CN110243590A - A Rotor System Fault Diagnosis Method Based on Principal Component Analysis and Width Learning - Google Patents
A Rotor System Fault Diagnosis Method Based on Principal Component Analysis and Width Learning Download PDFInfo
- Publication number
- CN110243590A CN110243590A CN201910554070.4A CN201910554070A CN110243590A CN 110243590 A CN110243590 A CN 110243590A CN 201910554070 A CN201910554070 A CN 201910554070A CN 110243590 A CN110243590 A CN 110243590A
- Authority
- CN
- China
- Prior art keywords
- fault data
- frequency domain
- matrix
- domain fault
- principal component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000513 principal component analysis Methods 0.000 title claims abstract description 102
- 238000000034 method Methods 0.000 title claims abstract description 67
- 238000003745 diagnosis Methods 0.000 title claims abstract description 31
- 239000011159 matrix material Substances 0.000 claims abstract description 105
- 230000009467 reduction Effects 0.000 claims description 48
- 238000012549 training Methods 0.000 claims description 48
- 238000012360 testing method Methods 0.000 claims description 43
- 230000000875 corresponding effect Effects 0.000 claims description 30
- 230000001186 cumulative effect Effects 0.000 claims description 17
- 238000013145 classification model Methods 0.000 claims description 16
- 230000006870 function Effects 0.000 claims description 16
- 239000013598 vector Substances 0.000 claims description 13
- 230000008569 process Effects 0.000 claims description 8
- 238000013507 mapping Methods 0.000 claims description 4
- 230000002596 correlated effect Effects 0.000 claims description 3
- 238000011478 gradient descent method Methods 0.000 claims description 3
- 238000010276 construction Methods 0.000 claims description 2
- 238000000354 decomposition reaction Methods 0.000 claims description 2
- 238000000605 extraction Methods 0.000 abstract description 7
- 238000002474 experimental method Methods 0.000 description 7
- 239000000306 component Substances 0.000 description 6
- 241000380131 Ammophila arenaria Species 0.000 description 5
- 230000009466 transformation Effects 0.000 description 5
- 230000001133 acceleration Effects 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000005096 rolling process Methods 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 230000003416 augmentation Effects 0.000 description 2
- 230000002860 competitive effect Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000017105 transposition Effects 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 229910000906 Bronze Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000012847 principal component analysis method Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M13/00—Testing of machine parts
- G01M13/02—Gearings; Transmission mechanisms
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M13/00—Testing of machine parts
- G01M13/02—Gearings; Transmission mechanisms
- G01M13/028—Acoustic or vibration analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Bioinformatics & Computational Biology (AREA)
- Artificial Intelligence (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Biology (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Test And Diagnosis Of Digital Computers (AREA)
- Complex Calculations (AREA)
Abstract
本发明公开了一种基于主成分分析和宽度学习的转子系统故障诊断方法,利用主成分分析对经过特征提取后形成的特征矩阵进行维数约简,降低数据间的线性相关性,消除冗余属性,获得能保留其本质特征的低维矩阵,然后将该矩阵输入宽度学习系统进行故障识别,完成转子系统故障分类任务。本发明将主成分分析和宽度学习系统引入到转子系统故障诊断识别中,该方法能够有效的降低故障分类的复杂度,且能够大幅缩短数据建模时间,提升转子系统故障识别的效率,从而高效的完成转子系统故障诊断任务,实用性好,值得推广。
The invention discloses a rotor system fault diagnosis method based on principal component analysis and width learning, which uses principal component analysis to reduce the dimensionality of the feature matrix formed after feature extraction, reduces the linear correlation between data, and eliminates redundancy Attributes, obtain a low-dimensional matrix that can retain its essential characteristics, and then input the matrix into the width learning system for fault identification, and complete the task of rotor system fault classification. The invention introduces the principal component analysis and width learning system into the fault diagnosis and identification of the rotor system. This method can effectively reduce the complexity of fault classification, greatly shorten the data modeling time, and improve the efficiency of fault identification of the rotor system. Complete the fault diagnosis task of the rotor system, it has good practicability and is worthy of popularization.
Description
技术领域technical field
本发明属于机械零件故障检测技术领域,具体涉及一种基于主成分分析和宽度学习的转子系统故障诊断方法。The invention belongs to the technical field of fault detection of mechanical parts, and in particular relates to a fault diagnosis method of a rotor system based on principal component analysis and width learning.
背景技术Background technique
转子系统作为旋转机械的核心部件,在各相关领域中发挥着无可替代的作用。转子系统在旋转机械上应用众多,旋转机械在工作过程中发生的故障会造成重大的经济损失,其中很大一部分是由于转子系统发生故障而引起,其故障危害包括产生噪声,转子失稳,严重的甚至会使机械结构损坏,造成重大的安全事故。因此,对转子系统初期故障进行有效地分析与准确地诊断,具有十分重要地科学意义和应用价值。As the core component of rotating machinery, the rotor system plays an irreplaceable role in various related fields. The rotor system is widely used in rotating machinery. The failure of the rotating machinery in the working process will cause major economic losses, a large part of which is caused by the failure of the rotor system. The failure hazards include noise, rotor instability, serious It may even damage the mechanical structure and cause major safety accidents. Therefore, it has very important scientific significance and application value to effectively analyze and accurately diagnose the initial faults of the rotor system.
目前,对于转子故障诊断应用较为广泛的方法是窗口傅里叶变换,经验模式分解,小波分析等方法。然而,上述方法对故障信号进行特征提取后,形成的特征矩阵存在结构复杂,特征相关性大,冗余程度高等问题,而这些问题会极大的增加故障分类的复杂度,降低故障识别的准确率。At present, the widely used methods for rotor fault diagnosis are window Fourier transform, empirical mode decomposition, wavelet analysis and other methods. However, after the feature extraction of the fault signal by the above method, the formed feature matrix has problems such as complex structure, high feature correlation, and high degree of redundancy, which will greatly increase the complexity of fault classification and reduce the accuracy of fault identification. Rate.
发明内容Contents of the invention
有鉴于此,本发明提供了一种基于主成分分析和宽度学习的转子系统故障诊断方法,该方法首先利用主成分分析(PCA)对经过特征提取后形成的特征矩阵进行维数约简,降低数据间的线性相关性,消除冗余属性,获得能保留其本质特征的低维矩阵,然后将该矩阵输入宽度学习系统(Broad Learning System,简称BLS)进行故障识别,宽度学习系统(Broad Learning System,简称BLS)能够高效的完成转子系统故障分类任务,以便解决现有技术中的不足。In view of this, the present invention provides a rotor system fault diagnosis method based on principal component analysis and width learning, the method first uses principal component analysis (PCA) to reduce the dimension of the feature matrix formed after feature extraction, reducing the Linear correlation between data, eliminate redundant attributes, obtain a low-dimensional matrix that can retain its essential features, and then input the matrix into the Broad Learning System (BLS for short) for fault identification, the Broad Learning System (Broad Learning System , referred to as BLS) can efficiently complete the rotor system fault classification task, so as to solve the deficiencies in the prior art.
本发明的技术方案是:Technical scheme of the present invention is:
一种基于主成分分析和宽度学习的转子系统故障诊断方法,包括以下步骤:A rotor system fault diagnosis method based on principal component analysis and width learning, comprising the following steps:
步骤1:采集时域故障数据T(n);Step 1: Collect fault data T(n) in time domain;
步骤2:根据式(1)进行傅里叶变换,将所采集的时域故障数据T(n)变换为频域故障数据X,Step 2: Carry out Fourier transform according to formula (1), transform the collected fault data T(n) in time domain into fault data X in frequency domain,
其中,in,
上述式(1)和式(2)中,n=0,1,...,N-1,k=0,1,...,N-1,N为时域故障数据的长度,j为复数符号,X为频域故障数据,包括训练样本和测试样本,X={x1,x2,...,xi,...xm},i=1,...,m,T(n)为时域故障数据;In the above formula (1) and formula (2), n=0,1,...,N-1, k=0,1,...,N-1, N is the length of time domain fault data, j is a complex symbol, X is frequency domain fault data, including training samples and test samples, X={x 1 , x 2 ,..., xi ,...x m }, i=1,...,m , T(n) is the fault data in time domain;
步骤3:获取频域故障数据X的协方差矩阵C;Step 3: Obtain the covariance matrix C of the fault data X in the frequency domain;
步骤4:判定不同频域故障数据X之间的相关性;Step 4: Determine the correlation between fault data X in different frequency domains;
步骤5:根据式(3)对频域故障数据X的协方差矩阵C进行特征值分解,从而得到频域故障数据X的协方差矩阵C的特征向量矩阵Q与特征值矩阵∑,特征值矩阵∑用式(4)表示,特征向量矩阵Q用式(5)表示,Step 5: Decompose the eigenvalues of the covariance matrix C of the fault data X in the frequency domain according to formula (3), so as to obtain the eigenvector matrix Q and the eigenvalue matrix Σ, the eigenvalue matrix of the covariance matrix C of the fault data X in the frequency domain ∑ is expressed by formula (4), and the eigenvector matrix Q is expressed by formula (5),
C=Q·∑·QT (3)C=Q·∑·Q T (3)
其中,in,
∑=diag(λ1,λ2,...,λi,...,λn) (4)∑=diag(λ 1 ,λ 2 ,...,λ i ,...,λ n ) (4)
Q=[q1,q2,...,qi,...,qn] (5)Q=[q 1 ,q 2 ,...,q i ,...,q n ] (5)
上述式(3)、式(4)和式(5)中,C为频域故障数据的协方差矩阵,Q为特征向量矩阵,∑为特征值矩阵,λ1≥λ2≥...≥λi≥...,≥λn,i=1,...,n,QT为特征向量矩阵的转置矩阵,n为频域故障数据的长度,所有特征值的个数=所有特征向量的个数=频域故障数据的长度=n,特征向量qi与特征值λi呈一一对应关系;In the above formula (3), formula (4) and formula (5), C is the covariance matrix of the frequency domain fault data, Q is the eigenvector matrix, Σ is the eigenvalue matrix, λ 1 ≥ λ 2 ≥...≥ λ i ≥...,≥λ n , i=1,...,n, Q T is the transpose matrix of eigenvector matrix, n is the length of fault data in frequency domain, the number of all eigenvalues=all eigenvalues The number of vectors = the length of the fault data in the frequency domain = n, the eigenvector q i and the eigenvalue λ i are in a one-to-one correspondence;
步骤6:对频域故障数据集X进行主成分分析降维获得降维后的频域故障数据集Xk;Step 6: Perform principal component analysis on the frequency-domain fault data set X to obtain dimensionality-reduced frequency-domain fault data set X k ;
步骤7:将降维后的频域故障数据集Xk分为训练的频域故障数据集Xk1和测试的频域故障数据集Xk2;Step 7: Divide the dimensionality-reduced frequency-domain fault data set X k into a frequency-domain fault data set X k1 for training and a frequency-domain fault data set X k2 for testing;
步骤8:利用训练的频域故障数据集Xk1构建宽度学习系统模型;Step 8: Construct a width learning system model using the trained frequency domain fault data set X k1 ;
步骤9:将构建宽度学习系统模型过程中求解出的目标权重β代入宽度学习系统模型中获得宽度学习系统分类模型;Step 9: Substituting the target weight β obtained in the process of building the breadth learning system model into the breadth learning system model to obtain the breadth learning system classification model;
步骤10:将测试的频域故障数据集Xk2代入宽度学习系统分类模型中获得故障诊断结果,完成对宽度学习系统分类模型有效性的测试。Step 10: Substitute the tested frequency-domain fault data set X k2 into the classification model of the wide learning system to obtain fault diagnosis results, and complete the test of the validity of the classification model of the wide learning system.
优选的,所述的步骤3中获取频域故障数据的协方差矩阵C包括以下几个步骤:Preferably, obtaining the covariance matrix C of the fault data in the frequency domain in the step 3 includes the following steps:
S21、由于频域故障数据X具有对称性,故可根据式(6)对频域故障数据X的长度进行截取,S21. Since the frequency-domain fault data X has symmetry, the length of the frequency-domain fault data X can be intercepted according to formula (6),
n=N/2 (6)n=N/2 (6)
上述式(6)中,n为对频域故障数据X的长度进行截取后的长度,N为时域故障数据的长度;In the above formula (6), n is the length after the interception of the length of the frequency domain fault data X, and N is the length of the time domain fault data;
S22、根据式(7)求取频域故障数据X的样本均值α,S22. Calculate the sample mean value α of the fault data X in the frequency domain according to formula (7),
其中,频域故障数据集X={x1,x2,...,xi,...xm},i=1,...,m,m为样本的总个数,α是频域故障数据X的样本均值,xi为第i个频域故障数据;Among them, frequency domain fault data set X={x 1 , x 2 ,..., xi ,...x m }, i=1,...,m, m is the total number of samples, α is The sample mean value of frequency domain fault data X, x i is the ith frequency domain fault data;
S23、根据式(8)求取频域故障数据的协方差矩阵C,S23, obtain the covariance matrix C of the fault data in the frequency domain according to formula (8),
其中,i=1,...,m,m为样本的总个数,C为频域故障数据X的协方差矩阵,xi为第i个频域故障数据,α是频域故障数据X的样本均值。Among them, i=1,...,m, m is the total number of samples, C is the covariance matrix of the frequency domain fault data X, x i is the i-th frequency domain fault data, α is the frequency domain fault data X The sample mean of .
优选的,所述的步骤4中判定不同频域故障数据之间的相关性采取的判定条件是:Preferably, the determination condition adopted in the step 4 to determine the correlation between different frequency domain fault data is:
若协方差矩阵中对应两特征间的协方差为正数,则两特征间呈现正相关关系,若协方差矩阵中对应两特征间的协方差为负数,则两特征间呈现负相关关系协方差矩阵中对应两特征间的协方差为0,则说明两个特征间不相关。If the covariance between the corresponding two features in the covariance matrix is a positive number, there is a positive correlation between the two features; if the covariance between the corresponding two features in the covariance matrix is negative, the two features show a negative correlation covariance If the covariance between the corresponding two features in the matrix is 0, it means that the two features are not correlated.
优选的,所述的步骤6中对频域故障数据集X进行主成分分析降维的方法包括以下几个步骤:Preferably, the method for performing principal component analysis and dimensionality reduction on the frequency-domain fault data set X in step 6 includes the following steps:
S41、在特征值矩阵∑中选取前k个特征值λi,根据式(9)计算主元方差累积贡献率θ,S41. Select the first k eigenvalues λ i in the eigenvalue matrix Σ, and calculate the cumulative contribution rate θ of the principal component variance according to formula (9),
其中,θ为主元方差累积贡献率,λi和λj分别为第i和第j个特征值,k为所选取的特征值个数,n为所有特征值的个数,i=1,...,k,j=1,...,n,k<n;Among them, θ is the cumulative contribution rate of the main component variance, λ i and λ j are the i-th and j-th eigenvalues respectively, k is the number of selected eigenvalues, n is the number of all eigenvalues, i=1, ...,k,j=1,...,n,k<n;
S42、根据式(10)获取对应前k个特征值λi的对应特征向量qi,S42. Obtain the corresponding eigenvectors q i corresponding to the first k eigenvalues λ i according to formula (10),
Qk=[q1,q2,...,qi,...,qk] (10)Q k =[q 1 ,q 2 ,...,q i ,...,q k ] (10)
其中,i=1,...,k,k<n,k为所选取的特征值个数,n为所有特征值的个数,Qk为对应前k个特征值λi的对应特征向量qi构成的特征向量矩阵;Among them, i=1,...,k, k<n, k is the number of selected eigenvalues, n is the number of all eigenvalues, Q k is the corresponding eigenvector corresponding to the first k eigenvalues λ i The eigenvector matrix formed by q i ;
S43、根据式(11)对特征向量矩阵Qk进行主成分分析降维,S43, carry out principal component analysis dimensionality reduction to eigenvector matrix Q k according to formula (11),
Xk=Qk·X (11)X k =Q k ·X (11)
其中,Qk对应前k个特征值λi的对应特征向量qi构成的特征向量矩阵,X为频域故障数据集,Xk为经过主成分分析降维后的频域故障数据集。Among them, Q k corresponds to the eigenvector matrix formed by the corresponding eigenvectors q i of the first k eigenvalues λ i , X is the fault data set in the frequency domain, and X k is the fault data set in the frequency domain after principal component analysis.
优选的,所述的步骤8中构建宽度学习系统模型的方法包括以下几个步骤:Preferably, the method for constructing the width learning system model in the described step 8 includes the following steps:
S51、根据式(12)对训练的频域故障数据集Xk1进行特征映射从而形成特征节点Zi,S51. Perform feature mapping on the trained frequency-domain fault data set X k1 according to formula (12) to form a feature node Z i ,
其中,Wei和是随机选取的特征节点系数,i=1,...,t,t为特征节点总个数,Zi是第i个特征节点,Xk1为训练的频域故障数据集;Among them, Wei and is the randomly selected feature node coefficient, i=1,...,t, t is the total number of feature nodes, Z i is the i-th feature node, X k1 is the frequency domain fault data set for training;
S52、根据式(13)将所有特征节点Zi的组合记作Zt,S52. Denote the combination of all feature nodes Z i as Z t according to formula (13),
Zt≡[Z1,...,Zi,...,Zt] (13)Z t ≡[Z 1 ,...,Z i ,...,Z t ] (13)
其中,Zi是第i个特征节点,Zt是所有特征节点Zi的组合,t为所有的特征节点的个数,i=1,...,t;Among them, Z i is the i-th feature node, Z t is the combination of all feature nodes Z i , t is the number of all feature nodes, i=1,...,t;
S53、根据式(14)对所有特征节点Zi的组合Zt进行非线性函数变换生成增强节点Hj,S53. Perform nonlinear function transformation on the combination Z t of all feature nodes Z i according to formula (14) to generate an enhanced node H j ,
其中,Hj是第j个增强节点,Zt是所有特征节点Zi的组合,和是随机选取的增强节点系数,j=1,...,c,c为增强节点的总个数;where H j is the jth enhanced node, Z t is the combination of all feature nodes Z i , and is the randomly selected enhancement node coefficient, j=1,...,c, c is the total number of enhancement nodes;
S54、根据式(15)将所有的增强节点Hj的组合记做Hc,S54. According to formula (15), denote the combination of all enhanced nodes H j as H c ,
Hc≡[H1,...,Hj,...,Hc] (15)H c ≡ [H 1 ,...,H j ,...,H c ] (15)
其中,c为增强节点的总数,j=1,...,c,0≤j≤m,Hc为所有的增强节点Hj的组合,Hj是第j个增强节点;Wherein, c is the total number of enhanced nodes, j=1,...,c, 0≤j≤m, H c is the combination of all enhanced nodes H j , and H j is the jth enhanced node;
S55、根据式(16)将所有节点合并为扩展矩阵G,S55. Merge all nodes into an extended matrix G according to formula (16),
G≡[Zt|Hc] (16)G≡[Z t |H c ] (16)
其中,G是扩展矩阵,Zt是所有特征节点Zi的组合,Hc为所有的增强节点Hj的组合;Among them, G is the expansion matrix, Z t is the combination of all feature nodes Z i , H c is the combination of all enhanced nodes H j ;
S56、根据式(17)构建宽度学习系统的目标权重β的目标函数Fmin(β),S56. Construct the objective function F min (β) of the target weight β of the width learning system according to formula (17),
其中,β为目标权重,Fmin(β)为求解目标权重β的目标函数,V是常数,Y={y1,...,yl,...,yk1},yl为第l个训练样本对应的标签,Y为所有训练样本标签构成的标签矩阵,l=1,...,k1,k1为训练样本的总个数,G是扩展矩阵;Among them, β is the target weight, F min (β) is the objective function to solve the target weight β, V is a constant, Y={y 1 ,...,y l ,...,y k1 }, y l is the first The labels corresponding to l training samples, Y is a label matrix formed by all training sample labels, l=1,..., k1, k1 is the total number of training samples, and G is an expansion matrix;
S57、采用梯度下降法对式(17)中的Fmin(β)函数进行求解,可得式(18)用以求解目标权重β,S57, using the gradient descent method to solve the F min (β) function in the formula (17), the formula (18) can be obtained to solve the target weight β,
其中,Y={y1,...,yl,...,yk1},yl为第l个训练样本对应的标签,Y为所有训练样本标签构成的标签矩阵,l=1,...,k1,k1为训练样本的总个数,β为目标权重,G是扩展矩阵,GT为扩展矩阵的转置,Inh是维数为nh的单位矩阵,nh为宽度学习系统模型特征节点和增强节点的总数,即nh=c+t,V为常数;Among them, Y={y 1 ,...,y l ,...,y k1 }, y l is the label corresponding to the lth training sample, Y is the label matrix composed of all training sample labels, l=1, ..., k1, k1 is the total number of training samples, β is the target weight, G is the expansion matrix, G T is the transposition of the expansion matrix, I nh is the identity matrix with dimension nh, and nh is the width learning system The total number of model feature nodes and enhanced nodes, namely nh=c+t, V is a constant;
S58、宽度学习系统模型构建完毕。S58. The width learning system model is constructed.
与现有技术相比,本发明将主成分分析(PCA)和宽度学习系统(Broad LearningSystem,简称BLS)引入到转子系统故障诊断识别中,提出了一种基于主成分分析和宽度学习的转子系统故障诊断方法,该方法采用主成分分析(PCA)对经过FFT变换的故障数据进行降维处理,形成表征不同故障的特征向量,然后将降维后的数据输入BLS进行分类,其有益效果是:Compared with the prior art, the present invention introduces Principal Component Analysis (PCA) and Broad Learning System (BLS for short) into the fault diagnosis and identification of the rotor system, and proposes a rotor system based on Principal Component Analysis and Broad Learning Fault diagnosis method, this method uses principal component analysis (PCA) to carry out dimensionality reduction processing on the fault data transformed by FFT, and forms feature vectors representing different faults, and then inputs the data after dimensionality reduction into BLS for classification, and its beneficial effects are:
1、本发明能够有效的降低故障分类的复杂度;1. The present invention can effectively reduce the complexity of fault classification;
2、本发明能够大幅缩短数据建模时间,提升转子系统故障识别的效率,从而高效的完成转子系统故障诊断任务;2. The present invention can greatly shorten the data modeling time, improve the efficiency of rotor system fault identification, and thus efficiently complete the task of rotor system fault diagnosis;
3、本发明实用性好,值得推广。3. The present invention has good practicability and is worth popularizing.
附图说明Description of drawings
图1为本发明的一种基于主成分分析和宽度学习的转子系统故障诊断方法的流程图;Fig. 1 is a flow chart of a rotor system fault diagnosis method based on principal component analysis and width learning of the present invention;
图2为本发明的宽度学习系统BLS的结构示意图;Fig. 2 is the structural representation of the breadth learning system BLS of the present invention;
图3为本发明的实验台结构示意图;Fig. 3 is a schematic diagram of the experimental bench structure of the present invention;
图4为本发明的累积方差贡献率对测试精度的影响图;Fig. 4 is the impact figure of cumulative variance contribution rate of the present invention on test accuracy;
图5为本发明的累积方差贡献率对训练时间影响图。Fig. 5 is a graph showing the influence of the cumulative variance contribution rate on the training time in the present invention.
附图标记说明:Explanation of reference signs:
1、数据传输电缆;2、加速度传感器;3、待测试轴承;4、飞轮;5、联轴器;6、交流电动机;7、数据采集卡;8、PC机;9、变频器。1. Data transmission cable; 2. Acceleration sensor; 3. Bearing to be tested; 4. Flywheel; 5. Coupling; 6. AC motor; 7. Data acquisition card; 8. PC; 9. Inverter.
具体实施方式Detailed ways
本发明提供了一种基于主成分分析和宽度学习的转子系统故障诊断方法,下面结合图1的流程示意图,对本发明进行说明。The present invention provides a rotor system fault diagnosis method based on principal component analysis and width learning. The present invention will be described below in conjunction with the schematic flow chart in FIG. 1 .
如图1所示,本发明的技术方案是:As shown in Figure 1, technical scheme of the present invention is:
一种基于主成分分析和宽度学习的转子系统故障诊断方法,包括以下步骤:A rotor system fault diagnosis method based on principal component analysis and width learning, comprising the following steps:
步骤1:采集时域故障数据T(n);Step 1: Collect fault data T(n) in time domain;
步骤2:根据式(1)进行傅里叶变换,将所采集的时域故障数据T(n)变换为频域故障数据X,Step 2: Carry out Fourier transform according to formula (1), transform the collected fault data T(n) in time domain into fault data X in frequency domain,
其中,in,
上述式(1)和式(2)中,n=0,1,...,N-1,k=0,1,...,N-1,N为时域故障数据的长度,j为复数符号,X为频域故障数据,包括训练样本和测试样本,X={x1,x2,...,xi,...xm},i=1,...,m,T(n)为时域故障数据;In the above formula (1) and formula (2), n=0,1,...,N-1, k=0,1,...,N-1, N is the length of time domain fault data, j is a complex symbol, X is frequency domain fault data, including training samples and test samples, X={x 1 , x 2 ,..., xi ,...x m }, i=1,...,m , T(n) is the fault data in time domain;
步骤3:获取频域故障数据X的协方差矩阵C;Step 3: Obtain the covariance matrix C of the fault data X in the frequency domain;
步骤4:判定不同频域故障数据X之间的相关性;Step 4: Determine the correlation between fault data X in different frequency domains;
步骤5:根据式(3)对频域故障数据X的协方差矩阵C进行特征值分解,从而得到频域故障数据X的协方差矩阵C的特征向量矩阵Q与特征值矩阵∑,特征值矩阵∑用式(4)表示,特征向量矩阵Q用式(5)表示,Step 5: Decompose the eigenvalues of the covariance matrix C of the fault data X in the frequency domain according to formula (3), so as to obtain the eigenvector matrix Q and the eigenvalue matrix Σ, the eigenvalue matrix of the covariance matrix C of the fault data X in the frequency domain ∑ is expressed by formula (4), and the eigenvector matrix Q is expressed by formula (5),
C=Q·∑·QT (3)C=Q·∑·Q T (3)
其中,in,
∑=diag(λ1,λ2,...,λi,...,λn) (4)∑=diag(λ 1 ,λ 2 ,...,λ i ,...,λ n ) (4)
Q=[q1,q2,...,qi,...,qn] (5)Q=[q 1 ,q 2 ,...,q i ,...,q n ] (5)
上述式(3)、式(4)和式(5)中,C为频域故障数据的协方差矩阵,Q为特征向量矩阵,∑为特征值矩阵,λ1≥λ2≥...≥λi≥...,≥λn,i=1,...,n,QT为特征向量矩阵的转置矩阵,n为频域故障数据的长度,所有特征值的个数=所有特征向量的个数=频域故障数据的长度=n,特征向量qi与特征值λi呈一一对应关系;In the above formula (3), formula (4) and formula (5), C is the covariance matrix of the frequency domain fault data, Q is the eigenvector matrix, Σ is the eigenvalue matrix, λ 1 ≥ λ 2 ≥...≥ λ i ≥...,≥λ n , i=1,...,n, Q T is the transpose matrix of eigenvector matrix, n is the length of fault data in frequency domain, the number of all eigenvalues=all eigenvalues The number of vectors = the length of the fault data in the frequency domain = n, the eigenvector q i and the eigenvalue λ i are in a one-to-one correspondence;
步骤6:对频域故障数据集X进行主成分分析降维获得降维后的频域故障数据集Xk;Step 6: Perform principal component analysis on the frequency-domain fault data set X to obtain dimensionality-reduced frequency-domain fault data set X k ;
步骤7:将降维后的频域故障数据集Xk分为训练的频域故障数据集Xk1和测试的频域故障数据集Xk2;Step 7: Divide the dimensionality-reduced frequency-domain fault data set X k into a frequency-domain fault data set X k1 for training and a frequency-domain fault data set X k2 for testing;
步骤8:利用训练的频域故障数据集Xk1构建宽度学习系统模型;Step 8: Construct a width learning system model using the trained frequency domain fault data set X k1 ;
步骤9:将构建宽度学习系统模型过程中求解出的目标权重β代入宽度学习系统模型中获得宽度学习系统分类模型;Step 9: Substituting the target weight β obtained in the process of building the breadth learning system model into the breadth learning system model to obtain the breadth learning system classification model;
步骤10:将测试的频域故障数据集Xk2代入宽度学习系统分类模型中获得故障诊断结果,完成对宽度学习系统分类模型有效性的测试。Step 10: Substitute the tested frequency-domain fault data set X k2 into the classification model of the wide learning system to obtain fault diagnosis results, and complete the test of the validity of the classification model of the wide learning system.
进一步的,所述的步骤3中获取频域故障数据的协方差矩阵C包括以下几个步骤:Further, obtaining the covariance matrix C of the fault data in the frequency domain in the step 3 includes the following steps:
S21、由于频域故障数据X具有对称性,故可根据式(6)对频域故障数据X的长度进行截取,S21. Since the frequency-domain fault data X has symmetry, the length of the frequency-domain fault data X can be intercepted according to formula (6),
n=N/2 (6)n=N/2 (6)
上述式(6)中,n为对频域故障数据X的长度进行截取后的长度,N为时域故障数据的长度;In the above formula (6), n is the length after the interception of the length of the frequency domain fault data X, and N is the length of the time domain fault data;
S22、根据式(7)求取频域故障数据X的样本均值α,S22. Calculate the sample mean value α of the fault data X in the frequency domain according to formula (7),
其中,频域故障数据集X={x1,x2,...,xi,...xm},i=1,...,m,m为样本的总个数,α是频域故障数据X的样本均值,xi为第i个频域故障数据;Among them, frequency domain fault data set X={x 1 , x 2 ,..., xi ,...x m }, i=1,...,m, m is the total number of samples, α is The sample mean value of frequency domain fault data X, x i is the ith frequency domain fault data;
S23、根据式(8)求取频域故障数据的协方差矩阵C,S23, obtain the covariance matrix C of the fault data in the frequency domain according to formula (8),
其中,i=1,...,m,m为样本的总个数,C为频域故障数据X的协方差矩阵,xi为第i个频域故障数据,α是频域故障数据X的样本均值。Among them, i=1,...,m, m is the total number of samples, C is the covariance matrix of the frequency domain fault data X, x i is the i-th frequency domain fault data, α is the frequency domain fault data X The sample mean of .
进一步的,所述的步骤4中判定不同频域故障数据之间的相关性采取的判定条件是:Further, the determination condition adopted for determining the correlation between different frequency domain fault data in the step 4 is:
若协方差矩阵中对应两特征间的协方差为正数,则两特征间呈现正相关关系,若协方差矩阵中对应两特征间的协方差为负数,则两特征间呈现负相关关系协方差矩阵中对应两特征间的协方差为0,则说明两个特征间不相关。If the covariance between the corresponding two features in the covariance matrix is a positive number, there is a positive correlation between the two features; if the covariance between the corresponding two features in the covariance matrix is negative, the two features show a negative correlation covariance If the covariance between the corresponding two features in the matrix is 0, it means that the two features are not correlated.
进一步的,所述的步骤6中对频域故障数据集X进行主成分分析降维的方法包括以下几个步骤:Further, the method for performing principal component analysis and dimensionality reduction on the fault data set X in the frequency domain in step 6 includes the following steps:
S41、在特征值矩阵∑中选取前k个特征值λi,根据式(9)计算主元方差累积贡献率θ,S41. Select the first k eigenvalues λ i in the eigenvalue matrix Σ, and calculate the cumulative contribution rate θ of the principal component variance according to formula (9),
其中,θ为主元方差累积贡献率,λi和λj分别为第i和第j个特征值,k为所选取的特征值个数,n为所有特征值的个数,i=1,...,k,j=1,...,n,k<n;Among them, θ is the cumulative contribution rate of the main component variance, λ i and λ j are the i-th and j-th eigenvalues respectively, k is the number of selected eigenvalues, n is the number of all eigenvalues, i=1, ...,k,j=1,...,n,k<n;
S42、根据式(10)获取对应前k个特征值λi的对应特征向量qi,S42. Obtain the corresponding eigenvectors q i corresponding to the first k eigenvalues λ i according to formula (10),
Qk=[q1,q2,...,qi,...,qk] (10)Q k =[q 1 ,q 2 ,...,q i ,...,q k ] (10)
其中,i=1,...,k,k<n,k为所选取的特征值个数,n为所有特征值的个数,Qk为对应前k个特征值λi的对应特征向量qi构成的特征向量矩阵;Among them, i=1,...,k, k<n, k is the number of selected eigenvalues, n is the number of all eigenvalues, Q k is the corresponding eigenvector corresponding to the first k eigenvalues λ i The eigenvector matrix formed by q i ;
S43、根据式(11)对特征向量矩阵Qk进行主成分分析降维,S43, carry out principal component analysis dimensionality reduction to eigenvector matrix Q k according to formula (11),
Xk=Qk·X (11)X k =Q k ·X (11)
其中,Qk对应前k个特征值λi的对应特征向量qi构成的特征向量矩阵,X为频域故障数据集,Xk为经过主成分分析降维后的频域故障数据集。Among them, Q k corresponds to the eigenvector matrix formed by the corresponding eigenvectors q i of the first k eigenvalues λ i , X is the fault data set in the frequency domain, and X k is the fault data set in the frequency domain after principal component analysis.
进一步的,所述的步骤8中构建宽度学习系统模型的方法包括以下几个步骤:Further, the method for constructing the width learning system model in step 8 includes the following steps:
S51、根据式(12)对训练的频域故障数据集Xk1进行特征映射从而形成特征节点Zi,S51. Perform feature mapping on the trained frequency-domain fault data set X k1 according to formula (12) to form a feature node Z i ,
其中,Wei和是随机选取的特征节点系数,i=1,...,t,t为特征节点总个数,Zi是第i个特征节点,Xk1为训练的频域故障数据集;Among them, Wei and is the randomly selected feature node coefficient, i=1,...,t, t is the total number of feature nodes, Z i is the i-th feature node, X k1 is the frequency domain fault data set for training;
S52、根据式(13)将所有特征节点Zi的组合记作Zt,S52. Denote the combination of all feature nodes Z i as Z t according to formula (13),
Zt≡[Z1,...,Zi,...,Zt] (13)Z t ≡[Z 1 ,...,Z i ,...,Z t ] (13)
其中,Zi是第i个特征节点,Zt是所有特征节点Zi的组合,t为所有的特征节点的个数,i=1,...,t;Among them, Z i is the i-th feature node, Z t is the combination of all feature nodes Z i , t is the number of all feature nodes, i=1,...,t;
S53、根据式(14)对所有特征节点Zi的组合Zt进行非线性函数变换生成增强节点Hj,S53. Perform nonlinear function transformation on the combination Z t of all feature nodes Z i according to formula (14) to generate an enhanced node H j ,
其中,Hj是第j个增强节点,Zt是所有特征节点Zi的组合,和是随机选取的增强节点系数,j=1,...,c,c为增强节点的总个数;where H j is the jth enhanced node, Z t is the combination of all feature nodes Z i , and is the randomly selected enhancement node coefficient, j=1,...,c, c is the total number of enhancement nodes;
S54、根据式(15)将所有的增强节点Hj的组合记做Hc,S54. According to formula (15), denote the combination of all enhanced nodes H j as H c ,
Hc≡[H1,...,Hj,...,Hc] (15)H c ≡ [H 1 ,...,H j ,...,H c ] (15)
其中,c为增强节点的总数,j=1,...,c,0≤j≤m,Hc为所有的增强节点Hj的组合,Hj是第j个增强节点;Wherein, c is the total number of enhanced nodes, j=1,...,c, 0≤j≤m, H c is the combination of all enhanced nodes H j , and H j is the jth enhanced node;
S55、根据式(16)将所有节点合并为扩展矩阵G,S55. Merge all nodes into an extended matrix G according to formula (16),
G≡[Zt|Hc] (16)G≡[Z t |H c ] (16)
其中,G是扩展矩阵,Zt是所有特征节点Zi的组合,Hc为所有的增强节点Hj的组合;Among them, G is the expansion matrix, Z t is the combination of all feature nodes Z i , H c is the combination of all enhanced nodes H j ;
S56、根据式(17)构建宽度学习系统的目标权重β的目标函数Fmin(β),S56. Construct the objective function F min (β) of the target weight β of the width learning system according to formula (17),
其中,β为目标权重,Fmin(β)为求解目标权重β的目标函数,V是常数,Y={y1,...,yl,...,yk1},yl为第l个训练样本对应的标签,Y为所有训练样本标签构成的标签矩阵,l=1,...,k1,k1为训练样本的总个数,G是扩展矩阵;Among them, β is the target weight, F min (β) is the objective function to solve the target weight β, V is a constant, Y={y 1 ,...,y l ,...,y k1 }, y l is the first The labels corresponding to l training samples, Y is a label matrix formed by all training sample labels, l=1,..., k1, k1 is the total number of training samples, and G is an expansion matrix;
S57、采用梯度下降法对式(17)中的Fmin(β)函数进行求解,可得式(18)用以求解目标权重β,S57, using the gradient descent method to solve the F min (β) function in the formula (17), the formula (18) can be obtained to solve the target weight β,
其中,Y={y1,...,yl,...,yk1},yl为第l个训练样本对应的标签,Y为所有训练样本标签构成的标签矩阵,l=1,...,k1,k1为训练样本的总个数,β为目标权重,G是扩展矩阵,GT为扩展矩阵的转置,Inh是维数为nh的单位矩阵,nh为宽度学习系统模型特征节点和增强节点的总数,即nh=c+t,V为常数;Among them, Y={y 1 ,...,y l ,...,y k1 }, y l is the label corresponding to the lth training sample, Y is the label matrix composed of all training sample labels, l=1, ..., k1, k1 is the total number of training samples, β is the target weight, G is the expansion matrix, G T is the transposition of the expansion matrix, I nh is the identity matrix with dimension nh, and nh is the width learning system The total number of model feature nodes and enhanced nodes, namely nh=c+t, V is a constant;
S58、宽度学习系统模型构建完毕。S58. The width learning system model is constructed.
本发明为消除特征矩阵的冗余性,针对故障数据多的分类问题,采用主成分分析方法进行属性约简,其能够在尽可能少丢失信息的前提下,达到精简特征矩阵的目的,同时为实现主成分分析降维后特征向量与其故障类型间的快速识别,引入宽度学习系统到故障诊断领域,在宽度学习系统中,特征节点和增强节点能够实现对数据的特征提取和降维,该模型所有的节点直接连接到输出端,对应的输出系数可以通过伪逆(Pseudo)来求出。In order to eliminate the redundancy of the feature matrix, the present invention adopts the principal component analysis method to reduce the attributes for the classification problem with a lot of fault data, which can achieve the purpose of simplifying the feature matrix on the premise of losing as little information as possible, and at the same time provide Realize the rapid identification between feature vectors and fault types after principal component analysis dimension reduction, and introduce the width learning system to the field of fault diagnosis. In the width learning system, feature nodes and enhancement nodes can realize feature extraction and dimension reduction of data. The model All nodes are directly connected to the output terminal, and the corresponding output coefficients can be obtained by pseudo-inverse (Pseudo).
为消除特征矩阵的冗余信息,降低数据间的线性相关性,提升转子系统故障识别的效率,需要选出一种简单,高效的降维方法,主成分分析(PCA)是一种经典的降维方法。由于其简单易懂且使用过程完全无参数限制,现已被广泛应用于各个领域,比如图像,语音,通信等,其本质是通过计算过程数据集的协方差矩阵,再利用矩阵的特征向量确定降维投影的方向。此外,该方法能够揭示隐藏在复杂数据背后的简单结构,降低数据间的线性相关性,获得对故障状态的最佳描述。更重要的是,PCA能在尽可能少丢失信息的前提下,降低故障数据的冗余性,从而达到对数据降维的目的。因此,本文采用PCA对经过快速傅里叶变换的故障特征矩阵进行维数约简。In order to eliminate the redundant information of the feature matrix, reduce the linear correlation between data, and improve the efficiency of rotor system fault identification, it is necessary to select a simple and efficient dimensionality reduction method. Principal component analysis (PCA) is a classic reduction method. dimension method. Because it is easy to understand and has no parameter restrictions in the use process, it has been widely used in various fields, such as image, voice, communication, etc. Its essence is to calculate the covariance matrix of the process data set, and then use the eigenvector of the matrix to determine The direction of the dimensionality reduction projection. In addition, the method can reveal the simple structure hidden behind the complex data, reduce the linear correlation among the data, and obtain the best description of the fault state. More importantly, PCA can reduce the redundancy of faulty data on the premise of losing as little information as possible, so as to achieve the purpose of data dimensionality reduction. Therefore, PCA is used in this paper to reduce the dimension of the fault feature matrix after fast Fourier transform.
为实现PCA降维后,故障特征向量与其类型间的快速识别,采用宽度学习系统(BLS)进行故障诊断。在BLS中,原始输入被转移并作为特征节点中的映射特征放置,并且在增强节点中进行广泛扩展,这可以保持系统对数据的有效性。此外,所有映射的特征和增强节点直接连接到输出端,对应的输出系数可以通过伪逆(Pseudo)来求出。In order to realize the rapid identification between fault feature vectors and their types after PCA dimension reduction, a Breadth Learning System (BLS) is used for fault diagnosis. In BLS, the original input is transferred and placed as mapped features in feature nodes, and extensively expanded in augmentation nodes, which can keep the system effective on data. In addition, all mapped feature and enhancement nodes are directly connected to the output, and the corresponding output coefficients can be obtained by pseudo-inverse (Pseudo).
本发明提出了基于PCA和BLS的转子系统故障诊断方法,采用PCA对经过FFT变换的故障数据进行降维处理,形成表征不同故障的特征向量,然后将降维后的数据输入BLS进行分类。The invention proposes a rotor system fault diagnosis method based on PCA and BLS. PCA is used to perform dimension reduction processing on fault data transformed by FFT to form feature vectors representing different faults, and then the dimension-reduced data is input into BLS for classification.
在本发明中采用的基本方法有两种:There are two basic methods adopted in the present invention:
1、主成分分析1. Principal component analysis
主成分分析(PCA),也称为卡尔胡宁-勒夫变换(Karhunen-Loeve Transform),是一种用于数据降维的技术,实质是在尽可能少丢失信息的基础上,降低训练样本的维数,其主要思想是将n维特征映射到k维上,这k维是全新的正交特征也被称为主成分,是在原有n维特征的基础上重新构造出来的k维特征(k≤n)。Principal Component Analysis (PCA), also known as Karhunen-Loeve Transform (Karhunen-Loeve Transform), is a technique for data dimensionality reduction, the essence of which is to reduce the number of training samples on the basis of losing as little information as possible. The dimensionality, the main idea is to map n-dimensional features to k-dimensional, this k-dimensional is a new orthogonal feature also known as principal component, which is a k-dimensional feature reconstructed on the basis of the original n-dimensional features (k≤n).
PCA的工作就是从原始的空间中顺序地找一组相互正交的坐标轴,新的坐标轴的选择与数据的本身是密切相关的,其中,第1个新坐标轴选择是原始数据中方差最大的方向,第2个新坐标轴选取是与第1个坐标轴正交的平面中使得方差最大的,第3个轴是与第1,2个轴正交的平面中方差最大的。依次类推,可以得到n个这样的坐标轴。从这些新获得的坐标轴中可得,大部分方差都包含在前面k个坐标轴中,后面的坐标轴所含的方差几乎为0。于是,对于方差几乎为0的坐标轴,使用者可以考虑忽略,从而保留前面k个含有绝大部分方差的坐标轴。事实上,这相当于只保留包含绝大部分方差的维度特征,忽略包含方差几乎为0的特征维度,进而实现对数据特征的维数约简。The job of PCA is to sequentially find a set of mutually orthogonal coordinate axes from the original space. The selection of new coordinate axes is closely related to the data itself. Among them, the selection of the first new coordinate axis is the variance in the original data. The largest direction, the selection of the second new coordinate axis is the plane that is orthogonal to the first coordinate axis so that the variance is the largest, and the third axis is the largest variance in the plane that is orthogonal to the first and second axes. By analogy, n such coordinate axes can be obtained. From these newly obtained coordinate axes, most of the variance is contained in the first k coordinate axes, and the variance contained in the latter coordinate axes is almost zero. Therefore, for the coordinate axes whose variance is almost 0, the user can consider ignoring them, so as to retain the first k coordinate axes containing most of the variance. In fact, this is equivalent to only retaining the dimensional features that contain most of the variance, ignoring the feature dimensions that contain almost zero variance, and then realizing the dimensionality reduction of the data features.
2、宽度学习系统2. Wide Learning System
C.L.Philip Chen(陈俊龙)教授提出的宽度学习系统(Broad Learning System,简称BLS)是以扁平方式构建的,BLS是基于将映射特征作为RVFLLNN输入的思想设计的。BLS可以建立特征节点和增强节点来对大数据的进行特征提取和降维,保持系统对数据的有效性。此外,所有映射的特征和增强节点直接连接到输出端,对应的输出系数可以通过伪逆(Pseudo)来求出,这有效的消除了训练时间长的缺点。更重要的是,BLS还能通过无需完整网络再训练的快速增量学习来实现网络结构的扩展。同时,当网络建立完成后,BLS可以和低秩近似相结合来简化系统,以此来避免模型的结构冗余。The Broad Learning System (BLS for short) proposed by Professor C.L.Philip Chen is built in a flat manner. BLS is designed based on the idea of using mapping features as input to RVFLLNN. BLS can establish feature nodes and enhancement nodes to perform feature extraction and dimensionality reduction on big data, and maintain the validity of the system for data. In addition, all mapped feature and enhancement nodes are directly connected to the output, and the corresponding output coefficients can be obtained by pseudo-inverse (Pseudo), which effectively eliminates the shortcoming of long training time. More importantly, BLS also enables network structure expansion through fast incremental learning without full network retraining. At the same time, when the network is established, BLS can be combined with low-rank approximation to simplify the system, so as to avoid the structural redundancy of the model.
BLS结构如图2所示,BLS结构的搭建流程如下所述:The BLS structure is shown in Figure 2, and the construction process of the BLS structure is as follows:
步骤1:利用输入数据经过线性变换形成网络的特征节点;Step 1: Use the input data to form the characteristic nodes of the network through linear transformation;
步骤2:映射的特征经过非线性变换随机生成增强节点;Step 2: The mapped features randomly generate enhanced nodes through nonlinear transformation;
步骤3:所有映射特征和增强节点直接连接到输出端;Step 3: All mapped features and augmentation nodes are directly connected to the output;
步骤4:对应的输出权重可以通过快速伪逆(Pseudo)求出,输出权重求得后,模型搭建完成。Step 4: The corresponding output weight can be obtained by fast pseudo-inverse (Pseudo). After the output weight is obtained, the model is built.
为了验证本发明的优点,做了对比验证试验,本发明的验证实验采用QPZZ-Ⅱ型旋转机械振动分析及故障诊断试验台,该实验平台可模拟旋转机械多种状态及振动,可进行各种状态的对比分析及诊断,可变速模拟在不同速度条件下的故障特征,变速范围为75—1450r/min,实验台如图3所示,整个实验台包括数据传输电缆1、加速度传感器2、待测试轴承3、飞轮4、联轴器5、交流电动机6、数据采集卡7、PC机8和变频器9,交流电动机6上设置有变频器9,交流电动机6的输出轴通过联轴器5与待测试轴承3的驱动转轴连接,待测试轴承3套装固定在驱动转轴和轴承基座上,驱动转轴和交流电动机6的输出轴上分别套装固定有飞轮4,待测试轴承3上设置有加速度传感器2,加速度传感器2通过数据传输电缆1与数据采集卡7电连接,数据采集卡7通过数据传输电缆1与PC机8电连接。In order to verify the advantages of the present invention, a comparative verification test has been done. The verification experiment of the present invention adopts the QPZZ-II rotating machinery vibration analysis and fault diagnosis test bench. This experimental platform can simulate various states and vibrations of rotating machinery, and can carry out various The comparative analysis and diagnosis of the state, variable speed simulation of fault characteristics under different speed conditions, the variable speed range is 75-1450r/min, the test bench is shown in Figure 3, the whole test bench includes data transmission cable 1, acceleration sensor 2, waiting Test bearing 3, flywheel 4, coupling 5, AC motor 6, data acquisition card 7, PC 8 and frequency converter 9, AC motor 6 is provided with frequency converter 9, and the output shaft of AC motor 6 passes through coupling 5 It is connected with the drive shaft of the bearing to be tested 3, the bearing to be tested 3 is set and fixed on the drive shaft and the bearing base, the drive shaft and the output shaft of the AC motor 6 are respectively fitted with a flywheel 4, and the bearing to be tested 3 is provided with an acceleration The sensor 2 and the acceleration sensor 2 are electrically connected to the data acquisition card 7 through the data transmission cable 1, and the data acquisition card 7 is electrically connected to the PC 8 through the data transmission cable 1.
本发明进行实验的运行环境如下示:The present invention carries out the operating environment of experiment as follows:
在MATLAB 2018b软件平台下配备Intel(R)Xeon(R)Bronze 3104 CPU@1.70GHz,16GB内存的电脑下完成的。It was completed under the computer equipped with Intel(R) Xeon(R) Bronze 3104 CPU@1.70GHz and 16GB memory under the MATLAB 2018b software platform.
本发明采用美国NI公司生产的USB-4431数据采集卡结合LabVIEW进行信号采集,设定采样频率为12kHz,采样时间为100s,分别给定电机转速为1000r/min、1250r/min和1500r/min,采集0负载下的9种故障数据和1种正常数据,数据截取长度为1024,其故障类型如表1所示:The present invention adopts the USB-4431 data acquisition card produced by U.S. NI Company to carry out signal acquisition in conjunction with LabVIEW, and the setting sampling frequency is 12kHz, the sampling time is 100s, and the given motor speed is 1000r/min, 1250r/min and 1500r/min respectively, Collect 9 types of fault data and 1 type of normal data under 0 load, the data interception length is 1024, and the fault types are shown in Table 1:
表1---故障类型说明表Table 1---Description table of fault types
不同转速下的实验数据均采用相同的划分,即采用936组做模型训练样本,234组做测试样本,其中,每组实验都包含有表1中的所有数据。The experimental data at different speeds are all divided in the same way, that is, 936 groups are used as model training samples, and 234 groups are used as test samples. Each group of experiments contains all the data in Table 1.
对所获得的转子系统实验数据进行快速傅里叶变换(FFT),将其从时域变换到频域进行分析,经过FFT变换后,数据长度从1024维变为512维。Fast Fourier transform (FFT) is performed on the obtained rotor system experimental data, and it is transformed from time domain to frequency domain for analysis. After FFT transformation, the data length changes from 1024 dimensions to 512 dimensions.
为了测试主成分分析(PCA)方法的有效性,下述实验将主成分分析(PCA)方法与其它降维方法进行了比较,包括线性局部切空间排列(LLTSA),非线性流形学习局部切空间排列(LTSA),局部线性嵌入(LLE),数据经过不同方法降维后维度均保持在150维。In order to test the effectiveness of the principal component analysis (PCA) method, the following experiments compare the principal component analysis (PCA) method with other dimensionality reduction methods, including linear local tangent space arrangement (LLTSA), nonlinear manifold learning local cut Spatial arrangement (LTSA), local linear embedding (LLE), the dimensionality of the data is kept at 150 dimensions after different methods of dimensionality reduction.
此外,降维后数据所采用的分类模型均为BLS且其结构均为500-500,另外,下述实验结果都是数据集运行10次后所取得平均值所得。In addition, the classification models used for the data after dimensionality reduction are all BLS and their structures are all 500-500. In addition, the following experimental results are obtained from the average value obtained after running the data set 10 times.
1000r/min,1250r/min,1500r/min下所采集的数据实验结果分别如表2、3和4所示:The experimental results of data collected at 1000r/min, 1250r/min and 1500r/min are shown in Tables 2, 3 and 4 respectively:
表2---各降维方法在数据集上的性能比较(1000r/min)Table 2---Performance comparison of various dimensionality reduction methods on data sets (1000r/min)
从表2可知,与未降维的数据相比,所有降维后的数据都能有效的减少模型的训练时间和测试时间。经过主成分分析(PCA)方法处理后,数据在BLS上的测试精度达到99.95%,并且还能够保持极高的稳定性,这都要优于其它降维方法。这说明在该数据集下,经过主成分分析(PCA)降维后的数据在BLS上能够表现出更加良好的性能。It can be seen from Table 2 that compared with the data without dimension reduction, all the data after dimension reduction can effectively reduce the training time and test time of the model. After being processed by the principal component analysis (PCA) method, the test accuracy of the data on the BLS reaches 99.95%, and it can also maintain extremely high stability, which is better than other dimensionality reduction methods. This shows that under this data set, the data after principal component analysis (PCA) dimensionality reduction can show better performance on BLS.
表3---各降维方法在数据集上的性能比较(1250r/min)Table 3---Performance comparison of various dimensionality reduction methods on the data set (1250r/min)
如表3所示,虽然数据经LTSA降维后能有效的提升模型的训练时间,但其测试精度比原先降低了15%,这说明该方法的降维效果并不理想。故障数据经过主成分分析(PCA)维数约简后,其在BLS上的测试精度和训练精度都达到了100%,这都要优于LLTSA的99.93%和99.87%。同时,该方法还能加快模型的训练时间和测试时间。与未降维数据相比,经过主成分分析(PCA)降维后的数据能够有效减少模型训练和测试时间,提高模型的测试精度,提升模型的稳定性,同时这也说明,主成分分析(PCA)在上述任何情况中都具有竞争力。As shown in Table 3, although the data dimensionality reduction by LTSA can effectively improve the training time of the model, its test accuracy is reduced by 15% compared with the original, which shows that the dimensionality reduction effect of this method is not ideal. After the fault data undergoes principal component analysis (PCA) dimension reduction, its test accuracy and training accuracy on BLS both reach 100%, which is better than LLTSA's 99.93% and 99.87%. At the same time, this method can also speed up the training time and testing time of the model. Compared with the unreduced data, the data after principal component analysis (PCA) dimensionality reduction can effectively reduce the model training and testing time, improve the test accuracy of the model, and improve the stability of the model. At the same time, this also shows that the principal component analysis ( PCA) is competitive in any of the above cases.
表4---各降维方法在数据集上的性能比较(1500r/min)Table 4---Performance comparison of various dimensionality reduction methods on data sets (1500r/min)
由表4可得,主成分分析(PCA)对数据进行处理后所得的测试精度至少要比其它方法所得的测试精度高0.35%。另外,其所得测试精度的稳定性也要优于其它几种方法。与无降维的数据相比,主成分分析(PCA)处理后的数据能够有效减少模型的训练时间和测试时间,提升模型测试精度及其稳定性,因此,这也证明了主成分分析(PCA)方法的有效性。It can be seen from Table 4 that the test accuracy obtained by principal component analysis (PCA) after processing the data is at least 0.35% higher than that obtained by other methods. In addition, the stability of the test accuracy obtained by it is also better than several other methods. Compared with the data without dimensionality reduction, the data processed by principal component analysis (PCA) can effectively reduce the training time and test time of the model, and improve the accuracy and stability of the model test. Therefore, this also proves that the principal component analysis (PCA) ) method is effective.
综上所述,无论是哪种降维方法处理后的数据都能够完成削减模型建模时间和测试时间的任务,但不难发现的是,仅有经主成分分析(PCA)降维后的数据才能有效提升模型的测试精度及其稳定性,这说明主成分分析(PCA)能够很好的去除数据冗余性,从而保留数据的有效性。此外,对数据进行主成分分析(PCA)处理还能提高BLS的执行效率。To sum up, no matter what kind of dimensionality reduction method, the data processed can complete the task of reducing model modeling time and testing time, but it is not difficult to find that only the dimensionality reduction by principal component analysis (PCA) Data can effectively improve the test accuracy and stability of the model, which shows that principal component analysis (PCA) can remove data redundancy very well, thereby retaining the validity of the data. In addition, performing principal component analysis (PCA) processing on the data can also improve the execution efficiency of BLS.
为了探讨累积方差贡献率对分类效果得影响,在本次实验中,数据所采用的分类器为BLS,且结构均设置为500-500。初始累积方差贡献率设置为0.95,每次增加0.005,直至0.995。实验比较的方面包括测试精度和模型训练时间,同时,下述实验结果均为运行10次后所得。In order to explore the influence of the cumulative variance contribution rate on the classification effect, in this experiment, the classifier used in the data is BLS, and the structure is set to 500-500. The initial cumulative variance contribution rate is set to 0.95, increasing by 0.005 each time until 0.995. The aspects of experimental comparison include test accuracy and model training time. At the same time, the following experimental results are obtained after running 10 times.
实验结果如图4和5所示,如图4所示,在一定范围内,不同转速下数据的测试精度都会随着累积方差贡献率的叠加呈现出先增加后平稳的趋势,这说明主成分分析(PCA)对不同转速下的数据都能降低其冗余性,在1250r/min下数据达到测试精度稳定点的累积方差贡献率为0.965,其余两者为0.98.这表明在同等条件下,主成分分析(PCA)对该数据集的降维效果要优于其它两种转速下的数据集。The experimental results are shown in Figures 4 and 5. As shown in Figure 4, within a certain range, the test accuracy of the data at different speeds will show a trend of increasing first and then stabilizing with the superposition of the cumulative variance contribution rate, which shows that the principal component analysis (PCA) can reduce the redundancy of the data at different speeds. The cumulative variance contribution rate of the data reaching the stable point of test accuracy at 1250r/min is 0.965, and the other two are 0.98. This shows that under the same conditions, the main The dimension reduction effect of component analysis (PCA) on this data set is better than that of the other two rotational speed data sets.
从图5中不难发现,所有数据的训练时间都会随着累积方差贡献率的增加而明显的提升。这是由于累积方差贡献率越高,主成分分析(PCA)对数据维数的约简就越少,BLS对数据进行训练的时间也就越长。It is not difficult to find from Figure 5 that the training time of all data will be significantly improved with the increase of the cumulative variance contribution rate. This is because the higher the cumulative variance contribution rate, the less reduction of the data dimension by PCA, and the longer the training time of BLS on the data.
可见,三种数据的测试精度都会随着累积方差贡献率的增加而表现出先增后平的趋势,但它们建模所需的时间却呈现出持续增加的现象,这说明三种数据都可通过主成分分析(PCA)方法有效保证数据特征的同时减少建模所需的时间,1250r/min转速下数据达到最优测试精度的累积方差贡献率要比其它两种转速下的数据低0.15,这说明在面对不同的数据时可根据具体的情况灵活的选取累积方差贡献率对其进行合理的特征提取。It can be seen that the test accuracy of the three kinds of data will show a trend of first increasing and then flattening with the increase of the cumulative variance contribution rate, but the time required for their modeling shows a continuous increase, which shows that the three kinds of data can be passed The principal component analysis (PCA) method effectively ensures the data characteristics and reduces the time required for modeling. The cumulative variance contribution rate of the data at 1250r/min to achieve the best test accuracy is 0.15 lower than that of the data at the other two speeds. It shows that in the face of different data, the cumulative variance contribution rate can be flexibly selected according to the specific situation for reasonable feature extraction.
为了比较不同模型对实验的影响,本实验采用的分类模型包括极限学习机(ELM),多层极限学习机(HELM),正则化极限学习机(RELM),宽度学习系统(BLS)。In order to compare the impact of different models on the experiment, the classification models used in this experiment include extreme learning machine (ELM), multilayer extreme learning machine (HELM), regularized extreme learning machine (RELM), and breadth learning system (BLS).
其中,ELM的隐层节点数设置为1000,HELM的结构设置为100-100-1000,RELM的节点数设置为1000,BLS的节点数设置为500-500。Among them, the number of hidden layer nodes of ELM is set to 1000, the structure of HELM is set to 100-100-1000, the number of nodes of RELM is set to 1000, and the number of nodes of BLS is set to 500-500.
ELM,HELM,RELM的隐层上激活函数都选择Sigmoid函数,并且SS-BLS的增强层上的激活函数选择的也是Sigmoid函数。同时,BLS中特征节点层和增强节点层的权重和偏置都是从区间[-1,1]上的标准均匀分布提取的,另外,数据经过主成分分析(PCA)降维后维度均保持在150维,下述所有的实验结果都是在各自模型上运行10次后所取得的平均值。The activation functions on the hidden layer of ELM, HELM, and RELM all select the Sigmoid function, and the activation function on the enhancement layer of SS-BLS also selects the Sigmoid function. At the same time, the weights and offsets of the feature node layer and the enhanced node layer in BLS are extracted from the standard uniform distribution on the interval [-1, 1]. In addition, the dimensions of the data are maintained after principal component analysis (PCA) In 150 dimensions, all the experimental results below are the average values obtained after running 10 times on the respective models.
1000r/min,1250r/min,1500r/min下所采集的数据实验结果分别如表5,6,7所示:The experimental results of data collected at 1000r/min, 1250r/min, and 1500r/min are shown in Tables 5, 6, and 7 respectively:
表5---主成分分析(PCA)降维后数据集在各模型上的性能比较(1000r/min)Table 5---Principal component analysis (PCA) performance comparison of data sets on each model after dimensionality reduction (1000r/min)
从表5中不难发现,ELM在测试过程中表现出了极强的稳定性,但其训练时间和测试时间都要远高于其它分类模型,BLS在训练精度和测试精度都要优于其他分类器。同时,BLS的建模时间仅需1.19s,这也要优于ELM,RELM,HELM的训练时间,这说明该模型能够更好的完成故障诊断的任务。It is not difficult to find from Table 5 that ELM has shown strong stability during the test process, but its training time and test time are much higher than other classification models, and BLS is better than other classification models in terms of training accuracy and test accuracy. Classifier. At the same time, the modeling time of BLS is only 1.19s, which is also better than the training time of ELM, RELM, and HELM, which shows that the model can better complete the task of fault diagnosis.
表6---主成分分析(PCA)降维后数据集在各模型上的性能比较(1250r/min)Table 6---Principal component analysis (PCA) performance comparison of data sets on each model after dimensionality reduction (1250r/min)
由表6可知,经过主成分分析(PCA)进行降维后,所有分类模型都能取得最优的训练精度和测试精度,并且测试精度都保持极高的稳定性,这也同时证明了主成分分析(PCA)降维方法具有极强的稳定性,从训练时间的角度上看,BLS的训练时间仅需1.33s,这要优于其它模型的训练时间。这说明BLS与其它分类模型相比具有竞争力。It can be seen from Table 6 that after dimensionality reduction by principal component analysis (PCA), all classification models can achieve optimal training accuracy and test accuracy, and the test accuracy remains extremely high stability, which also proves that the principal component Analysis (PCA) dimensionality reduction method has strong stability. From the perspective of training time, the training time of BLS only needs 1.33s, which is better than the training time of other models. This shows that BLS is competitive with other classification models.
表7---主成分分析(PCA)降维后数据集在各模型上的性能比较(1500r/min)Table 7---Principal component analysis (PCA) performance comparison of data sets on each model after dimensionality reduction (1500r/min)
如表7所示,在1500r/min采集的故障数据集下,HELM,RELM都能以较快的建模速度完成该数据集下的故障诊断任务,并且这俩种模型还能保持极好的稳定性。BLS应用于该故障数据集上做分类任务,所得的训练精度和测试精度都要优于其它几种模型。从建模时间角度上看,BLS所需的时间最短,仅为ELM建模时间的1/10,这说明BLS的节点能够高效的完成对数据集的特征提取和降维。As shown in Table 7, under the fault data set collected at 1500r/min, both HELM and RELM can complete the fault diagnosis task under the data set at a relatively fast modeling speed, and these two models can also maintain excellent stability. BLS is applied to the fault data set for classification tasks, and the training accuracy and test accuracy obtained are better than other models. From the perspective of modeling time, the time required by BLS is the shortest, only 1/10 of the modeling time of ELM, which shows that the nodes of BLS can efficiently complete the feature extraction and dimension reduction of the data set.
可见,在1500r/min转速下,模型的建模时间和测试时间都要优于其它转速下模型所需的训练和测试时间,这表明,电机转速越快,所采集的数据集所需的模型时间就越短。针对不同转速下所采集的故障数据,相较于其它几种模型,BLS都能以最快的建模速度,最优的测试精度完成不同故障数据集下的分类任务,另外,BLS还能够保证极高的稳定性,这说明BLS具有极强的适应性。It can be seen that at the speed of 1500r/min, the modeling time and testing time of the model are better than the training and testing time of the model at other speeds, which shows that the faster the motor speed, the faster the model required for the collected data set. The shorter the time. For the fault data collected at different speeds, compared with other models, BLS can complete the classification tasks under different fault data sets with the fastest modeling speed and the best test accuracy. In addition, BLS can also guarantee Extremely high stability, which shows that BLS has strong adaptability.
本发明的一种基于主成分分析和宽度学习的转子系统故障诊断方法,采用的主成分分析(PCA)降维方法能够有效的消除特征矩阵中特征向量的相关性,实现对特征矩阵的维数约简,从而达到降低特征矩阵冗余性的目的。在实际应用中,主成分分析(PCA)能针对具体问题选取累积方差贡献率对特征矩阵进行合理的降维,这体现了主成分分析(PCA)方法的灵活性,同时,通过将BLS引入故障诊断领域,拓宽了其适用性,与其它分类模型相比,BLS都能高效的完成故障诊断任务,这体现出该模型具有良好的优越性。A rotor system fault diagnosis method based on principal component analysis and width learning of the present invention, the principal component analysis (PCA) dimension reduction method adopted can effectively eliminate the correlation of the eigenvectors in the eigenmatrix, and realize the dimensionality of the eigenmatrix Reduction, so as to achieve the purpose of reducing the redundancy of the feature matrix. In practical applications, Principal Component Analysis (PCA) can select the cumulative variance contribution rate for specific problems to reduce the dimensionality of the feature matrix reasonably, which reflects the flexibility of the Principal Component Analysis (PCA) method. At the same time, by introducing BLS into the fault In the field of diagnosis, its applicability has been broadened. Compared with other classification models, BLS can efficiently complete fault diagnosis tasks, which reflects the superiority of this model.
本发明提出的一种基于主成分分析和宽度学习的转子系统故障诊断方法,将主成分分析(PCA)和宽度学习系统(Broad Learning System,简称BLS)引入到转子系统故障诊断识别中,该方法采用主成分分析(PCA)对经过FFT变换的故障数据进行降维处理,形成表征不同故障的特征向量,然后将降维后的数据输入BLS进行分类,能够有效的降低故障分类的复杂度,且能够大幅缩短数据建模时间,提升转子系统故障识别的效率,从而高效的完成转子系统故障诊断任务,实用性好,值得推广。A rotor system fault diagnosis method based on principal component analysis and breadth learning proposed by the present invention introduces Principal Component Analysis (PCA) and Broad Learning System (BLS for short) into rotor system fault diagnosis and identification. Principal component analysis (PCA) is used to reduce the dimensionality of the FFT-transformed fault data to form feature vectors representing different faults, and then input the dimensionally reduced data into BLS for classification, which can effectively reduce the complexity of fault classification, and It can greatly shorten the data modeling time, improve the efficiency of rotor system fault identification, and thus efficiently complete the task of rotor system fault diagnosis. It has good practicability and is worthy of promotion.
以上公开的仅为本发明的较佳的具体实施例,但是,本发明实施例并非局限于此,任何本领域技术人员能思之的变化都应落入本发明的保护范围。The above disclosures are only preferred specific embodiments of the present invention, however, the embodiments of the present invention are not limited thereto, and any changes conceivable by those skilled in the art shall fall within the protection scope of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910554070.4A CN110243590B (en) | 2019-06-25 | 2019-06-25 | A Rotor System Fault Diagnosis Method Based on Principal Component Analysis and Width Learning |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910554070.4A CN110243590B (en) | 2019-06-25 | 2019-06-25 | A Rotor System Fault Diagnosis Method Based on Principal Component Analysis and Width Learning |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110243590A true CN110243590A (en) | 2019-09-17 |
CN110243590B CN110243590B (en) | 2021-06-29 |
Family
ID=67889232
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910554070.4A Active CN110243590B (en) | 2019-06-25 | 2019-06-25 | A Rotor System Fault Diagnosis Method Based on Principal Component Analysis and Width Learning |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110243590B (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110929835A (en) * | 2019-11-22 | 2020-03-27 | 南京航空航天大学 | A new fault diagnosis method and system for silicon carbide-based aviation power converter |
CN111079857A (en) * | 2019-12-30 | 2020-04-28 | 北京工业大学 | A fault monitoring method for sewage treatment process based on overcomplete breadth learning model |
CN111401443A (en) * | 2020-03-16 | 2020-07-10 | 重庆大学 | Width learning system based on multi-feature extraction |
CN113052232A (en) * | 2021-03-23 | 2021-06-29 | 中国计量大学 | Motor fault analysis method and system |
CN113419519A (en) * | 2021-07-14 | 2021-09-21 | 北京航空航天大学 | Electromechanical product system or equipment real-time fault diagnosis method based on width learning |
CN113505850A (en) * | 2021-07-27 | 2021-10-15 | 西安热工研究院有限公司 | Boiler fault prediction method based on deep learning |
CN114897032A (en) * | 2022-07-12 | 2022-08-12 | 武汉格蓝若智能技术有限公司 | Current transformer fault diagnosis method and device based on width learning |
CN114925743A (en) * | 2022-04-13 | 2022-08-19 | 国网上海市电力公司 | Dimension reduction method for transformer fault feature extraction |
CN118013289A (en) * | 2024-04-09 | 2024-05-10 | 北京理工大学 | A variable working condition small sample fault diagnosis method, device, medium and product based on information fusion meta-transfer learning |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106338385A (en) * | 2016-08-25 | 2017-01-18 | 东南大学 | Rotation machinery fault diagnosis method based on singular spectrum decomposition |
CN107101813A (en) * | 2017-04-26 | 2017-08-29 | 河北工业大学 | A kind of frame-type circuit breaker mechanical breakdown degree assessment method based on vibration signal |
CN108021871A (en) * | 2017-11-22 | 2018-05-11 | 华南理工大学 | A kind of characteristic frequency extracting method based on principal component analysis |
CN108709745A (en) * | 2018-05-02 | 2018-10-26 | 东北林业大学 | One kind being based on enhanced LPP algorithms and the quick bearing fault recognition method of extreme learning machine |
CN108734301A (en) * | 2017-06-29 | 2018-11-02 | 澳门大学 | A kind of machine learning method and machine learning device |
CN108960339A (en) * | 2018-07-20 | 2018-12-07 | 吉林大学珠海学院 | A kind of electric car induction conductivity method for diagnosing faults based on width study |
CN108960422A (en) * | 2018-06-19 | 2018-12-07 | 河南工业大学 | A kind of width learning method based on principal component analysis |
CN109782603A (en) * | 2019-02-03 | 2019-05-21 | 中国石油大学(华东) | Detection method and monitoring system of rotating machinery coupling fault |
CN109828552A (en) * | 2019-02-22 | 2019-05-31 | 北京工业大学 | A kind of batch process Fault monitoring and diagnosis method based on width learning system |
-
2019
- 2019-06-25 CN CN201910554070.4A patent/CN110243590B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106338385A (en) * | 2016-08-25 | 2017-01-18 | 东南大学 | Rotation machinery fault diagnosis method based on singular spectrum decomposition |
CN107101813A (en) * | 2017-04-26 | 2017-08-29 | 河北工业大学 | A kind of frame-type circuit breaker mechanical breakdown degree assessment method based on vibration signal |
CN108734301A (en) * | 2017-06-29 | 2018-11-02 | 澳门大学 | A kind of machine learning method and machine learning device |
CN108021871A (en) * | 2017-11-22 | 2018-05-11 | 华南理工大学 | A kind of characteristic frequency extracting method based on principal component analysis |
CN108709745A (en) * | 2018-05-02 | 2018-10-26 | 东北林业大学 | One kind being based on enhanced LPP algorithms and the quick bearing fault recognition method of extreme learning machine |
CN108960422A (en) * | 2018-06-19 | 2018-12-07 | 河南工业大学 | A kind of width learning method based on principal component analysis |
CN108960339A (en) * | 2018-07-20 | 2018-12-07 | 吉林大学珠海学院 | A kind of electric car induction conductivity method for diagnosing faults based on width study |
CN109782603A (en) * | 2019-02-03 | 2019-05-21 | 中国石油大学(华东) | Detection method and monitoring system of rotating machinery coupling fault |
CN109828552A (en) * | 2019-02-22 | 2019-05-31 | 北京工业大学 | A kind of batch process Fault monitoring and diagnosis method based on width learning system |
Non-Patent Citations (1)
Title |
---|
JONATHAN MEI等: ""SILVar: Single Index Latent Variable Models"", 《 IEEE TRANSACTIONS ON SIGNAL PROCESSING 》 * |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110929835B (en) * | 2019-11-22 | 2023-06-23 | 南京航空航天大学 | A novel silicon carbide-based aviation power converter fault diagnosis method and system |
CN110929835A (en) * | 2019-11-22 | 2020-03-27 | 南京航空航天大学 | A new fault diagnosis method and system for silicon carbide-based aviation power converter |
CN111079857A (en) * | 2019-12-30 | 2020-04-28 | 北京工业大学 | A fault monitoring method for sewage treatment process based on overcomplete breadth learning model |
CN111079857B (en) * | 2019-12-30 | 2023-06-02 | 北京工业大学 | Sewage treatment process fault monitoring method based on overcomplete width learning model |
CN111401443B (en) * | 2020-03-16 | 2023-04-18 | 重庆大学 | Width learning system based on multi-feature extraction |
CN111401443A (en) * | 2020-03-16 | 2020-07-10 | 重庆大学 | Width learning system based on multi-feature extraction |
CN113052232A (en) * | 2021-03-23 | 2021-06-29 | 中国计量大学 | Motor fault analysis method and system |
CN113419519B (en) * | 2021-07-14 | 2022-05-13 | 北京航空航天大学 | Real-time fault diagnosis method for electromechanical product system or equipment based on breadth learning |
CN113419519A (en) * | 2021-07-14 | 2021-09-21 | 北京航空航天大学 | Electromechanical product system or equipment real-time fault diagnosis method based on width learning |
CN113505850A (en) * | 2021-07-27 | 2021-10-15 | 西安热工研究院有限公司 | Boiler fault prediction method based on deep learning |
CN114925743A (en) * | 2022-04-13 | 2022-08-19 | 国网上海市电力公司 | Dimension reduction method for transformer fault feature extraction |
CN114897032B (en) * | 2022-07-12 | 2022-10-11 | 武汉格蓝若智能技术有限公司 | Current transformer fault diagnosis method and device based on width learning |
CN114897032A (en) * | 2022-07-12 | 2022-08-12 | 武汉格蓝若智能技术有限公司 | Current transformer fault diagnosis method and device based on width learning |
CN118013289A (en) * | 2024-04-09 | 2024-05-10 | 北京理工大学 | A variable working condition small sample fault diagnosis method, device, medium and product based on information fusion meta-transfer learning |
Also Published As
Publication number | Publication date |
---|---|
CN110243590B (en) | 2021-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110243590B (en) | A Rotor System Fault Diagnosis Method Based on Principal Component Analysis and Width Learning | |
Pan et al. | An approach for HVCB mechanical fault diagnosis based on a deep belief network and a transfer learning strategy | |
CN112633098B (en) | Method, system and storage medium for fault diagnosis of rotating machinery | |
CN112577743B (en) | A Fault Diagnosis Method for Rolling Bearings Based on Maximum Local Boundary Criterion | |
CN110244205A (en) | A Partial Discharge Recognition Method of Cable Accessories Based on Convolutional Neural Network under Small Data Amount | |
Jiang et al. | A fault diagnostic method for induction motors based on feature incremental broad learning and singular value decomposition | |
CN110146812A (en) | A kind of Method of Motor Fault Diagnosis based on the study of characteristic node increment type width | |
CN105134619A (en) | Failure diagnosis and health evaluation method based on wavelet power, manifold dimension reduction and dynamic time warping | |
CN113486931B (en) | Rolling bearing enhanced diagnosis method based on PDA-WGANGP | |
CN113255458A (en) | Bearing fault diagnosis method based on multi-view associated feature learning | |
Ko et al. | Prototypical networks for small footprint text-independent speaker verification | |
CN117708656B (en) | A cross-domain fault diagnosis method for rolling bearings based on a single source domain | |
CN111239587A (en) | A Fault Diagnosis Method for Analog Circuits Based on FRFT and LLE Feature Extraction | |
CN112541524A (en) | BP-Adaboost multi-source information motor fault diagnosis method based on attention mechanism improvement | |
Yang et al. | Transfer learning based rolling bearing fault diagnosis | |
CN107832729A (en) | A kind of bearing rust intelligent diagnosing method | |
Qin et al. | Adaptive diagnosis of DC motors using R-WDCNN classifiers based on VMD-SVD | |
Zhang et al. | Temporal Transformer Networks for Acoustic Scene Classification. | |
CN111310648B (en) | Cross-modal biometric feature matching method and system based on disentanglement expression learning | |
Zhou et al. | Three-phase asynchronous motor fault diagnosis using attention mechanism and hybrid CNN-MLP by multi-sensor information | |
CN113419172A (en) | New energy automobile three-phase asynchronous motor fault identification based on GCN and VMD-ED | |
CN116597167B (en) | Permanent magnet synchronous motor small sample demagnetization fault diagnosis method, storage medium and system | |
Tian et al. | Fault diagnosis based on LMD-SVD and information-geometric support vector machine for hydraulic pumps | |
CN115083395A (en) | Engine sound detection system based on convolutional neural network and support vector machine | |
CN112270273A (en) | Wind driven generator fault part identification method based on GCN and WPT-MD |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |