachite green under visible radiation | |
Lu et al. | NGO/ZnO2/ZnO heterojunctions with self-accelerating photocatalysis for efficient degradation of organic dyes | |
Li et al. | Synthesis of recyclable magnetic mesoporous RH-FSBA photoelectrocatalyst with double cavity structure | |
Jiao et al. | Removal of methylene blue from water by BiFeO3/carbon fibre nanocomposite and its photocatalytic regeneration | |
CN109876815A (zh) | 石墨烯/ZnFe2O4复合可见光催化剂及其制备方法 | |
Mokhtari et al. | A core/shell TiO2 magnetized molecularly imprinted photocatalyst (MMIP@ TiO2): synthesis and its photodegradation activity towards sulfasalazine | |
Asif et al. | Photocatalytic degradation of synthetic dyes using Cyanobacteria-derived Zinc oxide nanoparticles | |
Kowsalya et al. | Photocatalytic treatment of textile effluents by biosynthesized photo-smart catalyst: An eco-friendly and cost-effective approach |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20190920 |
|
RJ01 | Rejection of invention patent application after publication |