CN110248928B - Novel heterocyclic compound and organic light-emitting element using same - Google Patents
Novel heterocyclic compound and organic light-emitting element using same Download PDFInfo
- Publication number
- CN110248928B CN110248928B CN201880009529.6A CN201880009529A CN110248928B CN 110248928 B CN110248928 B CN 110248928B CN 201880009529 A CN201880009529 A CN 201880009529A CN 110248928 B CN110248928 B CN 110248928B
- Authority
- CN
- China
- Prior art keywords
- group
- compound
- layer
- organic light
- organic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 150000002391 heterocyclic compounds Chemical class 0.000 title abstract description 10
- 150000001875 compounds Chemical class 0.000 claims description 72
- 239000000126 substance Substances 0.000 claims description 68
- -1 binaphthalene compound Chemical class 0.000 claims description 59
- 239000012044 organic layer Substances 0.000 claims description 34
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 claims description 5
- 125000001072 heteroaryl group Chemical group 0.000 claims description 4
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 4
- 125000004076 pyridyl group Chemical group 0.000 claims description 3
- 125000004802 cyanophenyl group Chemical group 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 101
- 238000002347 injection Methods 0.000 description 40
- 239000007924 injection Substances 0.000 description 40
- 230000032258 transport Effects 0.000 description 31
- 125000004432 carbon atom Chemical group C* 0.000 description 21
- 125000003118 aryl group Chemical group 0.000 description 20
- 238000004519 manufacturing process Methods 0.000 description 17
- 239000000463 material Substances 0.000 description 17
- 125000001424 substituent group Chemical group 0.000 description 17
- 239000000758 substrate Substances 0.000 description 17
- 230000005525 hole transport Effects 0.000 description 16
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 15
- 125000000623 heterocyclic group Chemical group 0.000 description 11
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 10
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 10
- 125000000217 alkyl group Chemical group 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 229910052782 aluminium Inorganic materials 0.000 description 8
- ZDZHCHYQNPQSGG-UHFFFAOYSA-N binaphthyl group Chemical group C1(=CC=CC2=CC=CC=C12)C1=CC=CC2=CC=CC=C12 ZDZHCHYQNPQSGG-UHFFFAOYSA-N 0.000 description 8
- 125000000753 cycloalkyl group Chemical group 0.000 description 8
- 239000012153 distilled water Substances 0.000 description 8
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 8
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 7
- 125000003342 alkenyl group Chemical group 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000000151 deposition Methods 0.000 description 6
- AICOOMRHRUFYCM-ZRRPKQBOSA-N oxazine, 1 Chemical compound C([C@@H]1[C@H](C(C[C@]2(C)[C@@H]([C@H](C)N(C)C)[C@H](O)C[C@]21C)=O)CC1=CC2)C[C@H]1[C@@]1(C)[C@H]2N=C(C(C)C)OC1 AICOOMRHRUFYCM-ZRRPKQBOSA-N 0.000 description 6
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 6
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 5
- 150000004982 aromatic amines Chemical class 0.000 description 5
- 239000010406 cathode material Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000011368 organic material Substances 0.000 description 5
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 239000010405 anode material Substances 0.000 description 4
- 125000005264 aryl amine group Chemical group 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 229940125904 compound 1 Drugs 0.000 description 4
- 239000003599 detergent Substances 0.000 description 4
- 238000004770 highest occupied molecular orbital Methods 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 4
- 239000012299 nitrogen atmosphere Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 229910000027 potassium carbonate Inorganic materials 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 229940126062 Compound A Drugs 0.000 description 3
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 3
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 3
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 125000002877 alkyl aryl group Chemical group 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 125000003710 aryl alkyl group Chemical group 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 125000006267 biphenyl group Chemical group 0.000 description 3
- 229920001940 conductive polymer Polymers 0.000 description 3
- 239000002019 doping agent Substances 0.000 description 3
- 125000004185 ester group Chemical group 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 description 3
- 229910052733 gallium Inorganic materials 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 125000003003 spiro group Chemical group 0.000 description 3
- 125000005504 styryl group Chemical group 0.000 description 3
- 238000001771 vacuum deposition Methods 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- UWRZIZXBOLBCON-VOTSOKGWSA-N (e)-2-phenylethenamine Chemical class N\C=C\C1=CC=CC=C1 UWRZIZXBOLBCON-VOTSOKGWSA-N 0.000 description 2
- 125000005916 2-methylpentyl group Chemical group 0.000 description 2
- JWAZRIHNYRIHIV-UHFFFAOYSA-N 2-naphthol Chemical compound C1=CC=CC2=CC(O)=CC=C21 JWAZRIHNYRIHIV-UHFFFAOYSA-N 0.000 description 2
- QENGPZGAWFQWCZ-UHFFFAOYSA-N 3-Methylthiophene Chemical compound CC=1C=CSC=1 QENGPZGAWFQWCZ-UHFFFAOYSA-N 0.000 description 2
- 239000005725 8-Hydroxyquinoline Substances 0.000 description 2
- UJOBWOGCFQCDNV-UHFFFAOYSA-N 9H-carbazole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical group [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 125000003282 alkyl amino group Chemical group 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- IOJUPLGTWVMSFF-UHFFFAOYSA-N benzothiazole Chemical compound C1=CC=C2SC=NC2=C1 IOJUPLGTWVMSFF-UHFFFAOYSA-N 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 229940125782 compound 2 Drugs 0.000 description 2
- 229940126214 compound 3 Drugs 0.000 description 2
- 229940125898 compound 5 Drugs 0.000 description 2
- 150000004696 coordination complex Chemical class 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 125000004093 cyano group Chemical group *C#N 0.000 description 2
- 229910052805 deuterium Inorganic materials 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 125000005843 halogen group Chemical group 0.000 description 2
- 125000005241 heteroarylamino group Chemical group 0.000 description 2
- 125000002883 imidazolyl group Chemical group 0.000 description 2
- 125000005462 imide group Chemical group 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 125000002950 monocyclic group Chemical group 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- QWVGKYWNOKOFNN-UHFFFAOYSA-N o-cresol Chemical compound CC1=CC=CC=C1O QWVGKYWNOKOFNN-UHFFFAOYSA-N 0.000 description 2
- 229960003540 oxyquinoline Drugs 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 229920000553 poly(phenylenevinylene) Polymers 0.000 description 2
- 229920000767 polyaniline Polymers 0.000 description 2
- 125000003367 polycyclic group Chemical group 0.000 description 2
- 125000003373 pyrazinyl group Chemical group 0.000 description 2
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 2
- MCJGNVYPOGVAJF-UHFFFAOYSA-N quinolin-8-ol Chemical compound C1=CN=C2C(O)=CC=CC2=C1 MCJGNVYPOGVAJF-UHFFFAOYSA-N 0.000 description 2
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 125000001973 tert-pentyl group Chemical group [H]C([H])([H])C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- 125000004306 triazinyl group Chemical group 0.000 description 2
- 238000007738 vacuum evaporation Methods 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- YJTKZCDBKVTVBY-UHFFFAOYSA-N 1,3-Diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC(C=2C=CC=CC=2)=C1 YJTKZCDBKVTVBY-UHFFFAOYSA-N 0.000 description 1
- 125000004973 1-butenyl group Chemical group C(=CCC)* 0.000 description 1
- 125000006218 1-ethylbutyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000006023 1-pentenyl group Chemical group 0.000 description 1
- 125000006017 1-propenyl group Chemical group 0.000 description 1
- HYZJCKYKOHLVJF-UHFFFAOYSA-N 1H-benzimidazole Chemical compound C1=CC=C2NC=NC2=C1 HYZJCKYKOHLVJF-UHFFFAOYSA-N 0.000 description 1
- NVUJWPQINQUNNM-UHFFFAOYSA-N 1h-benzimidazole Chemical group C1=CC=C2NC=NC2=C1.C1=CC=C2NC=NC2=C1 NVUJWPQINQUNNM-UHFFFAOYSA-N 0.000 description 1
- ZVFJWYZMQAEBMO-UHFFFAOYSA-N 1h-benzo[h]quinolin-10-one Chemical compound C1=CNC2=C3C(=O)C=CC=C3C=CC2=C1 ZVFJWYZMQAEBMO-UHFFFAOYSA-N 0.000 description 1
- 125000004974 2-butenyl group Chemical group C(C=CC)* 0.000 description 1
- 125000006176 2-ethylbutyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(C([H])([H])*)C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000006024 2-pentenyl group Chemical group 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- YLZOPXRUQYQQID-UHFFFAOYSA-N 3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]propan-1-one Chemical compound N1N=NC=2CN(CCC=21)CCC(=O)N1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F YLZOPXRUQYQQID-UHFFFAOYSA-N 0.000 description 1
- 125000004975 3-butenyl group Chemical group C(CC=C)* 0.000 description 1
- 125000006027 3-methyl-1-butenyl group Chemical group 0.000 description 1
- DDTHMESPCBONDT-UHFFFAOYSA-N 4-(4-oxocyclohexa-2,5-dien-1-ylidene)cyclohexa-2,5-dien-1-one Chemical compound C1=CC(=O)C=CC1=C1C=CC(=O)C=C1 DDTHMESPCBONDT-UHFFFAOYSA-N 0.000 description 1
- 125000004920 4-methyl-2-pentyl group Chemical group CC(CC(C)*)C 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- ZYASLTYCYTYKFC-UHFFFAOYSA-N 9-methylidenefluorene Chemical compound C1=CC=C2C(=C)C3=CC=CC=C3C2=C1 ZYASLTYCYTYKFC-UHFFFAOYSA-N 0.000 description 1
- ROFVEXUMMXZLPA-UHFFFAOYSA-N Bipyridyl Chemical group N1=CC=CC=C1C1=CC=CC=N1 ROFVEXUMMXZLPA-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- YNPNZTXNASCQKK-UHFFFAOYSA-N Phenanthrene Natural products C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- NRCMAYZCPIVABH-UHFFFAOYSA-N Quinacridone Chemical compound N1C2=CC=CC=C2C(=O)C2=C1C=C1C(=O)C3=CC=CC=C3NC1=C2 NRCMAYZCPIVABH-UHFFFAOYSA-N 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N SnO2 Inorganic materials O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- DGEZNRSVGBDHLK-UHFFFAOYSA-N [1,10]phenanthroline Chemical compound C1=CN=C2C3=NC=CC=C3C=CC2=C1 DGEZNRSVGBDHLK-UHFFFAOYSA-N 0.000 description 1
- 125000000641 acridinyl group Chemical group C1(=CC=CC2=NC3=CC=CC=C3C=C12)* 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000004390 alkyl sulfonyl group Chemical group 0.000 description 1
- 125000004414 alkyl thio group Chemical group 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical compound [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- HAQFCILFQVZOJC-UHFFFAOYSA-N anthracene-9,10-dione;methane Chemical compound C.C.C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 HAQFCILFQVZOJC-UHFFFAOYSA-N 0.000 description 1
- 150000001454 anthracenes Chemical class 0.000 description 1
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 1
- 150000004056 anthraquinones Chemical class 0.000 description 1
- RJGDLRCDCYRQOQ-UHFFFAOYSA-N anthrone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3CC2=C1 RJGDLRCDCYRQOQ-UHFFFAOYSA-N 0.000 description 1
- 125000005428 anthryl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C3C(*)=C([H])C([H])=C([H])C3=C([H])C2=C1[H] 0.000 description 1
- 125000001691 aryl alkyl amino group Chemical group 0.000 description 1
- 125000001769 aryl amino group Chemical group 0.000 description 1
- 125000004391 aryl sulfonyl group Chemical group 0.000 description 1
- 125000005110 aryl thio group Chemical group 0.000 description 1
- 125000003609 aryl vinyl group Chemical group 0.000 description 1
- 125000000732 arylene group Chemical group 0.000 description 1
- 125000004104 aryloxy group Chemical group 0.000 description 1
- 125000003943 azolyl group Chemical group 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 125000003785 benzimidazolyl group Chemical group N1=C(NC2=C1C=CC=C2)* 0.000 description 1
- 125000005605 benzo group Chemical group 0.000 description 1
- IHZHBWRUTRZTGM-UHFFFAOYSA-N benzo[h]quinolin-10-ol zinc Chemical compound [Zn].Oc1cccc2ccc3cccnc3c12.Oc1cccc2ccc3cccnc3c12 IHZHBWRUTRZTGM-UHFFFAOYSA-N 0.000 description 1
- 125000000499 benzofuranyl group Chemical group O1C(=CC2=C1C=CC=C2)* 0.000 description 1
- 125000001164 benzothiazolyl group Chemical group S1C(=NC2=C1C=CC=C2)* 0.000 description 1
- 125000004196 benzothienyl group Chemical group S1C(=CC2=C1C=CC=C2)* 0.000 description 1
- 125000004541 benzoxazolyl group Chemical group O1C(=NC2=C1C=CC=C2)* 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- 229950011260 betanaphthol Drugs 0.000 description 1
- UFVXQDWNSAGPHN-UHFFFAOYSA-K bis[(2-methylquinolin-8-yl)oxy]-(4-phenylphenoxy)alumane Chemical compound [Al+3].C1=CC=C([O-])C2=NC(C)=CC=C21.C1=CC=C([O-])C2=NC(C)=CC=C21.C1=CC([O-])=CC=C1C1=CC=CC=C1 UFVXQDWNSAGPHN-UHFFFAOYSA-K 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 150000001716 carbazoles Chemical class 0.000 description 1
- 125000000609 carbazolyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3NC12)* 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- JNGZXGGOCLZBFB-IVCQMTBJSA-N compound E Chemical compound N([C@@H](C)C(=O)N[C@@H]1C(N(C)C2=CC=CC=C2C(C=2C=CC=CC=2)=N1)=O)C(=O)CC1=CC(F)=CC(F)=C1 JNGZXGGOCLZBFB-IVCQMTBJSA-N 0.000 description 1
- 125000006165 cyclic alkyl group Chemical group 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000004210 cyclohexylmethyl group Chemical group [H]C([H])(*)C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000004851 cyclopentylmethyl group Chemical group C1(CCCC1)C* 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 150000004826 dibenzofurans Chemical class 0.000 description 1
- 125000004988 dibenzothienyl group Chemical group C1(=CC=CC=2SC3=C(C21)C=CC=C3)* 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 150000002219 fluoranthenes Chemical class 0.000 description 1
- YLQWCDOCJODRMT-UHFFFAOYSA-N fluoren-9-one Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C2=C1 YLQWCDOCJODRMT-UHFFFAOYSA-N 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- UPWPDUACHOATKO-UHFFFAOYSA-K gallium trichloride Chemical compound Cl[Ga](Cl)Cl UPWPDUACHOATKO-UHFFFAOYSA-K 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000005549 heteroarylene group Chemical group 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 150000002430 hydrocarbons Chemical group 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 125000001041 indolyl group Chemical group 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 150000002503 iridium Chemical class 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000004491 isohexyl group Chemical group C(CCC(C)C)* 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000000555 isopropenyl group Chemical group [H]\C([H])=C(\*)C([H])([H])[H] 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 125000005956 isoquinolyl group Chemical group 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- IMKMFBIYHXBKRX-UHFFFAOYSA-M lithium;quinoline-2-carboxylate Chemical compound [Li+].C1=CC=CC2=NC(C(=O)[O-])=CC=C21 IMKMFBIYHXBKRX-UHFFFAOYSA-M 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000003136 n-heptyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 150000002790 naphthalenes Chemical class 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000002560 nitrile group Chemical group 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000001181 organosilyl group Chemical group [SiH3]* 0.000 description 1
- WCPAKWJPBJAGKN-UHFFFAOYSA-N oxadiazole Chemical compound C1=CON=N1 WCPAKWJPBJAGKN-UHFFFAOYSA-N 0.000 description 1
- 125000001715 oxadiazolyl group Chemical group 0.000 description 1
- MPQXHAGKBWFSNV-UHFFFAOYSA-N oxidophosphanium Chemical group [PH3]=O MPQXHAGKBWFSNV-UHFFFAOYSA-N 0.000 description 1
- 150000002964 pentacenes Chemical class 0.000 description 1
- 125000003538 pentan-3-yl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- FVDOBFPYBSDRKH-UHFFFAOYSA-N perylene-3,4,9,10-tetracarboxylic acid Chemical compound C=12C3=CC=C(C(O)=O)C2=C(C(O)=O)C=CC=1C1=CC=C(C(O)=O)C2=C1C3=CC=C2C(=O)O FVDOBFPYBSDRKH-UHFFFAOYSA-N 0.000 description 1
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 1
- 125000004625 phenanthrolinyl group Chemical group N1=C(C=CC2=CC=C3C=CC=NC3=C12)* 0.000 description 1
- 125000005561 phenanthryl group Chemical group 0.000 description 1
- 125000001484 phenothiazinyl group Chemical group C1(=CC=CC=2SC3=CC=CC=C3NC12)* 0.000 description 1
- XPPWLXNXHSNMKC-UHFFFAOYSA-N phenylboron Chemical group [B]C1=CC=CC=C1 XPPWLXNXHSNMKC-UHFFFAOYSA-N 0.000 description 1
- XYFCBTPGUUZFHI-UHFFFAOYSA-N phosphine group Chemical group P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 1
- 125000004592 phthalazinyl group Chemical group C1(=NN=CC2=CC=CC=C12)* 0.000 description 1
- 150000003057 platinum Chemical class 0.000 description 1
- 229920002098 polyfluorene Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 150000004032 porphyrins Chemical class 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- LVTJOONKWUXEFR-FZRMHRINSA-N protoneodioscin Natural products O(C[C@@H](CC[C@]1(O)[C@H](C)[C@@H]2[C@]3(C)[C@H]([C@H]4[C@@H]([C@]5(C)C(=CC4)C[C@@H](O[C@@H]4[C@H](O[C@H]6[C@@H](O)[C@@H](O)[C@@H](O)[C@H](C)O6)[C@@H](O)[C@H](O[C@H]6[C@@H](O)[C@@H](O)[C@@H](O)[C@H](C)O6)[C@H](CO)O4)CC5)CC3)C[C@@H]2O1)C)[C@H]1[C@H](O)[C@H](O)[C@H](O)[C@@H](CO)O1 LVTJOONKWUXEFR-FZRMHRINSA-N 0.000 description 1
- 150000003220 pyrenes Chemical class 0.000 description 1
- 125000001725 pyrenyl group Chemical group 0.000 description 1
- 125000002098 pyridazinyl group Chemical group 0.000 description 1
- 150000003230 pyrimidines Chemical class 0.000 description 1
- 125000000714 pyrimidinyl group Chemical group 0.000 description 1
- 125000000168 pyrrolyl group Chemical group 0.000 description 1
- 125000002294 quinazolinyl group Chemical group N1=C(N=CC2=CC=CC=C12)* 0.000 description 1
- 125000005493 quinolyl group Chemical group 0.000 description 1
- 125000001567 quinoxalinyl group Chemical group N1=C(C=NC2=CC=CC=C12)* 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- YYMBJDOZVAITBP-UHFFFAOYSA-N rubrene Chemical compound C1=CC=CC=C1C(C1=C(C=2C=CC=CC=2)C2=CC=CC=C2C(C=2C=CC=CC=2)=C11)=C(C=CC=C2)C2=C1C1=CC=CC=C1 YYMBJDOZVAITBP-UHFFFAOYSA-N 0.000 description 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 125000003548 sec-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- JLBRGNFGBDNNSF-UHFFFAOYSA-N tert-butyl(dimethyl)borane Chemical group CB(C)C(C)(C)C JLBRGNFGBDNNSF-UHFFFAOYSA-N 0.000 description 1
- 125000001113 thiadiazolyl group Chemical group 0.000 description 1
- 125000000335 thiazolyl group Chemical group 0.000 description 1
- IBBLKSWSCDAPIF-UHFFFAOYSA-N thiopyran Chemical compound S1C=CC=C=C1 IBBLKSWSCDAPIF-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- TVIVIEFSHFOWTE-UHFFFAOYSA-K tri(quinolin-8-yloxy)alumane Chemical group [Al+3].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 TVIVIEFSHFOWTE-UHFFFAOYSA-K 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
- 125000001425 triazolyl group Chemical group 0.000 description 1
- LALRXNPLTWZJIJ-UHFFFAOYSA-N triethylborane Chemical group CCB(CC)CC LALRXNPLTWZJIJ-UHFFFAOYSA-N 0.000 description 1
- WXRGABKACDFXMG-UHFFFAOYSA-N trimethylborane Chemical group CB(C)C WXRGABKACDFXMG-UHFFFAOYSA-N 0.000 description 1
- 125000000026 trimethylsilyl group Chemical group [H]C([H])([H])[Si]([*])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- MXSVLWZRHLXFKH-UHFFFAOYSA-N triphenylborane Chemical group C1=CC=CC=C1B(C=1C=CC=CC=1)C1=CC=CC=C1 MXSVLWZRHLXFKH-UHFFFAOYSA-N 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D235/00—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings
- C07D235/02—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings condensed with carbocyclic rings or ring systems
- C07D235/04—Benzimidazoles; Hydrogenated benzimidazoles
- C07D235/06—Benzimidazoles; Hydrogenated benzimidazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached in position 2
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
- C07D401/04—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/15—Hole transporting layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/16—Electron transporting layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/17—Carrier injection layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/654—Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1003—Carbocyclic compounds
- C09K2211/1011—Condensed systems
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1044—Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
The invention provides a novel heterocyclic compound and an organic light-emitting element using the same.
Description
Technical Field
Cross reference to related applications
The present application claims priority based on korean patent application No. 10-2017-0067649, 31, 2017 and korean patent application No. 10-2018-0062155, 30, 2018, including the entire disclosure of the documents of the korean patent application as part of the present specification.
The present invention relates to a novel heterocyclic compound and an organic light-emitting element including the same.
Background
In general, the organic light emitting phenomenon refers to a phenomenon of converting electric energy into light energy using an organic substance. An organic light emitting element using an organic light emitting phenomenon has a wide viewing angle, excellent contrast, a fast response time, and excellent luminance, driving voltage, and response speed characteristics, and thus a great deal of research is being conducted.
An organic light emitting element generally has a structure including an anode and a cathode, and an organic layer located between the anode and the cathode. In order to improve the efficiency and stability of the organic light-emitting device, the organic layer is often formed of a multilayer structure formed of different materials, and may be formed of, for example, a hole injection layer, a hole transport layer, a light-emitting layer, an electron transport layer, an electron injection layer, or the like. With such a structure of the organic electroluminescent element, if a voltage is applied between both electrodes, holes are injected from the anode to the organic layer, electrons are injected from the cathode to the organic layer, an exciton (exiton) is formed when the injected holes and electrons meet, and light is emitted when the exciton falls back to the ground state.
For organic materials used for the organic light emitting devices described above, development of new materials is continuously demanded.
Documents of the prior art
Patent document
(patent document 0001) Korean patent laid-open publication No. 10-2000-0051826
Disclosure of Invention
Technical subject
The present invention relates to a novel heterocyclic compound and an organic light-emitting element including the same.
Technical solution
The present invention provides a binaphthyl (binaphthhalene) compound represented by the following chemical formula 1.
[ chemical formula 1]
In the chemical formula 1 described above,
L1and L2Is a single bond, substituted or unsubstituted C6-60Aryl, or substituted or unsubstituted C5-60(ii) a heteroaryl group, wherein,
Ar1represented by the following chemical formula 2 or 3,
[ chemical formula 2]
In the above-described chemical formulas 2 and 3,
R1and R2Is hydrogen, deuterium, substituted or unsubstituted C1-40Alkyl, substituted or unsubstituted C6-60Aryl, substituted or unsubstituted C5-60Heteroaryl, or substituted or unsubstituted C6-60A fused polycyclic group.
In addition, the present invention provides an organic light emitting element including: the organic light emitting device includes a first electrode, a second electrode provided to face the first electrode, and one or more organic layers provided between the first electrode and the second electrode, wherein one or more of the organic layers include a compound represented by the chemical formula 1.
Effects of the invention
The compound represented by the above chemical formula 1 may be used as a material of an organic layer of an organic light emitting element in which improvement of efficiency, lower driving voltage, and/or improvement of life characteristics can be achieved. In particular, the compound represented by the above chemical formula 1 may be used as a hole injection, hole transport, hole injection and transport, light emission, electron transport, or electron injection material.
Drawings
Fig. 1 shows an example of an organic light-emitting element including a substrate 1, an anode 2, a light-emitting layer 3, and a cathode 4.
Fig. 2 shows an example of an organic light-emitting element composed of a substrate 1, an anode 2, a hole injection layer 5, a hole transport layer 6, a light-emitting layer 7, an electron transport layer 8, and a cathode 4.
Detailed Description
Hereinafter, the present invention will be described in more detail to assist understanding thereof.
In the present specification, the term "substituted or unsubstituted" means that the substituent is selected from deuterium; a halogen group; a nitrile group; a nitro group; a hydroxyl group; a carbonyl group; an ester group; an imide group; an amino group; a phosphine oxide group; an alkoxy group; an aryloxy group; alkylthio radicals (A), (B), (C), (D), (C), (D), (E), (D), (E) and (D)Alkyl thio xy); arylthio radicals (A), (B), (C) Aryl thio xy); alkylsulfonyl (C)Alkyl sulfo xy); arylsulfonyl (Aryl sulfoxy); a silyl group; a boron group; an alkyl group; a cycloalkyl group; an alkenyl group; an aryl group; aralkyl group; an aralkenyl group; an alkylaryl group; an alkylamino group; an aralkylamino group; a heteroaryl amino group; an arylamine group; an aryl phosphine group; or one or more substituents in the heterocyclic group containing N, O and one or more of S atoms, or a substituent formed by connecting 2 or more substituents among the above-exemplified substituents. For example, "a substituent in which 2 or more substituents are linked" may be a biphenyl group. That is, the biphenyl group may be an aryl group, or may be interpreted as a substituent in which 2 phenyl groups are linked.
In the present specification, the number of carbon atoms of the carbonyl group is not particularly limited, but the number of carbon atoms is preferably 1 to 1
. Specifically, the compound may have the following structure, but is not limited thereto.
In the ester group, the oxygen of the ester group may be substituted with a linear, branched or cyclic alkyl group having 1 to 25 carbon atoms or an aryl group having 6 to 25 carbon atoms. Specifically, the compound may be a compound of the following structural formula, but is not limited thereto.
In the present specification, the number of carbon atoms in the imide group is not particularly limited, but is preferably 1 to 25. Specifically, the compound may have the following structure, but is not limited thereto.
In the present specification, specific examples of the silyl group include, but are not limited to, a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a vinyldimethylsilyl group, a propyldimethylsilyl group, a triphenylsilyl group, a diphenylsilyl group, and a phenylsilyl group.
In the present specification, the boron group includes specifically a trimethylboron group, a triethylboron group, a t-butyldimethylboron group, a triphenylboron group, a phenylboron group and the like, but is not limited thereto.
In the present specification, as examples of the halogen group, there are fluorine, chlorine, bromine, or iodine.
In the present specification, the alkyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 1 to 40. According to one embodiment, the alkyl group has 1 to 20 carbon atoms. According to another embodiment, the alkyl group has 1 to 10 carbon atoms. According to another embodiment, the alkyl group has 1 to 6 carbon atoms. Specific examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an n-propyl group, an isopropyl group, a butyl group, an n-butyl group, an isobutyl group, a tert-butyl group, a sec-butyl group, a 1-methylbutyl group, a 1-ethylbutyl group, a pentyl group, an n-pentyl group, an isopentyl group, a neopentyl group, a tert-pentyl group, a hexyl group, a n-hexyl group, a 1-methylpentyl group, a 2-methylpentyl group, a 4-methyl-2-pentyl group, a 3, 3-dimethylbutyl group, a 2-ethylbutyl group, a heptyl group, a n-heptyl group, a 1-methylhexyl group, a cyclopentylmethyl group, a cyclohexylmethyl group, an octyl group, a n-octyl group, a tert-octyl group, a 1-methylheptyl group, a 2-ethylhexyl group, a 2-propylpentyl group, a n-nonyl group, a 2, 2-dimethylheptyl group, a 1-ethyl-propyl group, a 1, 1-dimethyl-propyl group, a 1, a, Isohexyl, 2-methylpentyl, 4-methylhexyl, 5-methylhexyl, and the like, but are not limited thereto.
In the present specification, the alkenyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 2 to 40. According to one embodiment, the number of carbon atoms of the alkenyl group is 2 to 20. According to another embodiment, the number of carbon atoms of the alkenyl group is 2 to 10. According to another embodiment, the number of carbon atoms of the above alkenyl group is 2 to 6. Specific examples thereof include, but are not limited to, vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-methyl-1-butenyl, 1, 3-butadienyl, allyl, 1-phenylethen-1-yl, 2-diphenylethen-1-yl, 2-phenyl-2- (naphthalen-1-yl) ethen-1-yl, 2-bis (biphenyl-1-yl) ethen-1-yl, stilbenyl, styryl and the like.
In the present specification, the cycloalkyl group is not particularly limited, but is preferably a cycloalkyl group having 3 to 60 carbon atoms, and according to one embodiment, the cycloalkyl group has 3 to 30 carbon atoms. According to another embodiment, the number of carbon atoms of the cycloalkyl group is 3 to 20. According to another embodiment, the number of carbon atoms of the above cycloalkyl group is 3 to 6. Specifically, there may be mentioned, but not limited to, cyclopropyl, cyclobutyl, cyclopentyl, 3-methylcyclopentyl, 2, 3-dimethylcyclopentyl, cyclohexyl, 3-methylcyclohexyl, 4-methylcyclohexyl, 2, 3-dimethylcyclohexyl, 3,4, 5-trimethylcyclohexyl, 4-tert-butylcyclohexyl, cycloheptyl, cyclooctyl and the like.
In the present specification, the aryl group is not particularly limited, but is preferably an aryl group having 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group. According to one embodiment, the aryl group has 6 to 30 carbon atoms. According to one embodiment, the aryl group has 6 to 20 carbon atoms. The aryl group may be a monocyclic aryl group such as a phenyl group, a biphenyl group, or a terphenyl group, but is not limited thereto. The polycyclic aromatic group may be a naphthyl group, an anthryl group, a phenanthryl group, a pyrenyl group, a perylenyl group, a perylene group,And a fluorenyl group, but is not limited thereto.
In the present specification, the fluorenyl group may be substituted, and 2 substituents may be combined with each other to form a spiro structure. In the case where the above-mentioned fluorenyl group is substituted, it may be
In the present specification, the heterocyclic group is a heterocyclic group containing at least one of O, N, Si and S as a heteroatom, and the number of carbon atoms is not particularly limited, but is preferably 2 to 60. Examples of heterocyclic groups areThienyl, furyl, pyrrolyl, imidazolyl, thiazolyl,Azolyl group,
Oxadiazolyl, triazolyl, pyridyl, bipyridyl, pyrimidinyl, triazinyl, acridinyl, pyridazinyl, pyrazinyl, quinolyl, quinazolinyl, quinoxalinyl, phthalazinyl, pyridopyrimidinyl, pyridopyrazinyl, pyrazino-pyrazinyl, isoquinolyl, indolyl, carbazolyl, benzoquinoxalyl, pyrazinyl, pyrazino-pyrimidinyl, triazinyl, pyridopyrimidinyl, pyrazino-yl, benzoxazolyl, and aAzolyl, benzimidazolyl, benzothiazolyl, benzocarbazolyl, benzothienyl, dibenzothienyl, benzofuranyl, phenanthrolinyl (phenanthroline), and isooxazolylOxazolyl, thiadiazolyl, phenothiazinyl, dibenzofuranyl, and the like, but is not limited thereto.
In the present specification, the aryl group in the aralkyl group, aralkenyl group, alkylaryl group, arylamine group is the same as the above-mentioned aryl group. In the present specification, the alkyl group in the aralkyl group, alkylaryl group, and alkylamino group is the same as the above-mentioned alkyl group. In the present specification, the heteroaryl group in the heteroarylamine can be applied to the above-mentioned heterocyclic group. In the present specification, the alkenyl group in the aralkenyl group is the same as the above-mentioned examples of the alkenyl group. In the present specification, the arylene group is a 2-valent group, and the above description of the aryl group can be applied thereto. In the present specification, a heteroarylene group is a 2-valent group, and in addition to this, the above description about a heterocyclic group can be applied. In the present specification, the hydrocarbon ring is not a 1-valent group but is formed by combining 2 substituents, and in addition to this, the above description about the aryl group or the cycloalkyl group can be applied. In the present specification, the heterocyclic group is not a 1-valent group but a combination of 2 substituents, and the above description of the heterocyclic group can be applied.
In the above chemical formula 1, according to the binaphthyl group and Ar1The above chemical formula 1 may be represented by the following chemical formula 1-1 or 1-2:
[ chemical formula 1-1]
[ chemical formulas 1-2]
In the above chemical formulas 1-1 and 1-2,
L1、R1and R2The same as defined in the above chemical formula 1.
Preferably, L1And L2Each independently a single bond or phenylene (phenylene).
Preferably, R1And R2Each independently being methyl, ethyl, phenyl, cyanophenyl or pyridyl.
As described above, when the two functional groups bound to the binaphthyl skeleton have structures different from each other, the electron transport ability, the band gap, the energy level, and the thermal characteristics can be more easily adjusted. In addition, the electrical and thermal characteristics of naphthalene at the substitution site can be easily predicted, and in particular, the transport characteristics of holes and electrons can be actively adjusted.
Representative examples of the compound represented by the above chemical formula 1 are as follows:
as an example, Ar in the compound represented by the above chemical formula 11Represented by the above chemical formula 2, L1Is phenylene, L2The compound having a single bond can be produced by the same production method as in the following reaction formula 1.
[ reaction formula 1]
In addition, Ar in the compound represented by the above chemical formula 11Represented by chemical formula 3, L1Is phenylene, L2The compound having a single bond can be produced by the same production method as in the following reaction formula 2.
[ reaction formula 2]
The remaining compounds of the compound of the above chemical formula 1 can also be produced by the same or similar method as the above reaction formula 1 or reaction formula 2, using a reactant having a changed substituent or the like. The above-described manufacturing method can be further embodied in the manufacturing examples described later.
In addition, the present invention provides an organic light emitting element including the compound represented by the above chemical formula 1. As an example, the present invention provides an organic light emitting element including: the organic light emitting device includes a first electrode, a second electrode provided to face the first electrode, and one or more organic layers provided between the first electrode and the second electrode, wherein one or more of the organic layers include a compound represented by the chemical formula 1.
The organic layer of the organic light-emitting device of the present invention may be formed of a single layer structure, or may be formed of a multilayer structure in which two or more organic layers are stacked. For example, the organic light-emitting element of the present invention may have a structure including a hole injection layer, a hole transport layer, a light-emitting layer, an electron transport layer, an electron injection layer, and the like as an organic layer. However, the structure of the organic light emitting element is not limited thereto, and a smaller number of organic layers may be included.
In addition, the organic layer may include a hole injection layer, a hole transport layer, or a layer simultaneously performing hole injection and transport, and the hole injection layer, the hole transport layer, or the layer simultaneously performing hole injection and transport includes the compound represented by the chemical formula 1.
In addition, the organic layer may include a light emitting layer including the compound represented by the chemical formula 1.
In addition, the organic layer may include an electron transport layer or an electron injection layer including the compound represented by the chemical formula 1.
In addition, the electron transport layer, the electron injection layer, or the layer simultaneously performing electron transport and electron injection includes the compound represented by the above chemical formula 1.
In addition, the organic layer may include a light emitting layer and an electron transport layer, and the electron transport layer may include a compound represented by the chemical formula 1.
In addition, the organic light emitting element according to the present invention may be an organic light emitting element having a structure (normal type) in which an anode, one or more organic layers, and a cathode are sequentially stacked on a substrate. In addition, the organic light emitting element according to the present invention may be an inverted (inverted) type organic light emitting element in which a cathode, one or more organic layers, and an anode are sequentially stacked on a substrate. For example, a structure example of an organic light emitting element according to an embodiment of the present invention is shown in fig. 1 and 2.
Fig. 1 shows an example of an organic light-emitting element including a substrate 1, an anode 2, a light-emitting layer 3, and a cathode 4. In the structure as described above, the compound represented by the above chemical formula 1 may be included in the above light emitting layer.
Fig. 2 shows an example of an organic light-emitting element including a substrate 1, an anode 2, a hole injection layer 5, a hole transport layer 6, a light-emitting layer 7, an electron transport layer 8, and a cathode 4. In the structure as described above, the compound represented by the above chemical formula 1 may be included in one or more of the hole injection layer, the hole transport layer, the light emitting layer, and the electron transport layer.
The organic light emitting device according to the present invention may be manufactured using materials and methods known in the art, except that one or more of the organic layers include the compound represented by the above chemical formula 1. In addition, when the organic light emitting element includes a plurality of organic layers, the organic layers may be formed of the same substance or different substances.
For example, the organic light emitting element according to the present invention can be manufactured by sequentially laminating a first electrode, an organic layer, and a second electrode on a substrate. This can be produced as follows: the organic el display device is manufactured by depositing a metal, a metal oxide having conductivity, or an alloy thereof on a substrate by a PVD (physical Vapor Deposition) method such as a sputtering method or an electron beam evaporation method (e-beam evaporation) method to form an anode, forming an organic layer including a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer on the anode, and then depositing a substance that can be used as a cathode on the organic layer. In addition to this method, a cathode material, an organic layer, and an anode material may be sequentially deposited on a substrate to manufacture an organic light-emitting element.
In addition, the compound represented by the above chemical formula 1 may be formed into an organic layer by not only a vacuum evaporation method but also a solution coating method in the production of an organic light emitting device. Here, the solution coating method refers to spin coating, dip coating, blade coating, inkjet printing, screen printing, spraying, roll coating, and the like, but is not limited thereto.
In addition to these methods, an organic light-emitting element can be manufactured by depositing a cathode material, an organic material layer, and an anode material on a substrate in this order (WO 2003/012890). However, the production method is not limited thereto.
In one example, the first electrode is an anode and the second electrode is a cathode, or the first electrode is a cathode and the second electrode is an anode.
The anode material is preferably a material having a large work function so that holes can be smoothly injected into the organic layer. Specific examples of the above-mentioned anode material include metals such as vanadium, chromium, copper, zinc, gold, etc., or alloys thereof; metal oxides such as zinc oxide, Indium Tin Oxide (ITO), Indium Zinc Oxide (IZO), and the like; such as ZnO, Al or SNO2A combination of a metal such as Sb and an oxide; such as poly (3-methylthiophene), poly [3,4- (ethylene-1, 2-dioxythiophene)]Conductive polymers such as (PEDOT), polypyrrole, and polyaniline, but the present invention is not limited thereto.
The cathode material is preferably a material having a small work function so that electrons can be easily injected into the organic layer. Specific examples of the cathode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, and lead, or alloys thereof; such as LiF/Al or LiO2And a multilayer structure substance such as Al, but not limited thereto.
The hole injection layer is a layer for injecting holes from the electrode, and the following compounds are preferable as the hole injection substance: has an ability to transport holes, has a hole injection effect from the anode, has an excellent hole injection effect with respect to the light-emitting layer or the light-emitting material, prevents excitons generated in the light-emitting layer from migrating to the electron injection layer or the electron injection material, and has excellent thin film-forming ability. Preferably, the HOMO (highest occupied molecular orbital) of the hole injecting species is between the work function of the anode species and the HOMO of the surrounding organic layer. Specific examples of the hole injecting substance include, but are not limited to, metalloporphyrin (porphyrin), oligothiophene, arylamine-based organic substances, hexanitrile-hexaazatriphenylene-based organic substances, quinacridone-based organic substances, perylene-based organic substances, anthraquinone, polyaniline, and polythiophene-based conductive polymers.
The hole transport layer is a layer that receives holes from the hole injection layer and transports the holes to the light-emitting layer, and the hole transport material is a material that can receive holes from the anode or the hole injection layer and transport the holes to the light-emitting layer. Specific examples thereof include, but are not limited to, arylamine-based organic materials, conductive polymers, and block copolymers in which a conjugated portion and a non-conjugated portion are present simultaneously.
The light-emitting substance is a substance that can receive holes and electrons from the hole-transporting layer and the electron-transporting layer, respectively, and combine them to emit light in the visible light region, and is preferably a substance having high quantum efficiency with respect to fluorescence or phosphorescence. As a specific example, there is 8-hydroxyquinoline aluminum complex (Alq)3) (ii) a A carbazole-based compound; dimeric styryl (dimerized styryl) compounds; BAlq; 10-hydroxybenzoquinoline metal compounds; benzo (b) isAzole, benzothiazole and benzimidazole-based compounds; poly (p-phenylene vinylene) (PPV) polymers; spiro (spiro) compounds; polyfluorene, rubrene, and the like, but are not limited thereto.
The light emitting layer may include a host material and a dopant material. Examples of the host material include aromatic fused ring-containing derivatives and heterocyclic ring-containing compounds. Specifically, the aromatic fused ring derivative includes an anthracene derivative, a pyrene derivative, a naphthalene derivative, a pentacene derivative, a phenanthrene compound, a fluoranthene compound, and the like, and the heterocyclic ring-containing compound includes a carbazole derivative, a dibenzofuran derivative, a ladder furan compound, a pyrimidine derivative, and the like, but is not limited thereto.
As the dopant material, there are aromatic amine derivatives, styrylamine compounds, boronComplexes, fluoranthene compounds, metal complexes, and the like. Specifically, the aromatic amine derivative is an aromatic fused ring derivative having a substituted or unsubstituted arylamine group, and includes pyrene, anthracene, or the like having an arylamine group,Diindenopyrene and the like, as the styrylamine compound, a compound in which at least one arylvinyl group is substituted on a substituted or unsubstituted arylamine, and which is substituted or unsubstituted with one or two or more substituents selected from aryl, silyl, alkyl, cycloalkyl and arylamino. Specific examples thereof include, but are not limited to, styrylamine, styryldiamine, styryltrimethylamine, and styryltretramine. The metal complex includes, but is not limited to, iridium complexes and platinum complexes.
The electron transporting layer is a layer that receives electrons from the electron injecting layer and transports the electrons to the light emitting layer, and the electron transporting substance is a substance that can inject electrons from the cathode well and transfer the electrons to the light emitting layer, and a substance having a high electron mobility is preferable. Specific examples thereof include Al complexes of 8-hydroxyquinoline and Al complexes containing Alq3The complex of (a), an organic radical compound, a hydroxyflavone-metal complex, etc., but are not limited thereto. The electron transport layer may be used with any desired cathode material as used in the art. Examples of suitable cathode substances are, in particular, the customary substances having a low work function and accompanied by an aluminum or silver layer. In particular cesium, barium, calcium, ytterbium and samarium, in each case accompanied by an aluminum or silver layer.
The electron injection layer is a layer for injecting electrons from the electrode, and is preferably a compound of: has an ability to transport electrons, an electron injection effect from a cathode, an excellent electron injection effect with respect to a light-emitting layer or a light-emitting material, prevents excitons generated in the light-emitting layer from migrating to a hole-injecting layer, and is excellent in thin film-forming ability. Specifically, fluorenone, anthraquinone dimethane, diphenoquinone, thiopyran dioxide, and the like,Azole,Oxadiazole, triazole, imidazole, perylene tetracarboxylic acid, fluorenylidene methane, anthrone, and the like, and derivatives thereof, metal complex compounds, nitrogen-containing five-membered ring derivatives, and the like, but are not limited thereto.
Examples of the metal complex include lithium 8-quinolinolato, zinc bis (8-quinolinolato), copper bis (8-quinolinolato), manganese bis (8-quinolinolato), aluminum tris (2-methyl-8-quinolinolato), and gallium tris (8-quinolinolato), bis (10-hydroxybenzo [ h ] quinoline) beryllium, bis (10-hydroxybenzo [ h ] quinoline) zinc, bis (2-methyl-8-quinoline) gallium chloride, bis (2-methyl-8-quinoline) (o-cresol) gallium, bis (2-methyl-8-quinoline) (1-naphthol) aluminum, bis (2-methyl-8-quinoline) (2-naphthol) gallium, and the like, but are not limited thereto.
The organic light emitting element according to the present invention may be a top emission type, a bottom emission type, or a bi-directional emission type, depending on the material used.
In addition, the compound represented by the above chemical formula 1 may be included in an organic solar cell or an organic transistor, in addition to the organic light emitting element.
The production of the compound represented by the above chemical formula 1 and the organic light emitting element comprising the same is specifically described in the following examples. However, the following examples are intended to illustrate the present invention, and the scope of the present invention is not limited thereto.
< production example 1>
After completely dissolving compound A (20.00g,32.33mmol) and compound B (10.84g,32.33mmol) in 300mL of tetrahydrofuran in a 500mL round-bottomed flask under a nitrogen atmosphere, a 2M aqueous potassium carbonate solution (150mL) was added, tetrakis (triphenylphosphine) palladium (1.12g,0.97mmol) was added, and the mixture was stirred for 3 hours under heating. The temperature was lowered to room temperature (23. + -. 5 ℃ C.), the aqueous layer was removed, dried over anhydrous magnesium sulfate, concentrated under reduced pressure, and recrystallized from 180mL of ethyl acetate to give Compound 1(compound 1; 10.9g, 61%).
MS[M+H]+=548。
< production example 2 >
In a 500mL round-bottom flask under nitrogen, after completely dissolving Compound A (20.00g,32.33mmol) and Compound C (13.95g, 32.33mmol) in 300mL tetrahydrofuran, 2M aqueous potassium carbonate (150mL) was added, tetrakis (triphenylphosphine) palladium (1.12g,0.97mmol) was added, and the mixture was stirred under heating for 3 hours. The temperature was lowered to room temperature (23. + -. 5 ℃ C.), the aqueous layer was removed, dried over anhydrous magnesium sulfate, concentrated under reduced pressure, and recrystallized from 180mL of ethyl acetate to give Compound 2(compound 2; 11.7g, 58%).
MS[M+H]+=738。
< production example 3 >
In a 500mL round-bottom flask under nitrogen atmosphere, after completely dissolving Compound A (20.00g,32.33mmol) and Compound D (10.84g,32.33mmol) in 300mL tetrahydrofuran, 2M aqueous potassium carbonate (150mL) was added, tetrakis (triphenylphosphine) palladium (1.12g,0.97mmol) was added, and the mixture was stirred under heating for 3 hours. The temperature was lowered to room temperature (23. + -. 5 ℃ C.), the aqueous layer was removed, dried over anhydrous magnesium sulfate, concentrated under reduced pressure, and recrystallized from 180mL of ethyl acetate to give Compound 3(compound 3; 12.2g, 69%).
MS[M+H]+=548。
< production example 4 >
In a 500mL round-bottom flask under nitrogen atmosphere, after completely dissolving Compound E (20.00g,32.33mmol) and Compound F (10.84g,32.33mmol) in 300mL tetrahydrofuran, 2M aqueous potassium carbonate (150mL) was added, tetrakis (triphenylphosphine) palladium (1.12g,0.97mmol) was added, and the mixture was stirred under heating for 3 hours. The temperature was lowered to room temperature (23. + -. 5 ℃ C.), the aqueous layer was removed, dried over anhydrous magnesium sulfate, concentrated under reduced pressure, and recrystallized from 180mL of ethyl acetate to give Compound 4(compound 4; 9.8g, 55%).
MS[M+H]+=548。
< production example 5 >
In a 500mL round-bottom flask under nitrogen atmosphere, after completely dissolving Compound G (20.00G,32.33mmol) and Compound F (10.84G,32.33mmol) in 300mL tetrahydrofuran, 2M aqueous potassium carbonate (150mL) was added, tetrakis (triphenylphosphine) palladium (1.12G,0.97mmol) was added, and the mixture was stirred under heating for 3 hours. The temperature was lowered to room temperature (23. + -. 5 ℃ C.), the aqueous layer was removed, dried over anhydrous magnesium sulfate, concentrated under reduced pressure, and recrystallized from 180mL of ethyl acetate to give Compound 5(compound 5; 14.2g, 80%).
MS[M+H]+=548。
< example 1-1 >)
Will be provided withThe glass substrate coated with ITO (indium tin oxide) is put in distilled water in which a detergent is dissolved, and washed by ultrasonic waves. In this case, a product of fisher (Fischer Co.) was used as the detergent, and distilled water was filtered twice using a Filter (Filter) manufactured by Millipore Co. The ITO was washed for 30 minutes and then twice with distilled water to perform ultrasonic washing for 10 minutes. After the completion of the distilled water washing, the resultant was ultrasonically washed with an isopropyl alcohol, acetone, or methanol solvent, dried, and then transported to a plasma cleaning machine. In addition to this, the present invention is,after the substrate was cleaned with oxygen plasma for 5 minutes, the substrate was transported to a vacuum evaporator.
On the ITO transparent electrode thus prepared, toThermal vacuum deposition of the following Compound [ HI-A ] in thickness]Thereby forming a hole injection layer. Sequentially vacuum-depositing the following chemical substance [ HAT ] on the hole injection layer]And the following chemical [ HT-A]Thereby forming a hole transport layer.
Then, on the hole transport layer, the film thicknessThe following compound [ BH]And [ BD ]]The light-emitting layer was formed by vacuum evaporation at a weight ratio of 25: 1.
On the light-emitting layer, compound 1 produced in production example 1 above and the following compound [ LiQ ]](lithium lithoquinolate, 8-hydroxyquinoline) was vacuum-evaporated at a weight ratio of 1:1 to obtain a solutionThe thickness of (a) forms an electron injection and transport layer. Sequentially adding lithium fluoride (LiF) on the electron injection and transport layer toThickness of (2), aluminumThe cathode is formed by vapor deposition to a certain thickness.
In the above process, the evaporation rate of the organic material is maintained at 0.4-0.4Lithium fluoride maintenance of cathodeDeposition rate of (3), aluminum maintenanceThe vapor deposition rate of (2), the degree of vacuum of which is maintained at 1X 10 during vapor deposition-7To 5X 10-8And (4) supporting to manufacture the organic light-emitting element.
< examples 1-2 to 1-5 >
An organic light-emitting element was produced in the same manner as in example 1-1 above, except that in example 1-1 above, one of compounds 2 to 5 shown in table 1 was used instead of compound 1.
< comparative examples 1-1 to 1-2 >
An organic light-emitting device was produced in the same manner as in example 1-1, except that in example 1-1, compound (I) or (II) having the following structure as shown in table 1 was used instead of compound 1.
< comparative examples 1-3 to 1-5 >)
An organic light-emitting element was produced in the same manner as in example 1-1, except that in example 1-1, compound (III), compound (IV) or compound (V) having the following structure as shown in table 1 was used instead of compound 1.
< Experimental example 1>
For examples 1-1 to 1-5 and comparisonThe organic light-emitting elements manufactured in examples 1-1 to 1-5 were measured at 10mA/cm2The driving voltage and the luminous efficiency at a current density of (2) were measured, and the voltage at 20mA/cm was measured2Time (T) of 90% relative to initial brightness at a current density of (1)90). The results are shown in table 1 below.
[ TABLE 1]
From the results of table 1 above, it was confirmed that the heterocyclic compound represented by chemical formula 1 having an asymmetric structure based on a binaphthalene skeleton to which a specific cyano group and a specific heterocyclic ring are respectively bonded according to the present invention can be used in an organic layer for simultaneous electron injection and electron transport of an organic light emitting element.
Further, it was confirmed by comparing examples 1-1 to 1-5 and comparative examples 1-1 and 1-2 that, in the case of a compound having substituents asymmetrically provided at both ends of a binaphthalene skeleton, a compound having a specific cyano group and a specific imidazole group respectively substituted at both ends of the binaphthalene skeleton as shown in the above chemical formula 1 exhibits superior characteristics in terms of driving voltage, efficiency and lifetime in an organic light-emitting element, as compared with a compound having other substituents. This is because the heterocyclic compounds represented by the above chemical formulae 1 to 5 are excellent in thermal stability, and have a deep HOMO level of 6.0eV or more, a high triplet level (ET), and hole stability, as compared with the compounds (I) and (II) having other substituents at one of both ends of the binaphthalene skeleton as shown in comparative examples 1-1 and 1-2.
In addition, it was confirmed that, in comparative examples 1-1 to 1-5 and comparative examples 1-3 to 1-5, even in the case of having a structure comprising a benzimidazole (benzimidazole) group at one end of the binaphthalene skeleton and no CN functional group at the other end as shown in the above-mentioned compound (III), the electron transport ability, the band gap, the energy level and the thermal characteristics can be more easily adjusted, thereby exhibiting excellent characteristics in terms of voltage, efficiency and lifetime.
In addition, when the heterocyclic compound represented by the above chemical formula 1 is used for an organic layer that can simultaneously perform electron injection and electron transport, it may be used in combination with an n-type dopant used in this field. Thus, the heterocyclic compound represented by the above chemical formula 1 has a lower driving voltage and higher efficiency, and can improve the stability of the element by the hole stability of the compound.
< example 2-1 >)
Will be provided withThe glass substrate coated with ITO (indium tin oxide) is put in distilled water in which a detergent is dissolved, and washed by ultrasonic waves. In this case, the detergent was prepared by Fischer Co, and the distilled water was filtered twice by a Filter (Filter) manufactured by Millipore Co. The ITO was washed for 30 minutes and then washed with distilled water twice for 10 minutes by ultrasonic wave. After the completion of the distilled water washing, the resultant was ultrasonically washed with an isopropyl alcohol, acetone, or methanol solvent, dried, and then transported to a plasma cleaning machine. After the substrate was cleaned with oxygen plasma for 5 minutes, the substrate was transported to a vacuum evaporator.
On the ITO transparent electrode thus prepared, toThermal vacuum deposition of the following Compound [ HI-A ]]Thereby forming a hole injection layer. The following compound [ HAT ] was sequentially vacuum-deposited on the hole injection layer]And the following Compound [ HT-A]Thereby forming a hole transport layer. Then, the hole transport layer is formed to have a film thicknessThe following compound [ BH]And [ BD ]]The light-emitting layer was formed by vacuum evaporation at a weight ratio of 25: 1. The compound 1 produced in the above production example 1 was vacuum-evaporated on the above light-emitting layer toForming an electronic regulation layer. The following compound [ ET ] is added to the electron control layer]And the following compound [ LiQ](Lithium Quinolate, 8-quinolinolato) was vacuum evaporated at a weight ratio of 1:1 to obtainThe thickness of (a) forms an electron injection and transport layer. Sequentially adding lithium fluoride (LiF) on the electron injection and transport layer toThickness of aluminum andthe thickness is evaporated to form a cathode.
In the above process, the evaporation rate of the organic material is maintained at 0.4-0Lithium fluoride maintenance of cathodeDeposition rate of (2), aluminum maintenanceThe vapor deposition rate of (2), the degree of vacuum of which is maintained at 1X 10 during vapor deposition-7To 5X 10-8And (4) supporting to manufacture the organic light-emitting element.
< example 2-2 to 2-5 >)
An organic light-emitting element was produced in the same manner as in example 2-1, except that in example 2-1, one of compounds 2 to 5 shown in table 2 was used instead of compound 1.
< comparative examples 2-1 to 2-2 >)
An organic light-emitting device was produced in the same manner as in example 2-1, except that in example 2-1, compound (I) or (II) having the following structure as shown in table 2 was used instead of compound 1.
< comparative examples 2-3 to 2-5 >
An organic light-emitting element was produced in the same manner as in example 2-1, except that in example 2-1, the compound (III), the compound (IV), or the compound (V) having the following structure as shown in table 2 was used instead of the compound 1.
< Experimental example 2 >
The organic light-emitting elements produced in examples 2-1 to 2-5 and comparative examples 2-1 to 2-5 were measured at 10mA/cm2The driving voltage and the luminous efficiency at a current density of (2) were measured, and the voltage at 20mA/cm was measured2Time (T) of 90% relative to initial brightness at a current density of (1)90). The results are shown in table 2 below.
[ TABLE 2]
From the results of table 2, it can be confirmed that the heterocyclic compound represented by chemical formula 1 can be used for an electron-modulating layer of an organic light-emitting element.
[ description of symbols ]
1: substrate 2: anode
3: light-emitting layer 4: cathode electrode
5: hole injection layer 6: hole transport layer
7: light-emitting layer 8: an electron transport layer.
Claims (5)
2. The compound of claim 1, wherein L1Is phenylene.
3. The compound of claim 1, wherein R1And R2Is phenyl, cyanophenyl or pyridyl.
5. an organic light-emitting element comprising: a first electrode, a second electrode provided so as to face the first electrode, and one or more organic layers provided between the first electrode and the second electrode, wherein one or more of the organic layers contain the compound according to any one of claims 1 to 4.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2017-0067649 | 2017-05-31 | ||
KR20170067649 | 2017-05-31 | ||
KR10-2018-0062155 | 2018-05-30 | ||
KR1020180062155A KR102064994B1 (en) | 2017-05-31 | 2018-05-30 | Novel hetero-cyclic compound and organic light emitting device comprising the same |
PCT/KR2018/006241 WO2018221986A1 (en) | 2017-05-31 | 2018-05-31 | Novel heterocyclic compound and organic light emitting element using same |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110248928A CN110248928A (en) | 2019-09-17 |
CN110248928B true CN110248928B (en) | 2022-07-08 |
Family
ID=64671059
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201880009529.6A Active CN110248928B (en) | 2017-05-31 | 2018-05-31 | Novel heterocyclic compound and organic light-emitting element using same |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102064994B1 (en) |
CN (1) | CN110248928B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020222433A1 (en) * | 2019-05-02 | 2020-11-05 | 주식회사 엘지화학 | Heterocyclic compound and organic light-emitting device comprising same |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101291897A (en) * | 2005-10-21 | 2008-10-22 | Lg化学株式会社 | New binaphthalene derivatives, preparation method thereof and organic electronic device using the same |
KR100967355B1 (en) * | 2009-11-03 | 2010-07-05 | 주식회사 유피케미칼 | Material for organic electroluminescent devices andorganic electroluminescent devices made by using thesame |
KR20120051598A (en) * | 2010-11-12 | 2012-05-22 | 주식회사 엘지화학 | New compounds and organic electronic device using the same |
KR20150003564A (en) * | 2013-07-01 | 2015-01-09 | 삼성디스플레이 주식회사 | Compound and organic light emitting device comprising same |
KR20150025259A (en) * | 2013-08-28 | 2015-03-10 | 삼성디스플레이 주식회사 | Compound and organic light emitting device comprising the same |
KR20170067424A (en) * | 2015-12-08 | 2017-06-16 | 주식회사 두산 | Organic compounds and organic electro luminescence device comprising the same |
-
2018
- 2018-05-30 KR KR1020180062155A patent/KR102064994B1/en active IP Right Grant
- 2018-05-31 CN CN201880009529.6A patent/CN110248928B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101291897A (en) * | 2005-10-21 | 2008-10-22 | Lg化学株式会社 | New binaphthalene derivatives, preparation method thereof and organic electronic device using the same |
KR100967355B1 (en) * | 2009-11-03 | 2010-07-05 | 주식회사 유피케미칼 | Material for organic electroluminescent devices andorganic electroluminescent devices made by using thesame |
KR20120051598A (en) * | 2010-11-12 | 2012-05-22 | 주식회사 엘지화학 | New compounds and organic electronic device using the same |
KR20150003564A (en) * | 2013-07-01 | 2015-01-09 | 삼성디스플레이 주식회사 | Compound and organic light emitting device comprising same |
KR20150025259A (en) * | 2013-08-28 | 2015-03-10 | 삼성디스플레이 주식회사 | Compound and organic light emitting device comprising the same |
KR20170067424A (en) * | 2015-12-08 | 2017-06-16 | 주식회사 두산 | Organic compounds and organic electro luminescence device comprising the same |
Also Published As
Publication number | Publication date |
---|---|
CN110248928A (en) | 2019-09-17 |
KR20180131483A (en) | 2018-12-10 |
KR102064994B1 (en) | 2020-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107840835B (en) | Novel heterocyclic compound and organic light-emitting element using same | |
KR102235734B1 (en) | Novel compound and organic light emitting device comprising the same | |
CN110023314B (en) | Novel heterocyclic compound and organic light emitting device using the same | |
CN110546143B (en) | Novel heterocyclic compound and organic light emitting device comprising the same | |
CN111971273B (en) | Novel compound and organic light emitting device comprising the same | |
CN110023306B (en) | Novel heterocyclic compound and organic light-emitting device comprising same | |
CN113423705A (en) | Novel compound and organic light emitting device using the same | |
CN110573498B (en) | Novel heterocyclic compound and organic light-emitting device comprising same | |
CN110099902B (en) | Novel compound and organic light-emitting element comprising same | |
KR102202593B1 (en) | Novel triphenylene compound and organic light emitting device comprising the same | |
CN111788192A (en) | Novel heterocyclic compound and organic light emitting device using the same | |
CN110177778A (en) | Noval chemical compound and organic luminescent device comprising it | |
CN112424191A (en) | Novel compound and organic light emitting device comprising the same | |
CN113423706A (en) | Novel compound and organic light emitting device comprising same | |
CN113166112A (en) | Novel compound and organic light emitting device comprising same | |
CN113039183A (en) | Novel compound and organic light emitting device comprising same | |
CN111094261B (en) | Novel heterocyclic compound and organic light-emitting device using same | |
CN110799487B (en) | Novel compound and organic light emitting device using the same | |
KR102168068B1 (en) | Novel compound and organic light emitting device comprising the same | |
KR102217268B1 (en) | Novel compound and organic light emitting device comprising the same | |
CN113227085A (en) | Novel compound and organic light emitting device comprising same | |
CN113557229A (en) | Novel compound and organic light emitting device comprising same | |
CN113039184A (en) | Novel compound and organic light emitting device comprising same | |
CN108239078B (en) | Novel heterocyclic compound and organic light-emitting element using same | |
CN110540527A (en) | Novel triphenylene compound and organic light-emitting device using same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |