CN110243218A - A kind of method of cell phone application control capillary wick temperature - Google Patents

A kind of method of cell phone application control capillary wick temperature Download PDF

Info

Publication number
CN110243218A
CN110243218A CN201910432535.9A CN201910432535A CN110243218A CN 110243218 A CN110243218 A CN 110243218A CN 201910432535 A CN201910432535 A CN 201910432535A CN 110243218 A CN110243218 A CN 110243218A
Authority
CN
China
Prior art keywords
temperature
air
heat pipe
capillary wick
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910432535.9A
Other languages
Chinese (zh)
Other versions
CN110243218B (en
Inventor
郭春生
李言伟
钟芳慧
马玥
王兰文
马聚隆
欧阳宇恒
李雅倩
张瑞
马志腾
王铁信
纪文睿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Research Institute Of Shandong University
Original Assignee
Shenzhen Research Institute Of Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Research Institute Of Shandong University filed Critical Shenzhen Research Institute Of Shandong University
Priority to CN201910432535.9A priority Critical patent/CN110243218B/en
Publication of CN110243218A publication Critical patent/CN110243218A/en
Application granted granted Critical
Publication of CN110243218B publication Critical patent/CN110243218B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/06Control arrangements therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/02Protocols based on web technology, e.g. hypertext transfer protocol [HTTP]
    • H04L67/025Protocols based on web technology, e.g. hypertext transfer protocol [HTTP] for remote control or remote monitoring of applications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • H04M1/72403User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality
    • H04M1/72409User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality by interfacing with external accessories
    • H04M1/72415User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality by interfacing with external accessories for remote control of appliances

Abstract

The present invention provides the temperature for the present invention provides a kind of method of cell phone application control capillary wick temperature, including the following steps: 1) to measure capillary wick;2) controller acquisition capillary wick temperature data passes to cloud server;3) temperature data is passed to APP client by cloud server;4) client inputs operating parameter according to temperature data in APP client;5) operating parameter is passed to cloud server by APP client;6) operating parameter is passed to controller by cloud server;7) motor is run according to the instruction that controller provides.The present invention monitors the temperature of heat-exchange system by cell phone application, realizes the intelligent control of long-range monitoring heat-exchange system, avoids capillary structure temperature is excessively high from causing to dryout damage.

Description

A kind of method of cell phone application control capillary wick temperature
Technical field
The present invention relates to a kind of heat-exchange systems using reversed loop circuit heat pipe.
Background technique
In the prior art, heat pipe is typically all the circulation for relying on gravity to realize heat pipe, but such heat pipe is only suitable for lower part The case where heat absorption top heat release, goes not being applicable in for the heat absorption lower part heat release of opposite top.Therefore such situation, the present invention are directed to It is improved, has invented antigravity heat pipe.
Statistics indicate that steam state water content is 11.6 times of earth's surface liquid fresh water content on the earth, but people are to gaseous state fresh water Utilization rate it is not high.Present air water-intaking method mainly will be in humid air existing for vapor or small form of moisture drops Water Resource Transformation is the method for liquid water, mainly there is refrigeration dewfall method, absorption method, mechanical compression method, semiconductor refrigerating method etc..Leaf A kind of more mature solar semiconductor refrigeration water fetching device with regenerator is devised after propositions such as great waves, referring to CN2567274Y, CN10485506A, and numerical simulation and experiment test have been carried out to it, but there are two o'clock deficiencies for the program: one The transformation efficiency of aspect solar storage battery is low and loss is big, is on the other hand limited by more territory restrictions and natural conditions System, and structure is complicated for the water fetching device.
Applicant's earlier application applies for reversed gravity assisted heat pipe, but finds under study for action, capillary wick Temperature is unstable, causes the working efficiency of loop circuit heat pipe unstable, but also be easy to cause capillary heart temperature excessively high and damage.Needle To the above problem, the present invention is improved on the basis of invention in front, provides a kind of new loop circuit heat pipe heat-exchange system, What is made compact-sized, good effect of heat exchange, can effectively increase air heat-exchange area, significantly improve cooling efficiency.
Summary of the invention
The present invention provides a kind of new loop circuit heat pipe heat-exchanger rig, what is made compact-sized, good effect of heat exchange can be effective Increase air heat-exchange area, significantly improves cooling efficiency.
To achieve the goals above, technical scheme is as follows:
A kind of reversed loop circuit heat pipe heat-exchange system controlling air mass flow according to temperature intelligent, including air inlet passageway, Air outlet passage and loop circuit heat pipe, the air outlet passage are arranged in air inlet passageway, and the loop circuit heat pipe is anti- Gravity assisted heat pipe, air are introduced from air inlet passageway and are exchanged heat with loop circuit heat pipe evaporation ends, and loop circuit heat pipe condensation end passes heat It leads to external cold source;The evaporation ends include tedge, and capillary wick is arranged at least part of the tedge, to realize anti- The effect of gravity assisted heat pipe;Capillary wick center setting condensation end flows to the pipeline of evaporation ends, and the outside wall surface of evaporation ends is vertical around setting To vertical fin;Air outlet passage is arranged between the vertical fin of adjacent two and connects with adjacent two vertical fins Touching;The down-comer of heat pipe be arranged between the vertical fin of adjacent two and with two adjacent vertical fin contacts;On described At least part for rising section and descending branch is arranged in air inlet passageway;The heat-exchange system further includes blower, motor, temperature Sensor and central controller, the temperature sensor is arranged in capillary wick, for measuring the temperature of capillary wick, the air It is introduced from air inlet passageway, the motor connects blower, drives blower rotation, and the motor, temperature sensor and center are controlled Device data connection processed;The central controller connects cloud server, and cloud server is connect with client, and wherein controller will The temperature data and electric machine frequency data of temperature sensor measurement pass to cloud server, are then transmitted by cloud server To client, the client is mobile phone, and the mobile phone installs APP program, user can select to automatically control in client or The operating mode of hand-guided, controller root control the operating mode of client's selection to control the frequency of motor.
Preferably, user obtains temperature data and electric machine frequency according to client under the operating mode of hand-guided Data manually enter electric machine frequency in client, are then transferred to central controller, central controller control by cloud server Electric machine frequency processed works according to the frequency that client inputs.
Preferably, the controller is automatically controlled according to the temperature data of detection under the operating mode of automatic control Temperature data and frequency data to control the air mass flow into heat-exchange system, and are passed to client by the frequency of motor.
Preferably, controller improves the frequency of motor automatically if detection temperature data is lower than the first numerical value, if The temperature data of measurement is higher than second value, then controller stops the rotation of motor, and the second value is greater than the first numerical value.
Preferably, motor drives blower to rotate when the temperature of measurement is lower than the first temperature with first frequency;Work as measurement Temperature when being higher than the second temperature higher than the first temperature, motor lower than the second frequency of first frequency to be rotated;Work as survey When the temperature of amount is higher than the third temperature higher than second temperature, motor is rotated with the third frequency lower than second frequency;When When the temperature of measurement is higher than four temperature higher than third temperature, motor is rotated with the 4th frequency lower than third frequency; When the temperature of measurement is higher than five temperature higher than the 4th temperature, motor is turned with the 5th frequency lower than the 4th frequency It is dynamic.
Preferably, the first temperature is lower than 4-6 degrees Celsius of second temperature, second temperature is lower than 4-6 degrees Celsius of third temperature, Third temperature is lower than the 4th 4-6 degrees Celsius of temperature, and the 4th temperature is lower than the 5th 4-6 degrees Celsius of temperature.
Preferably, the 5th frequency is 0.8-0.9 times of the 4th frequency, the 4th frequency is 0.8-0.9 times of third frequency, Third frequency is 0.8-0.9 times of second frequency, and second frequency is 0.8-0.9 times of first frequency.
Preferably, the upper end position of capillary wick is arranged in the temperature sensor.
Preferably, the vertical fin extends through the center of circle of air inlet passageway, the ascent stage pipeline and condensation The inlet tube of the room center of circle having the same.
Preferably, the pipeline be it is multiple, the center of circle of the multiple pipeline is identical as the distance between the ascent stage.
Preferably, the pipeline is parallel-connection structure per a pipeline is arranged between adjacent two vertical fins.
Preferably, the air outlet passage is multiple, the center of circle of the multiple air outlet passage and evaporation end pipe The distance between road is identical.
Preferably, per an air outlet passage is arranged between adjacent two vertical fins, the air outlet slit is logical Road is parallel-connection structure.
Preferably, the pipeline be it is multiple, the air outlet passage be multiple, the pipeline and air outlet passage Quantity it is equal.
Preferably, the pipeline center is identical as adjacent air outlet passage centre distance;The air outlet slit is logical Road center is identical as adjacent air pipe line centre distance.
Preferably, the radius of air outlet passage is R, the radius of pipeline is r, and the angle between adjacent fins is A, full Foot is claimed below:
Sin (A)=a*LN (r/R)+b, wherein LN is logarithmic function, and a, b are parameters,
Wherein 0.330 < a < 0.340,0.73 <b < 0.74;
15°<A<25°;
0.24<r/R<0.5。
Preferably, 0.26 < r/R < 0.38.
A kind of loop circuit heat pipe air water fetching device, including blower fan apparatus, air inlet passageway, air outlet passage, loop Heat pipe and water storage condensation chamber, which is characterized in that the water storage condensation chamber is arranged in soil heat sink, and the loop circuit heat pipe is bob-weight Power heat pipe, the evaporation ends of loop circuit heat pipe are mounted on water storage condensation chamber inlet, the outlet of air inlet passageway, air outlet passage Entrance be connected to water storage condensation chamber, air is introduced into the process of water storage condensation chamber by the blower fan apparatus from air inlet passageway In exchange heat with evaporation ends, condensation end by heat transfer give external soil heat sink.
Preferably, the blower fan apparatus includes vertical wind machine, planetary gear speed increaser and helical blade, vertical-shaft wind Machine utilizes wind energy, and planetary gear speed increaser and helical blade is driven to suck air.
Preferably, the inlet tube of helical blade lower end connection water storage condensation chamber, the water storage condensation chamber connect inlet tube Position start diameter and become larger, then diameter starts to become smaller.
Preferably, the evaporation ends of loop circuit heat pipe are mounted on water storage condensation chamber inlet tube, the condensation end winding of loop circuit heat pipe Outside condensation chamber, and external soil directly contacts.
Preferably, air inlet passageway is exactly the inlet tube of condensation chamber, entering for condensation chamber is arranged in air outlet passage Mouth pipe, the hot-air of the cold air precooled air import of air outlet slit.
Preferably, the inlet tube of condensation chamber is arranged at least part of evaporation ends, at least part of evaporation ends is filled Capillary wick is expired, capillary wick center setting condensation end flows to the pipeline of evaporation ends, and the outside wall surface of evaporation ends ascent stage is around setting Longitudinal vertical fin.
Compared with prior art, the present invention has the advantage that:
1) present invention realizes the automatic control of the temperature of exchange hot systems, section by controller by cell phone application client The about energy reaches the best of efficiency, improves the intelligence of heat-exchange system, realizes long-range control, but also can keep hair The temperature of thin core is constant, avoids temperature excessively high, causes capillary wick dry, also avoids temperature too low, heat exchange efficiency is caused to reduce.
2) by vertical fin, on the one hand increase heat transfer effect, on the other hand play the role of fixed pipeline and heat pipe.
3) it forces humid air to reach dew point using the temperature difference of ground air and underground, gets rid of the dependence to electricity, it can It is truly realized zero-emission, no pollution.
4) for loop circuit heat pipe as efficient heat transfer tool, principle is simple, compact-sized, can effectively increase air heat-exchange face Product, significantly improves cooling efficiency.
5) loop circuit heat pipe condenser is wrapped in outside condensation chamber, is come into full contact with external soil, and opposite heat tube evaporation ends are increased The heat dissipation of air improves cooling efficiency.
6) it is consumed without secondary energy sources, wind-force is as daily power, and system uses vertical-shaft wind used for wind power generation Machine avoids influence of the wind direction to wind energy conversion system, can collect the wind that all directions are come, solar-cell motor can under calm condition Entry impeller rotation is driven, this sampling device can accomplish continuous service.Accomplish wind light mutual complementing on definite meaning.
Detailed description of the invention
Fig. 1 is overall structure diagram of the invention.
Fig. 2 is vertical axis windmill schematic diagram of the invention.
Fig. 3 is planetary gear speed increaser cross-sectional view of the invention.
Fig. 4 is impeller top view of the invention.
Fig. 5 is under ground portion view of the invention.
Fig. 6 is condensation chamber cross-sectional view of the invention.
Fig. 7 is the sectional view of A-A in Fig. 6.
Fig. 8 is the structural schematic diagram of heat pipe of the invention.
Fig. 9 is the structural schematic diagram that multiple evaporation ends of the invention flow to condensation end pipeline (descending branch).
Figure 10 is the pipeline jointing construction schematic diagram of present invention setting capillary wick position.
Figure 11 is the pipeline jointing construction schematic diagram of inventive flow control.
Figure 12 is the control flow chart of Figure 11.
Appended drawing reference is as follows: 1 blower, 2 planetary gears, 3 helical blades, 4 air outlet passages, and 5 air intlets are logical Road, 6 loop circuit heat pipe evaporation ends, 7 condensation chambers, 8 loop circuit heat pipe condensation ends, 9 evaporation ends flow to condensation end pipeline (descending branch), and 10 is cold Solidifying end flows to evaporation ends pipeline, 11 condensation chamber inlet tubes, 12 fins, 13 capillary wicks, 14 motors, 15 central controllers
Specific embodiment
Specific embodiments of the present invention will be described in detail with reference to the accompanying drawing.
Herein, if without specified otherwise, it is related to formula, "/" indicates that division, "×", " * " indicate multiplication.
Specific embodiments of the present invention will be described in detail with reference to the accompanying drawing.
A kind of anti-gravity loop circuit heat pipe, as shown in figure 8, the heat pipe includes evaporation ends 6 and condensation end 8, the evaporation ends 6 Positioned at 8 top of condensation end, 6 a part setting of the evaporation ends in the fluid ascent stage, the fluid ascent stage evaporation ends at least A part setting capillary wick 13, as shown in Figure 10.
Preferably, evaporation ends include that evaporation ends flow to condensation end pipeline (descending branch) 9, ascent stage two parts.Wherein make To be preferred, setting condensation end flows to evaporation ends pipeline 10 in the ascent stage.
As shown in Figure 1, a kind of loop circuit heat pipe air heat-exchange system, including blower fan apparatus 1, air inlet passageway 5, air go out Mouth channel 4, loop circuit heat pipe and water storage condensation chamber 7, the water storage condensation chamber 7 are arranged in soil heat sink, and the loop circuit heat pipe is Antigravity heat pipe, the outlet of air inlet passageway 5, the entrance of air outlet passage 4 are connected to water storage condensation chamber, the blower dress Set 1 air is introduced water storage condensation chamber 7 from air inlet passageway 5 during exchange heat with evaporation ends 6, condensation end 8 will Heat transfer gives external soil heat sink.
The present invention provides a kind of air water fetching devices of the loop circuit heat pipe of Novel structure, by the way that loop circuit heat pipe conduct is arranged Efficient heat transfer tool, principle is simple, compact-sized, significantly improves cooling efficiency.And the present invention utilizes ground air and underground The temperature difference of soil forces humid air to reach dew point, gets rid of the dependence to electricity, can be truly realized zero-emission, no pollution.
Preferably, at least part of the evaporation ends 6 of loop circuit heat pipe is mounted on 7 inlet of water storage condensation chamber.
Preferably, 7 inlet tube of condensation chamber, the air inlet passageway are arranged between the condensation chamber 7 and blower fan apparatus 1 5 at least part are arranged in 7 inlet tube of condensation chamber, and at least part of 7 inlet tube of condensation chamber is arranged in external soil heat sink In.By making sky so set, the air in air inlet passageway 5 can be made directly to participate in the heat exchange of external soil heat sink Gas is further cooling under the collective effect of soil and loop circuit heat pipe, improves cooling effect.
Further preferably, the blower fan apparatus 1 includes vertical wind machine, planetary gear speed increaser 2 and helical blade 3, vertically Axis wind energy conversion system utilizes wind energy, and planetary gear speed increaser 2 and helical blade 3 is driven to suck air.
Preferably, vertical wind machine 1 is located at top, lower part is successively planetary gear speed increaser 2 and helical blade 3, described Helical blade 3 is connected to 7 inlet tube of condensation chamber, so that outside air is introduced into condensation chamber 7.
Further preferably, the inlet tube of condensation chamber 7 is exactly air inlet passageway.
Preferably, as shown in Figure 1, the water storage condensation chamber 7 from connection inlet tube position it is downward, be just initially diameter It becomes larger, diameter starts to gradually become smaller after then having arrived certain position.Be conducive to air in condensation indoor moveable, complete gas Circulation, and increase gas and condense the heat exchange efficiency between locular wall
Preferably, the evaporation ends 6 of loop circuit heat pipe are mounted on water storage condensation chamber inlet tube, the condensation end 8 of loop circuit heat pipe is twined It is around in outside condensation chamber, and external soil directly contacts.Loop circuit heat pipe condenser is wrapped in outside condensation chamber, is filled with external soil Tap touching, increases the heat dissipation of opposite heat tube evaporation ends air, improves cooling efficiency.
Preferably, capillary wick 13 is arranged at least part of the evaporation ends 6, capillary force provides working medium reflux and follows The power of ring, while the working medium amount of reflux being made to reach the demand of heat transfer, to realize the effect of antigravity heat pipe.
By be arranged capillary wick 13, and capillary wick 13 because itself be arranged in evaporation ends so that in the ascent stage 6 of evaporation ends Naturally flow resistance is generated, so that the steam natural that evaporation ends generate flows to the small pipeline 9 of resistance, so as to form bob-weight Power heat pipe.
Preferably, the capillary wick 13 was positioned only in the ascent stage of evaporation ends, as being preferably provided at the ascent stage A part in.Such as shown in Fig. 6, Figure 10.
Preferably, at least part of air outlet passage 4 is arranged in the inlet tube of condensation chamber, air outlet slit it is cold The hot-air of air precooling air intlet.By the heat exchange of exit gas and inlet gas, heat transfer effect is further realized, is increased The condensation efficiency of water.
Preferably, the ascent stage of evaporation ends is filled with hair as shown in fig. 7, the inlet tube of condensation chamber is arranged in evaporation ends Thin core 13, to provide sufficiently large capillary force, 13 center of capillary wick setting condensation end flows to the pipeline 10 of evaporation ends, by such Pipeline 10 (in without capillary wick) is set, it is possible to reduce the fluid resistance of pipeline improves antigravity shape so that working medium reflux is more smooth Heat-transfer capability under state, the ascent stage outside wall surface of evaporation ends increase heat exchange area, improve around the longitudinal vertical fin 12 of setting With the heat exchange efficiency of air.
Pipeline 10 is gas or liquid line, realizes a flexible arrangement, both caliber was smaller, was easily bent.Loop circuit heat pipe Principle is, if vaporizer side and pipeline 10 are steam pipe line, then principle is the heated internal working medium evaporation of evaporator, and steam is along evaporation Device upper outlet enters pipeline 10, then flow to lower loop around pipeline, with soil contact start condense, when steam all condense Afterwards, evaporator is returned to by the effect of evaporator capillary wick capillary force, to realize the circulation of working medium.
Preferably, being connected between pipeline 10 and capillary wick 13.By connection, can be realized capillary wick 13 and pipeline 10 it Between fluid circulation so that liquid is by capillary wick uphill process, if generate biggish pressure because of heat absorption, such as Possibly even there is bubble, then it can be by pipeline 10 come the pressure of balanced evaporator section, to guarantee the equilibrium of pressure.
Further preferably, the capillary wick 13 extends to condensation end, directly to suct the liquid of condensation end.Into one Step improves the circulation ability of antigravity heat pipe.
Preferably, capillary wick is distributed along short transverse, as shown in Fig. 6.Further preferably, along height decline side To the capillary force of the capillary wick gradually increases.It is more proximate to condensation end, capillary force is bigger.It is found through experiments that, takes such Mode can further increase the suction to liquid, can be improved 20% or more suction under identical cost, to improve Heat transfer effect.
By further analyzing, preliminary reason may be as the capillary force close to condensation end is increasing, so that condensation The liquid at end can be quickly drawn onto capillary wick, and liquid is constantly flowed to evaporation ends.In flow process, liquid is not Disconnected heat absorption, then because temperature caused by absorbing heat increases, density becomes smaller, therefore because of variable density reason, the hair for needing it Thin power obviously becomes smaller, therefore is also easy for up inhaling in the case where capillary force is small.Above-mentioned reason is that the present inventor passes through What a large amount of experiment and research obtained, the common knowledge of non-this field.
Further preferably, along height descent direction, the amplitude that the capillary force of the capillary wick gradually increases is increasing. It is found through experiments that, takes such mode, the suction to liquid can be further increased, it can be further under identical cost The suction for improving 8% or so, to improve heat transfer effect.
Preferably, pipeline is that the through-hole opened up among capillary wick is formed.
Preferably, as shown in Figure 10, the caliber that the heat pipe position of capillary wick is arranged is greater than the heat pipe for being not provided with capillary wick The caliber of position.
Further preferably, as shown in Figure 10, it is described setting capillary wick heat pipe position pipe and be not provided with capillary wick Caliber change between the pipe of heat pipe position is consecutive variations.It is further preferred that straight line changes.The pipe of Large Diameter Pipeline position Pipe with tubule warp in junction is connected by contractibility.The variation of the caliber of contractibility is linear change.
Preferably, air outlet passage 4 is arranged between the vertical fin 12 of adjacent two and erects with adjacent two Straight fins 12 contact.Pass through such setting, it is possible to reduce the mechanism of the independent support air outlet passage 4 of setting, so that structure Compact, the cold air of exit passageway can be exchanged heat by pipeline and fin, kept the cold degree of fin, enhanced heat transfer effect.
Preferably, evaporation ends flow direction condensation end pipeline 9 be arranged between the vertical fin of adjacent two and with it is adjacent Two vertical fin contacts.Pass through such setting, it is possible to reduce the mechanism of the independent support air outlet passage 4 of setting makes Must be compact-sized, the steam in pipeline can reduce system overall thermal resistance, avoid on ground by pipeline to the of short duration a small amount of heat transfer of fin Steam superheating is generated in the case of the antigravity of face in evaporator, to slow down the temperature oscillation phenomenon in heat pipe start-up course.
Further preferably, the pipeline 9 than air outlet passage 4 closer to the outer wall of evaporation ends pipeline so that above-mentioned Two diabatic processes can be achieved at the same time, and play respective action.
Further preferably, the diameter of the pipeline 9 is less than air outlet passage 4.
Preferably, along the condensation end pipeline 9 that multiple evaporation ends flow directions can be set, as shown in Fig. 7,9.Pass through setting Multiple pipelines 9 can make evaporation ends inhale thermogenetic steam and enter condensation end by multiple pipelines 9, further augmentation of heat transfer, And the evaporation because the fluid in heat pipe absorbs heat, cause volume to increase, by the way that multiple pipelines 9 are arranged, can further alleviate pressure Power improves heat transfer effect.
Further preferably, the vertical fin extends through the center of circle of the inlet tube of condensation chamber, the evaporation ends ascent stage The inlet tube of the pipeline and condensation chamber center of circle having the same.
Preferably, the pipeline 9 be it is multiple, between the center of circle and evaporation ends ascent stage pipeline of the multiple pipeline 9 Apart from identical.
Further preferably, per one pipeline 9 of setting between adjacent two vertical fins 12.The pipeline 9 is in parallel Structure.
Preferably, the air outlet passage 4 is multiple, the center of circle of the multiple air outlet passage 4 and evaporation ends The distance between ascent stage pipeline is identical, so that Temperature Distribution is more uniform between fin, and above-mentioned heat transfer effect is become apparent from. Further preferably, per one air outlet passage 4 of setting between adjacent two vertical fins 12.The air outlet passage 4 It is parallel-connection structure.
Further preferably, the pipeline 9 be it is multiple, the air outlet passage 4 be it is multiple, the pipeline 9 goes out with air The quantity in mouth channel 4 is equal.
Further preferably, the pipeline 9 is arranged between adjacent air outlet passage 4, the air outlet passage 4 Between adjacent pipeline 9.Further preferably, 9 center of pipeline is identical as adjacent 4 centre distance of air outlet passage; 4 center of air outlet passage is identical as adjacent 9 centre distance of air pipe line.Adjacent sky is arranged in the i.e. described pipeline 9 The centre of gas exit passageway 4, the air outlet passage 4 is among adjacent pipeline 9.I.e. as shown in figure 8, where pipeline 9 The first line between the center of circle and the center of circle of evaporation ends 6, between adjacent 4 center of circle of air outlet passage and the center of circle of evaporation ends 6 The first line, third line are formed, the first angle formed between the first line and the second line is equal to the first line and third The second angle formed between line.Similarly, the 4th between the center of circle where air outlet passage 4 and the center of circle of evaporation ends 6 Line, forms the 5th line, the 6th line between adjacent 9 center of circle of pipeline and the center of circle of evaporation ends 6, the 4th line and the 5th connect The third angle formed between line is equal to the 4th angle formed between the 4th line and the 6th line.Namely in circumferential direction On, pipeline 9 and exit passageway 4 are uniformly distributed.
Pass through above-mentioned setting, it is ensured that pipeline 9 and air outlet passage 4 carry out the uniform of cooling to inlet air, keep away Exempt from local income inequality, leads to effect variation of fetching water.
It, can not in numerical simulation and it was found that, the caliber of air outlet passage 4 and pipeline 9 difference cannot be too big Too small, the distance for causing very much air outlet passage 4 and pipeline 9 to be distributed greatly is too far, leads to the sky between channel 4 and pipeline 9 Gas heat exchange is bad, causes overall heat exchange uneven, and the distance for causing air outlet passage 4 and pipeline 9 to be distributed if too small is too close, The air heat-exchange of the air and/or the outer wall close to evaporation ends 6 that lead to the outer wall close to air inlet passageway 5 is bad, causes whole Air heat-exchange in body air inlet passageway 5 is uneven;Same reason, the angle between adjacent fins 12 cannot be too big, too It will lead to that distribution fin is few, and heat transfer effect is excessively bad if big, also result in air outlet passage 4 and quantity that pipeline 9 is distributed Very little, cause heat exchange unevenly and heat transfer effect is bad, similarly, the angle between adjacent fins 12 cannot be too small, too small Words cause fin distribution too close, and flow resistance increases, and the caliber of air outlet passage 4 and pipeline 9 is not much different, but he Differ greatly with the exchange capability of heat of homalographic, therefore heat exchange is uneven in such cases, causes heat transfer effect bad.Therefore it needs Optimal size relationship is determined by a large amount of numerical simulation and its experiment.
The radius of air outlet passage 4 is R, and the radius of pipeline 9 is r, and the angle between adjacent fins is A, is met following It is required that:
Sin (A)=a*LN (r/R)+b, wherein LN is logarithmic function, and a, b are parameters,
Wherein 0.330 < a < 0.340,0.73 <b < 0.74;
15°<A<25°;
0.24<r/R<0.5;Further preferably, 0.26 < r/R < 0.38.
Above-mentioned empirical equation is to be obtained by a large amount of numerical simulations and experiment, and pass through verification experimental verification, and error is substantially Within 3.2.
Preferably, 3 < the R < 10mm;1.5 < the r < 4.0mm;
Further preferably, the heat pipe caliber for capillary wick position being arranged is 30-40mm, further preferably 32mm;
Further preferably, the heat pipe caliber for being not provided with capillary wick position is 5.0-6.4mm;
Further preferably, it is 5.0-6.4mm that condensation end, which flows to the caliber of the pipeline of evaporation ends,;
Further preferably, 5 caliber of air inlet passageway is 80-200mm;It is preferred that 120-150mm;
Further preferably, the vertical direction length of fin is 780-1500mm, preferably 1200mm;The length that fin longitudinally extends Degree accounts for the 95% of 6 outer diameter of evaporation ends and 4 internal diameter difference of air outlet passage.The overall heat exchange ability of fin significantly mentions under this length Height, the coefficient of heat transfer are and relatively small to the effect of the broken ring in boundary layer and the influence of fluid flow effect also in suitable range.
External wind drives vertical axis windmill 1 as shown in the figure to rotate, and wind energy transformation is mechanical energy.Wind energy conversion system passes through planetary gear Speed changer 2 drives coaxial air inlet helical blade 3 to rotate, and filtered extraneous humid air is sucked condensation chamber.Air inlet air port design It is the revolving body with decrement mouth for maintaining pressure.The continued operation of impeller increases intracavity gas pressure, humid air it is exhausted Humidity is increased.The biggish air of absolute humidity is entered under the continuous action of air pressure by the relatively narrow inlet channel of bore Underground condensation chamber.Extraneous hot-air first in the inlet channel 5 with outdoor cooler air is being discharged into outlet passageway It exchanges heat, exhaust gas is allowed to take away partial heat, the metal outer wall contacted with soil also has thermally conductive function, and the two collective effect is completed Air precooling.After air initially enters condensation chamber, relatively warm air first slow transits through loop heat pipe evaporator fin channels, with loop Medium completes heat exchange in heat pipe, and own temperature significantly reduces, and when reaching dew point, vapor starts to liquefy, in fin surface shape At droplet.Surplus air gos deep into water storage condensation chamber 7, by cavity metal outer wall and extraneous soil heat exchange, while being condensed into liquid Drop.As liquid water is built up, hot-air is gradually decreased with outer wall contact area, and major refrigeration is mentioned by loop circuit heat pipe at this time For.The evaporation ends 6 of the loop circuit heat pipe absorb the heat of hot-air, and liquid refrigerant is flashed to gaseous state, then passes through condensation chamber Heat is conducted to external soil by the loop circuit heat pipe condensation end 8 being externally wrapped with, and gaseous working medium is made to be condensed into liquid, and anti-gravity ring Road heat pipe has the characteristics that liquid reflux can be made.Under lasting wind-force, the water resource in extraneous humid air will be constantly It is collected into water storage condensation chamber, is cooled rapidly, be discharged away after being condensed out liquid water.What vertical axis windmill 1 generated Electric energy is stored in battery, and electric energy supplies the fresh water of electronic water pump extraction accumulation, and storage is on the ground in water tank.
The present invention condenses to water vapor in air by wind energy, soil heat sink and loop circuit heat pipe when fetching water Condensation water intaking, not only solves dependence of traditional solar energy absorption method to solar energy, adapts to more regions and weather condition, accomplish No secondary energy sources consumption, also solves the not high enough problem of prior art transfer efficiency.
Preferably, wind energy conversion system, is transferred to the revolving speed of impeller by planetary gear speed increaser connection vertical axis windmill and impeller Amplification, makes outside air enter tank interior faster, increases intake to a certain extent, while improving the pressure in pipeline.
Preferably, preparing loop heat pipe capillary core using powder metallurgy process.Before starting, the evaporator of loop circuit heat pipe It is full of working medium in capillary wick, additional cavity and perfusion tube, and is in two phases in steam channel, condenser and steam pipe.
Cooling chamber position using soil it is cooling supplemented by, the collaboration heat exchange mode based on anti-gravity loop circuit heat pipe, can mention significantly High-altitude air cooling speed improves water yield.
Preferably, loop circuit heat pipe condensation end is wrapped in outside condensation chamber, increase heat dissipation area.
Preferably, exhaust pipe is placed in the intake channel, to achieve the purpose that air precooling.
As a preferred embodiment, motor is can be set to drive blower to rotate in the present invention.
Preferably, the water fetching device (heat-exchange system) still further comprises motor 14, temperature sensor and center control Device 15 processed, the temperature sensor are arranged in capillary wick 13, and for measuring the temperature of capillary wick, the blower is by air from sky Gas intake channel introduces, and the motor 14 connects blower 1, and blower 1 is driven to rotate, and the motor 1, temperature sensor and center are controlled 15 data connection of device processed, the central controller 15 connect cloud server 16, and cloud server 16 is connect with client 17, The temperature data of temperature sensor measurement and electric machine frequency data are passed to cloud server 16 by middle controller 15, are then passed through Cloud server 16 sends client 17 to, and the client 17 is mobile phone, and the mobile phone installs APP program, and user can be Client selection automatically controls or the operating mode of hand-guided, and controller 15 control the operating mode of clients' selection to control The frequency of motor.
Preferably, user obtains temperature data and motor frequency according to client 17 under the operating mode of hand-guided Rate data manually enter electric machine frequency in client 17, are then transferred to central controller 15 by cloud server 16, center Controller 15 controls 14 frequency of motor and works according to the frequency that client inputs.
Preferably, the controller is automatically controlled according to the temperature data of detection under the operating mode of automatic control Temperature data and frequency data to control the air mass flow into heat-exchange system, and are passed to client by the frequency of motor.
The present invention is realized the automatic control of the temperature of exchange hot systems by controller, is saved by cell phone application client The energy reaches the best of efficiency, improves the intelligence of heat-exchange system, realizes long-range control.
The present invention provides a kind of loop circuit heat pipe heat-exchange systems of intelligent temperature control, and the temperature of capillary wick can be kept permanent It is fixed, it avoids temperature excessively high, causes capillary wick dry, also avoid temperature too low, heat exchange efficiency is caused to reduce.
Preferably, if detection temperature data is lower than the first numerical value, controller 15 is automatic under intelligent control mode The frequency of motor 14 is improved, if the temperature data of measurement is higher than second value, controller 15 stops the rotation of motor 14, institute Second value is stated greater than the first numerical value.
Further preferably, when the temperature of measurement is lower than the first temperature, electric motor starting, and drive blower to turn with first frequency It is dynamic;When the temperature of measurement is higher than the second temperature higher than the first temperature, motor is carried out with the second frequency lower than first frequency Rotation;When the temperature of measurement be higher than the third temperature higher than second temperature when, motor with lower than second frequency third frequency into Row rotation;When the temperature of measurement is higher than four temperature higher than third temperature, motor is with the 4th frequency lower than third frequency It is rotated;When the temperature of measurement is higher than five temperature higher than the 4th temperature, motor is with the 5th frequency lower than the 4th frequency Rate is rotated.
Further preferably, the first temperature is lower than 4-6 degrees Celsius of second temperature, and second temperature is Celsius lower than third temperature 4-6 Degree, third temperature is lower than the 4th 4-6 degrees Celsius of temperature, and the 4th temperature is lower than the 5th 4-6 degrees Celsius of temperature.
Further preferably, the 5th frequency is 0.8-0.9 times of the 4th frequency, and the 4th frequency is the 0.8-0.9 of third frequency Times, third frequency is 0.8-0.9 times of second frequency, and second frequency is 0.8-0.9 times of first frequency.
Preferably, the upper end position of capillary wick 13 is arranged in the temperature sensor.Because of upper position temperature highest, By being arranged in upper position, it can detecte the temperature of the highest position of capillary wick temperature, avoid capillary wick temperature excessively high, cause Damage.
Although the present invention has been disclosed in the preferred embodiments as above, present invention is not limited to this.Any art technology Personnel can make various changes or modifications, therefore protection scope of the present invention is answered without departing from the spirit and scope of the present invention When being defined by the scope defined by the claims..

Claims (3)

1. a kind of method of cell phone application control capillary wick temperature, includes the following steps:
1) temperature of capillary wick is measured;
2) controller acquisition capillary wick temperature data passes to cloud server;
3) temperature data is passed to APP client by cloud server;
4) client inputs operating parameter according to temperature data in APP client;
5) operating parameter is passed to cloud server by APP client;
6) operating parameter is passed to controller by cloud server;
7) motor is run according to the instruction that controller provides.
2. the method as described in claim 1, which is characterized in that user can select automatic control or hand-guided in client Operating mode, the operating mode of controller root control client's selection controls the frequency of motor.
3. heat-exchange system, including air inlet passageway, air outlet passage and loop circuit heat pipe, the air outlet passage setting exists In air inlet passageway, the loop circuit heat pipe is antigravity heat pipe, and air is introduced from air inlet passageway to be evaporated with loop circuit heat pipe End exchanges heat, and loop circuit heat pipe condensation end is by heat transfer to external cold source.
CN201910432535.9A 2018-02-06 2018-02-06 Method for controlling temperature of capillary core by using mobile phone APP Expired - Fee Related CN110243218B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910432535.9A CN110243218B (en) 2018-02-06 2018-02-06 Method for controlling temperature of capillary core by using mobile phone APP

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910432535.9A CN110243218B (en) 2018-02-06 2018-02-06 Method for controlling temperature of capillary core by using mobile phone APP
CN201810115910.2A CN109520343B (en) 2018-02-06 2018-02-06 Reverse loop heat pipe heat exchange system based on intelligent temperature control of mobile phone APP

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201810115910.2A Division CN109520343B (en) 2018-02-06 2018-02-06 Reverse loop heat pipe heat exchange system based on intelligent temperature control of mobile phone APP

Publications (2)

Publication Number Publication Date
CN110243218A true CN110243218A (en) 2019-09-17
CN110243218B CN110243218B (en) 2020-07-14

Family

ID=65769706

Family Applications (4)

Application Number Title Priority Date Filing Date
CN201810115910.2A Expired - Fee Related CN109520343B (en) 2018-02-06 2018-02-06 Reverse loop heat pipe heat exchange system based on intelligent temperature control of mobile phone APP
CN201910432535.9A Expired - Fee Related CN110243218B (en) 2018-02-06 2018-02-06 Method for controlling temperature of capillary core by using mobile phone APP
CN201910693942.5A Expired - Fee Related CN110608627B (en) 2018-02-06 2018-02-06 Method for controlling capillary pressure by using mobile phone APP
CN201910693925.1A Withdrawn CN110553526A (en) 2018-02-06 2018-02-06 Method for controlling temperature of capillary core by using mobile phone APP

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201810115910.2A Expired - Fee Related CN109520343B (en) 2018-02-06 2018-02-06 Reverse loop heat pipe heat exchange system based on intelligent temperature control of mobile phone APP

Family Applications After (2)

Application Number Title Priority Date Filing Date
CN201910693942.5A Expired - Fee Related CN110608627B (en) 2018-02-06 2018-02-06 Method for controlling capillary pressure by using mobile phone APP
CN201910693925.1A Withdrawn CN110553526A (en) 2018-02-06 2018-02-06 Method for controlling temperature of capillary core by using mobile phone APP

Country Status (1)

Country Link
CN (4) CN109520343B (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63263392A (en) * 1987-04-22 1988-10-31 Akutoronikusu Kk Heat receiving of device of loop type heat pipe
US5884693A (en) * 1997-12-31 1999-03-23 Dsc Telecom L.P. Integral heat pipe enclosure
US20020036076A1 (en) * 2000-01-10 2002-03-28 Eastman G. Yale Loop heat pipe for equipment cooling
US20090126905A1 (en) * 2007-11-16 2009-05-21 Khanh Dinh High reliability cooling system for LED lamps using dual mode heat transfer loops
US7823629B2 (en) * 2003-03-20 2010-11-02 Thermal Corp. Capillary assisted loop thermosiphon apparatus
CN102472597A (en) * 2009-07-13 2012-05-23 富士通株式会社 Loop heat pipe and startup method for the same
CN103322843A (en) * 2013-06-27 2013-09-25 华南理工大学 Anti-gravity loop heat pipe and production method thereof
CN108168342A (en) * 2017-12-29 2018-06-15 中国科学院工程热物理研究所 High hot-fluid antigravity heat pipe
CN108431723A (en) * 2015-10-26 2018-08-21 卡利奥斯公司 Computer installation with cooling power supply unit
CN109341386A (en) * 2018-01-15 2019-02-15 山东大学 A kind of loop circuit heat pipe and its heat-exchanger rig that more down-comers are set

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU945626A1 (en) * 1980-04-11 1982-07-23 Институт Прикладной Физики Ан Мсср Electrodynamic heat pipe
SU1134880A1 (en) * 1983-11-29 1985-01-15 Ордена Трудового Красного Знамени Институт Тепло- И Массообмена Им.А.В.Лыкова Heat pipe
US6058712A (en) * 1996-07-12 2000-05-09 Thermotek, Inc. Hybrid air conditioning system and a method therefor
FR2985808B1 (en) * 2012-01-13 2018-06-15 Airbus Defence And Space COOLING DEVICE SUITABLE FOR THERMAL REGULATION OF A HEAT SOURCE OF A SATELLITE, METHOD OF MAKING THE COOLING DEVICE AND SATELLITE THEREFOR
CN102607122A (en) * 2012-04-01 2012-07-25 海信(山东)空调有限公司 Dual-drive heating pipe circulating unit
CN104457358B (en) * 2014-12-11 2016-10-12 中国航天空气动力技术研究院 High-temperature heat pipe cavity pressure real-time measurement system based on U-tube
CN105299737A (en) * 2015-09-02 2016-02-03 李星明 New concept heater
CN105277032B (en) * 2015-10-21 2018-08-28 上海利正卫星应用技术有限公司 High power low thermal resistance temperature-uniforming plate
CN105352993A (en) * 2015-11-23 2016-02-24 上海卫星装备研究所 Performance testing apparatus and method for flat-plate LHP capillary core
CN205783905U (en) * 2016-05-17 2016-12-07 广州骊阳能源科技有限公司 A kind of intelligence control system with remotely control and real-time display function
CN106402826B (en) * 2016-09-19 2018-04-17 青岛科技大学 A kind of steam generator of cell phone application intelligent water level control
CN106402825B (en) * 2016-09-19 2018-04-17 青岛科技大学 A kind of steam generator of cell phone application intelligent temperature control
CN106402824B (en) * 2016-09-19 2017-10-13 青岛科技大学 A kind of steam generator of mobile phone A PP smart allocation heating powers
CN107525054A (en) * 2017-08-31 2017-12-29 青岛科技大学 A kind of steam generator of cell phone application intelligent control steam flow
CN107327821B (en) * 2017-08-31 2019-03-08 青岛科技大学 A kind of steam generator of intelligent control vapor (steam) temperature
CN110095004B (en) * 2018-01-23 2020-07-17 山东大学 Method for controlling temperature of capillary core
CN109341389B (en) * 2018-01-31 2019-08-30 山东大学苏州研究院 A kind of reversed gravity loop circuit heat pipe and its heat-exchanger rig

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63263392A (en) * 1987-04-22 1988-10-31 Akutoronikusu Kk Heat receiving of device of loop type heat pipe
US5884693A (en) * 1997-12-31 1999-03-23 Dsc Telecom L.P. Integral heat pipe enclosure
US20020036076A1 (en) * 2000-01-10 2002-03-28 Eastman G. Yale Loop heat pipe for equipment cooling
US7823629B2 (en) * 2003-03-20 2010-11-02 Thermal Corp. Capillary assisted loop thermosiphon apparatus
US20090126905A1 (en) * 2007-11-16 2009-05-21 Khanh Dinh High reliability cooling system for LED lamps using dual mode heat transfer loops
CN102472597A (en) * 2009-07-13 2012-05-23 富士通株式会社 Loop heat pipe and startup method for the same
CN103322843A (en) * 2013-06-27 2013-09-25 华南理工大学 Anti-gravity loop heat pipe and production method thereof
CN108431723A (en) * 2015-10-26 2018-08-21 卡利奥斯公司 Computer installation with cooling power supply unit
CN108168342A (en) * 2017-12-29 2018-06-15 中国科学院工程热物理研究所 High hot-fluid antigravity heat pipe
CN109341386A (en) * 2018-01-15 2019-02-15 山东大学 A kind of loop circuit heat pipe and its heat-exchanger rig that more down-comers are set

Also Published As

Publication number Publication date
CN110608627A (en) 2019-12-24
CN110553526A (en) 2019-12-10
CN109520343B (en) 2020-03-31
CN109520343A (en) 2019-03-26
CN110243218B (en) 2020-07-14
CN110608627B (en) 2021-01-29

Similar Documents

Publication Publication Date Title
CN109341386B (en) A kind of loop circuit heat pipe and its heat-exchanger rig that more down-comers are set
CN108692600B (en) A kind of reversed loop circuit heat pipe heat-exchange system controlling air mass flow according to temperature intelligent
CN108222125B (en) The loop circuit heat pipe and its heat-exchanger rig of a kind of mao of suction height change
CN109341389B (en) A kind of reversed gravity loop circuit heat pipe and its heat-exchanger rig
CN108692601B (en) A kind of reversed loop circuit heat pipe heat-exchange system controlling air mass flow according to intelligent water level
CN108253828B (en) A kind of loop circuit heat pipe and its air water fetching device
CN109341391B (en) A kind of loop circuit heat pipe and its heat-exchanger rig of caliber height change
CN109520342B (en) A kind of loop circuit heat pipe heat-exchanger rig of cell phone application intelligent pressure control
CN108692598B (en) A kind of reversed loop circuit heat pipe heat-exchange system controlling air mass flow according to pressure intelligent
CN108801018A (en) A kind of microbe soil purification solar energy loop circuit heat pipe system of heat pipe caliber height change
CN108302966B (en) A kind of loop circuit heat pipe and its heat-exchanger rig of intermediate setting through-hole
CN108489309B (en) A kind of loop circuit heat pipe and its heat-exchanger rig of through-hole distribution density height change
CN109341390B (en) A kind of loop circuit heat pipe and its heat-exchanger rig being connected to area height change
CN108302967B (en) A kind of loop circuit heat pipe heat-exchanger rig of structure optimization
CN110243218A (en) A kind of method of cell phone application control capillary wick temperature
CN109520344A (en) A kind of loop circuit heat pipe heat-exchanger rig of cell phone application intelligent water level control
CN218846312U (en) Humidifying device for air conditioner outdoor unit

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200714

Termination date: 20210206