CN110236589A - 一种电子听诊器的实时心肺音自动分离方法 - Google Patents

一种电子听诊器的实时心肺音自动分离方法 Download PDF

Info

Publication number
CN110236589A
CN110236589A CN201910476790.3A CN201910476790A CN110236589A CN 110236589 A CN110236589 A CN 110236589A CN 201910476790 A CN201910476790 A CN 201910476790A CN 110236589 A CN110236589 A CN 110236589A
Authority
CN
China
Prior art keywords
vector
matrix
queue
ref
heart
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910476790.3A
Other languages
English (en)
Other versions
CN110236589B (zh
Inventor
蔡盛盛
胡南
周宁
徐兴国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Mei Nuo Ai Medical Technology Co Ltd
Original Assignee
Suzhou Mei Nuo Ai Medical Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Mei Nuo Ai Medical Technology Co Ltd filed Critical Suzhou Mei Nuo Ai Medical Technology Co Ltd
Priority to CN201910476790.3A priority Critical patent/CN110236589B/zh
Publication of CN110236589A publication Critical patent/CN110236589A/zh
Application granted granted Critical
Publication of CN110236589B publication Critical patent/CN110236589B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B7/00Instruments for auscultation
    • A61B7/003Detecting lung or respiration noise
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B7/00Instruments for auscultation
    • A61B7/02Stethoscopes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/96Management of image or video recognition tasks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/02Preprocessing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/08Feature extraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/12Classification; Matching

Abstract

本发明公开一种电子听诊器的实时心肺音自动分离方法,包括以下步骤:建立队列Qx、Qc以及Qr;将缓存数据插入队列Qx;判断队列Qx中是否有心音成分Si;若有完整的Si,xSi利用队列Qx与Qc中的Si成分,建立多个协方差矩阵,通过联合对角化获得特征向量矩阵;建立心音特征矩阵;利用心音特征矩阵构成投影矩阵,并求得分离后的心音信号向量与肺音信号向量。本发明可进行心肺音分离;可有效地分离出心音信号和肺音信号;且对于呼吸道出现病变导致听诊信号出现附加呼吸音,可在肺音分离结果中较好地保留这些附加呼吸音,为后续基于心肺音分离结果的诊断提供保障,该分离方法具有实时性以及准确性高的特点。

Description

一种电子听诊器的实时心肺音自动分离方法
技术领域
本发明属于听诊器技术领域,涉及到一种电子听诊器的实时心肺音自动分离方法。
背景技术
对于听诊器信号的心肺音分离,目前已公开的专利申请或者已发表的论文主要从三个方向解决该问题:(1)利用多路听诊以及盲信号分离算法分离心肺音;(2)通过简单的滤波处理“分离”心音和肺音;(3)通过对短时傅里叶变换结果作非负矩阵分解并聚类来分离出心音通道和肺音通道。具体包括:
(1)多路听诊+盲信号分离方式
发明专利申请“一种基于FPGA的心肺音分离多路听诊器”(公开号CN107174277A)采用多路采集的方式,将采集探头置于使用者的不同部位,对采集回来的多路混合声音信号进行分析比较,根据信号间的共同性和差异性,采用盲信号分离算法对信号进行处理,从而分离出心音信号以及肺音信号。该方法需要多个同步的听诊通道放置于使用者不同部位,与传统的听诊器形态大不相同,使用起来有诸多不便。
(2)简单的滤波处理方式
发明专利申请“便携可视化心、肺音可分离的蓝牙电子听诊器”(公开号CN101766493A)利用包括截止频率为30Hz的高通滤波器电路、截止频率为100Hz的高通滤波器电路、截止频率为500Hz的低通滤波器电路和截止频率为1000Hz的低通滤波器电路在内的有源滤波器电路,通过滤波的方法得到心音与肺音信号。但由于心音与肺音信号在60-320Hz频率范围内的叠加,通过这种滤波器滤波的简单方法无法完全分离两部分信号,导致最终分离结果中的心音掺杂了大量肺音,肺音中掺杂了大量心音。
发明专利申请“数字听诊器与滤除心音提取肺音的方法”(公开号CN106022258A)对得到的肺音帧进行小波变换,利用阀值滤除小波系数,滤掉心音,得到纯净肺音帧。由于心音和肺音信号在小波域上并非是严格可分的,因此该小波域上的滤波方法同样不能很好地分离心音和肺音信号。
(3)非负矩阵分解并聚类的方式
目前已有很多论文或者专利申请通过对短时傅里叶变换结果作非负矩阵分解并聚类来分离出心音和肺音信号。
Ghafoor Shah等人发表的论文“On the Blind Recovery of Cardiac andRespiratory Sounds”首次提出了基于该思想的心肺音分离方法;F.J.Canadas-Quesada等人发表的论文“A non-negative matrix factorization approach based on spectro-temporal clustering to extract heart sounds”在此基础上增加了一个稀疏正则化项来提高分离性能。除此之外,专利申请“一种基于非负矩阵分解的心肺音分离的方法及装置”(公开号CN107463956A)、“一种单通道心肺音分离方法及系统”(公开号CN107837091A)、“一种基于自回归正则化NMF的心肺音分离方法及系统”(公开号CN108133200A)、“一种心肺音信号的分离方法、装置、设备及存储介质”(公开号CN108764184A)、“一种人体心肺音实时盲分离方法及系统”(公开号CN107392149A)同样利用该思想进行心肺音分离。
该方法要奏效需要较长的数据采集时长(典型的批处理长度为3.2秒),因此实时性较差,而对于一个实时输出心音或肺音信号的电子听诊器而言,信号处理后的输出时延应尽可能地小。
同时,由于多路听诊+盲分离方法使得听诊器使用过于复杂,因此现有技术的绝大部分方案都是通过单通道的方式采集心肺音并探索单通道听诊器的心肺音分离方法,其存在的缺点在于:
(1)简单滤波后直接输出会使最终输出心音、肺音仍有部分重叠,无法很好地将两者分离开;
(2)基于非负矩阵分解的心肺音分离方法所需的数据批处理长度较长,实时性很难满足要求;
(3)在心肺音这一特殊的时间序列信号中,相邻的心音周期中的心音信号往往具备类似的特征,该重要特点未被现有技术很好地利用;
(4)当呼吸道出现病变导致听诊信号出现附加呼吸音(如湿啰音、喘鸣音等)时,现有技术不能很好地在最终的肺音输出结果中保留这些特异性的附加呼吸音。
发明内容
本发明的目的在于提供的一种电子听诊器的实时心肺音自动分离方法,解决了现有技术中存在的信号分离实时性差、心肺音分离难以及分离肺音中无法保留因病变导致的附加呼吸音的问题。
本发明的目的可以通过以下技术方案实现:
一种电子听诊器的实时心肺音自动分离方法,包括以下步骤:
步骤1、建立3个数据队列分别为待分离心肺音队列Qx、已分离心音队列Qc以及已分离肺音队列Qr,对待分离心肺音队列Qx、已分离心音队列Qc以及已分离肺音队列Qr进行初始化,初始化成空队列;
步骤2、持续读取当前缓存数据样本插入队列Qx中,且Qx中保留的数据向量x总时长不超过0.2秒;
步骤3、采用熵谱判断队列Qx中是否有第一心音成分S1或第二心音成分S2,若队列Qx中无第一心音成分S1或者第二心音成分S2,将数据向量x经通带为[60 1000]Hz的Butterworth滤波器进行滤波,滤波后插入队列Qr中,并将与数据向量x同等长度的全零数据向量插入队列Qc中,删除队列Qx中的数据,若队列Qx的尾部有不完整的第一心音成分S1或者第二心音成分S2,则将该心音成分前的数据经带宽为[60 1000]Hz的滤波器滤波,滤波后插入队列Qr中,并将与该心音成分前的数据同等长度的全零数据向量插入队列Qc中,删除队列Qx中心音成分前的数据,若队列Qx中有完整的第一心音成分S1或者第二心音成分S2,进入步骤4;
步骤4、若队列Qx中有完整的Si,将x中以Si成分的中心点对称分布的一段连续数据向量表示为xSi,则x表示为
步骤5、若队列Qx中有完整的Si,检查队列Qc中是否也有完整的Si,若队列Qc中无完整的Si,将x经通带为[601000]Hz的滤波器进行滤波,滤波后插入队列Qr中,xSi经滤波器滤波得到并将x01与x02分别赋值为全零向量001与002,将全零向量001与002插入队列Qc中,删除队列Qx中的数据;
步骤6、判断队列Qc中Si成分的数量,若只有1个Si成分,复制出以该成分的中心点对称分布的一段连续数据向量c1,利用xSi与c1计算其各自的协方差矩阵R0与R1以及参考协方差矩阵Rref0与Rref1,对R0与R1作广义特征值分解得到广义特征向量矩阵U和广义特征值向量d,对Rref0与Rref1作广义特征值分解得到广义特征向量矩阵Uref和广义特征值向量dref;若有2个或者2个以上的Si成分,选择最近的2个Si成分,复制出以2个Si成分的中心点对称分布的两段连续数据向量c1与c2,利用xSi、c1与c2计算其各自的协方差矩阵R0、R1与R2以及参考协方差矩阵Rref0、Rref1与Rref2,对R0、R1与R2作联合对角化得到特征向量构成的矩阵U和三个对应特征值向量d0、d1与d2,对Rref0、Rref1与Rref2作联合对角化得到特征向量构成的矩阵Uref和三个对应特征值向量dref0、dref1与dref2
步骤7、将特征向量矩阵U与Uref各列按各自对应特征值从大到小顺序重新排列,选择占总能量99.5%的特征值所对应的特征向量分别构成待选特征向量矩阵US与参考特征向量矩阵US,ref
步骤8、利用待选特征向量矩阵US与参考特征向量矩阵US,ref之间的相关性,选择与心音Si成分对应的特征向量构成心音特征矩阵USi
步骤9、利用心音特征矩阵USi构成投影矩阵PSi,并由PSi求得分离后的心音信号向量xc与肺音信号向量xr
步骤10、将心音信号向量xc插入队列Qc中,将肺音信号向量xr插入队列Qr中,删除队列Qx中的数据;若仍有数据进入缓存,执行步骤2,若再无数据进入缓存,任务结束,退出。
进一步地,所述步骤6中,利用xSi与c1计算其各自的协方差矩阵R0与R1以及参考协方差矩阵Rref0与Rref1,包括以下步骤:
H1、分别对xSi与c1利用上截止频率为100Hz的低通滤波器进行滤波,并分别得到参考数据向量xSi,ref与c1,ref
H2、将xSi、c1、xSi,ref与c1,ref数据向量都构造成数据矩阵X=[x1,x2,...,xN]的形式,其中,xn=[xn,xn+1,...,xM+n-1]T,n=1,2,...,N,当Si为S1时,M等于0.14秒时长数据的采样点数,当Si为S2时,M等于0.11秒时长数据的采样点数,而M+N-1则等于原数据向量xSi、c1、xSi,ref与c1,ref的长度;
H3、基于数据向量xSi、c1、xSi,ref与c1,ref所各自对应的数据矩阵X,利用R=(X-μ1T)(X-μ1T)T/N分别计算得到协方差矩阵R0与R1以及参考协方差矩阵Rref0与Rref1,其中,为各列X的均值,1为全1向量。
进一步地,所述步骤6中,将R0与R1作广义特征值进行分解,得到广义特征向量矩阵U和广义特征值向量d的过程,采用方法如下:
W1、矩阵R0与R1为实对称矩阵,利用广义特征值分解的Lanczos算法,计算矩阵束(R0,R1)的广义特征对(λk,uk),k=1,2,...,M,使得R0uk=λkR1uk,k=1,2,...,M;
W2、分别提取uk和λk,分别构成广义特征向量矩阵U=[u1,u2,...,uM]和广义特征值向量d=[λ12,...,λM]T
进一步地,所述步骤7中,将特征向量矩阵U与Uref各列按各自对应特征值从大到小顺序重新排列,包括以下步骤:
P1、若步骤6得到广义特征值向量d和dref:首先对广义特征值向量d从大到小排序得到并将广义特征向量矩阵U中的各列按照中各元素的重排顺序重排得到然后对参考协方差矩阵的广义特征值向量dref从大到小排序得到并将参考广义特征向量矩阵Uref中的各列按照中各元素的重排顺序重排得到
P2、若由步骤5得到广义特征值向量d0、d1与d2以及dref0、dref1与dref2,首先计算将向量中的各元素按照从大到小重新排序,并将广义特征向量矩阵U中的各列按照中各元素的重排顺序重排得到然后计算将向量中的各元素按照从大到小重新排序,并将参考广义特征向量矩阵Uref中的各列按照中各元素的重排顺序重排得到
进一步地,所述步骤7中,选择占总能量99.5%的特征值所对应的特征向量分别构成待选特征向量矩阵US与参考特征向量矩阵US,ref,包括以下步骤:
Q1、从的最大值(n=1)出发不断增加其元素序号n,计算直到该值大于等于99.5%时停止,记此时元素序号为n=Np,则待选特征向量矩阵US构成;
Q2、从的最大值(n=1)出发,计算直到该值大于等于99.5%时停止,记该索引值为Np,ref,则参考特征向量矩阵US,ref构成。
进一步地,所述步骤8中,利用选特征向量矩阵US与参考特征向量矩阵US,ref之间的相关性,获得心音特征矩阵USi的方法,包括以下步骤:
F1、假设待选特征向量矩阵US的列数为m1,参考特征向量矩阵US,ref的列数为m2,计算相关系数均值其中ui为US的第i列,uref,k为US,ref的第k列;
F2、将ri与阈值Thr进行比较,其中,i=1,2,...,m1,Thr一般取0.6,若ri大于Thr,则该特征向量ui属于心音成分;
F3、将所有通过阈值Thr判定属于心音成分的特征向量作为列,构成与心音Si成分对应的特征向量矩阵USi
进一步地,所述步骤9中,求得分离后的心音信号向量xc与肺音信号向量xr的方法,包括以下步骤:
K1、利用心音特征矩阵USi,构造投影矩阵
K2、计算XSi,c=PSiXSi,其中XSi是步骤5中由xSi构造而成的数据矩阵;
K3、从待分离心肺音队列Qx的数据向量x中分离出的心音信号向量表示为并根据心音信号向量求得肺音信号向量xr=x-xc
本发明的有益效果:
本发明提供的一种电子听诊器的实时心肺音自动分离方法,利用联合对角化对相邻心音周期段数据进行处理,可充分发掘相邻心音周期段心音成分的相似性以提取心音信号,从而实现心肺音的自动分离,具有较高的实用性;并可有效地分离出心音信号和肺音信号,具有准确性高的特点;能够考虑不同心音周期可能存在的信号时变,以对心音进行准确的分析,同时对于呼吸道出现病变导致听诊信号出现附加呼吸音,可在肺音分离结果中较好地保留这些附加呼吸音,为后续基于心肺音分离结果的诊断提供保障,该分离方法具有实时性以及准确性高的特点。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明中一种电子听诊器的实时心肺音自动分离方法的流程图;
图2中(a)、(b)、(c)分别表示为本发明中原始心肺音信号图、分离出的心音信号图和分离出的肺音信号图;
图3中(a)、(b)、(c)和(d)分别表示为混合前的含湿啰音的肺音信号波形图、肺音信号频谱图、心肺分离得到的肺音信号波形图和肺音信号频谱图;
图4中(a)、(b)、(c)和(d)分别表示为混合前的含喘鸣音的肺音信号波形图、肺音信号频谱图、心肺分离得到的肺音信号波形图和肺音信号频谱图;
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
实时例1:
通过电子听诊器采集一段健康人的心肺音信号,采样频率为8000Hz,总时长为5.5秒,被试以深呼吸方式呼吸,外界无噪声干扰,且电子听诊器采用本发明中提出的实时心肺音自动分离方法。
请参阅图1和2所示,一种电子听诊器的实时心肺音自动分离方法,包括以下步骤:
步骤1、建立3个数据队列分别为待分离心肺音队列Qx、已分离心音队列Qc以及已分离肺音队列Qr,对待分离心肺音队列Qx、已分离心音队列Qc以及已分离肺音队列Qr进行初始化,初始化成空队列;
步骤2、持续读取当前缓存数据样本插入队列Qx中,且Qx中保留的数据向量x总时长不超过0.2秒;
步骤3、采用熵谱判断队列Qx中是否有第一心音成分S1或第二心音成分S2,若队列Qx中无第一心音成分S1或者第二心音成分S2,将数据向量x经通带为[60 1000]Hz的Butterworth滤波器进行滤波,滤波后插入队列Qr中,并将与数据向量x同等长度的全零数据向量插入队列Qc中,删除队列Qx中的数据,若队列Qx的尾部有不完整的第一心音成分S1或者第二心音成分S2,则将该心音成分前的数据经带宽为[60 1000]Hz的滤波器滤波,滤波后插入队列Qr中,并将与该心音成分前的数据同等长度的全零数据向量插入队列Qc中,删除队列Qx中心音成分前的数据,若队列Qx中有完整的第一心音成分S1或者第二心音成分S2,进入步骤4;
步骤4、若队列Qx中有完整的Si(i=1或2),将x中以Si成分的中心点对称分布的一段连续数据向量表示为xSi(i=1时其时长为0.18秒,i=2时其时长为0.15秒),则x表示为
步骤5、若队列Qx中有完整的Si(i=1或2),检查队列Qc中是否也有完整的Si,若队列Qc中无完整的Si,将x经通带为[601000]Hz的Butterworth滤波器进行滤波,滤波后插入队列Qr中,xSi经Butterworth滤波器(i=1时通带为[10 300]Hz,i=2时通带为[50320]Hz)滤波得到并将x01与x02分别赋值为全零向量001与002,将全零向量001与002插入队列Qc中,删除队列Qx中的数据;
步骤6、判断队列Qc中Si成分的数量,若只有1个Si成分,复制出以该成分的中心点对称分布的一段连续数据向量c1(当Si为S1时c1的长度为0.18秒时长的采样点数,当Si为S2时c1的长度为0.15秒时长的采样点数),利用xSi计算其协方差矩阵R0与参考协方差矩阵Rref0,利用c1计算其协方差矩阵R1与参考协方差矩阵Rref1,对R0与R1作广义特征值分解得到广义特征向量矩阵U和广义特征值向量d,对Rref0与Rref1作广义特征值分解得到广义特征向量矩阵Uref和广义特征值向量dref;若有2个或者2个以上的Si成分,选择最近的2个Si成分,复制出以2个Si成分的中心点对称分布的两段连续数据向量c1与c2(当Si为S1时c1与c2的长度均为0.18秒时长的采样点数,当Si为S2时c1与c2的长度均为0.15秒时长的采样点数),利用xSi、c1与c2计算其各自的协方差矩阵R0、R1与R2以及参考协方差矩阵Rref0、Rref1与Rref2,对R0、R1与R2作联合对角化得到特征向量构成的矩阵U和三个对应特征值向量d0、d1与d2,对Rref0、Rref1与Rref2作联合对角化得到特征向量构成的矩阵Uref和三个对应特征值向量dref0、dref1与dref2
其中,利用xSi与c1计算其各自的协方差矩阵R0与R1以及参考协方差矩阵Rref0与Rref1,包括以下步骤:
H1、分别对xSi与c1利用上截止频率为100Hz的低通滤波器进行滤波,并分别得到参考数据向量xSi,ref与c1,ref
将xSi、c1、xSi,ref与c1,ref数据向量都构造成数据矩阵X=[x1,x2,...,xN]的形式,其中,xn=[xn,xn+1,...,xM+n-1]T,n=1,2,...,N,当Si为S1时,M等于0.14秒时长数据的采样点数,当Si为S2时,M等于0.11秒时长数据的采样点数,M+N-1则等于原数据向量xSi、c1、xSi,ref与c1,ref的长度;
H3、基于数据向量xSi、c1、xSi,ref与c1,ref所各自对应的数据矩阵X,利用R=(X-μ1T)(X-μ1T)T/N分别计算得到协方差矩阵R0与R1以及参考协方差矩阵Rref0与Rref1,其中,为各列X的均值,1为全1向量。
其中,将R0与R1作广义特征值进行分解,得到广义特征向量矩阵U和广义特征值向量d,采用的方法如下:
W1、矩阵R0与R1为实对称矩阵,利用广义特征值分解的Lanczos算法,计算矩阵束(R0,R1)的广义特征对(λk,uk),k=1,2,...,M,使得R0uk=λkR1uk,k=1,2,...,M;
W2、分别提取uk和λk,分别构成广义特征向量矩阵U=[u1,u2,...,uM]和广义特征值向量d=[λ12,...,λM]T
其中,对R0、R1与R2作联合对角化,采用的是Cardoso等人提出的近似联合对角化的Jacobi算法,计算使得目标函数最小的酉矩阵U和向量dk,k=0,1,2,即特征向量构成的矩阵U和三个对应特征值向量d0、d1与d2
步骤7、将特征向量矩阵U与Uref各列按各自对应特征值从大到小顺序重新排列,选择占总能量99.5%的特征值所对应的特征向量分别构成待选特征向量矩阵US与参考特征向量矩阵US,ref
其中,将特征向量矩阵U与Uref各列按各自对应特征值从大到小顺序重新排列,包括以下步骤:
P1、若步骤6得到广义特征值向量d和dref:首先对广义特征值向量d从大到小排序得到并将广义特征向量矩阵U中的各列按照中各元素的重排顺序重排得到然后对参考协方差矩阵的广义特征值向量dref从大到小排序得到并将参考广义特征向量矩阵Uref中的各列按照中各元素的重排顺序重排得到
P2、若由步骤5得到广义特征值向量d0、d1与d2以及dref0、dref1与dref2,首先计算(其中⊙为Hardmard积),将向量中的各元素按照从大到小重新排序,并将广义特征向量矩阵U中的各列按照中各元素的重排顺序重排得到然后计算将向量中的各元素按照从大到小重新排序,并将参考广义特征向量矩阵Uref中的各列按照中各元素的重排顺序重排得到
其中,选择占总能量99.5%的特征值所对应的特征向量分别构成待选特征向量矩阵US与参考特征向量矩阵US,ref,包括以下步骤:
Q1、从的最大值(n=1)出发不断增加其元素序号n,计算直到该值大于等于99.5%时停止,记此时元素序号为n=Np,则待选特征向量矩阵US构成;
Q2、从的最大值(n=1)出发,计算直到该值大于等于99.5%时停止,记该索引值为Np,ref,则参考特征向量矩阵US,ref构成。
步骤8、利用待选特征向量矩阵US与参考特征向量矩阵US,ref之间的相关性,选择与心音Si成分对应的特征向量构成心音特征矩阵USi
其中,利用选特征向量矩阵US与参考特征向量矩阵US,ref之间的相关性,获得心音特征矩阵USi的方法,包括以下步骤:
F1、假设待选特征向量矩阵US的列数为m1,参考特征向量矩阵US,ref的列数为m2,计算相关系数均值其中ui为US的第i列,uref,k为US,ref的第k列;
F2、将ri与阈值Thr进行比较,其中,i=1,2,...,m1,Thr一般取0.6,若ri大于Thr,则该特征向量ui属于心音成分;
F3、将所有通过阈值Thr判定属于心音成分的特征向量作为列,构成与心音Si成分对应的特征向量矩阵USi
步骤9、利用心音特征矩阵USi构成投影矩阵PSi,并由PSi求得分离后的心音信号向量xc与肺音信号向量xr
其中,求得分离后的心音信号向量xc与肺音信号向量xr的方法,包括以下步骤:
K1、利用心音特征矩阵USi,构造投影矩阵
K2、计算XSi,c=PSiXSi,其中XSi是步骤5中由xSi构造而成的数据矩阵;
K3、从待分离心肺音队列Qx的数据向量x中分离出的心音信号向量表示为并根据心音信号向量求得肺音信号向量xr=x-xc
步骤10、将心音信号向量xc插入队列Qc中,将肺音信号向量xr插入队列Qr中,删除队列Qx中的数据;若仍有数据进入缓存,执行步骤2,若再无数据进入缓存,任务结束,退出。
实施例2:
为验证本发明在呼吸音中出现湿啰音时的心肺音分离结果,采用在辽宁中医药大学附属医院儿科诊室采集的一段患有肺炎的5岁幼儿的听诊数据,采集位置在背部且该听诊信号中几乎不含心音信号,采样频率为8000Hz,采样时长为4秒,经听诊专家判定该段数据中含有湿啰音。把该肺音信号与一段屏住呼吸时所录的心音信号进行叠加,生成一段混合心肺音信号。
为了模拟电子听诊器的实时处理过程,在计算机内存中分配1600×16bit的空间用于模拟待分离心肺音队列Qx,并将该段混合心肺音信号数据以0.125ms每个样本(16bit)的速度读入该内存空间中,其余算法操作步骤与实施例1相同。
如图3所示,即使待分离的心肺音信号中含有湿啰音,本发明所得的心肺音分离结果中的肺音信号中仍然保留该湿啰音成分,因此不仅不会影响后续的肺音诊断结果,还因心音的抵消可增强肺音诊断效果,其中,虚线框所标记的是喘鸣音所在的区域。
实施例3:
为验证本发明在呼吸音中出现喘鸣音时的心肺音分离结果,采用在辽宁中医药大学附属医院儿科诊室采集的一段10岁哮喘患儿的听诊数据,采集位置在背部且该听诊信号中几乎不含心音信号,采样频率为8000Hz,采样时长为4秒,经听诊专家判定该段数据中含有喘鸣音,把该肺音信号与一段屏住呼吸时所录的心音信号进行叠加,生成一段混合心肺音信号,该模拟电子听诊器的实时处理过程与实施例1相同。
图4所示的是混合前的含喘鸣音的肺音信号,通过该附图可知,即使待分离的心肺音信号中含有喘鸣音,本发明所得的心肺音分离结果中的肺音信号中仍然保留该喘鸣音成分,因此不仅不会影响后续的肺音诊断结果,还因心音的抵消可增强肺音诊断效果,其中,虚线框所标记的是喘鸣音所在的区域。
以上内容仅仅是对本发明的构思所作的举例和说明,所属本技术领域的技术人员对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离发明的构思或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。

Claims (7)

1.一种电子听诊器的实时心肺音自动分离方法,其特征在于,包括以下步骤:
步骤1、建立3个数据队列分别为待分离心肺音队列Qx、已分离心音队列Qc以及已分离肺音队列Qr,对待分离心肺音队列Qx、已分离心音队列Qc以及已分离肺音队列Qr进行初始化,初始化成空队列;
步骤2、持续读取当前缓存数据样本插入队列Qx中,且Qx中保留的数据向量x总时长不超过0.2秒;
步骤3、采用熵谱判断队列Qx中是否有第一心音成分S1或第二心音成分S2,若队列Qx中无第一心音成分S1或者第二心音成分S2,将数据向量x经通带为[601000]Hz的Butterworth滤波器进行滤波,滤波后插入队列Qr中,并将与数据向量x同等长度的全零数据向量插入队列Qc中,删除队列Qx中的数据,若队列Qx的尾部有不完整的第一心音成分S1或者第二心音成分S2,则将该心音成分前的数据经带宽为[601000]Hz的滤波器滤波,滤波后插入队列Qr中,并将与该心音成分前的数据同等长度的全零数据向量插入队列Qc中,删除队列Qx中心音成分前的数据,若队列Qx中有完整的第一心音成分S1或者第二心音成分S2,进入步骤4;
步骤4、若队列Qx中有完整的Si,将x中以Si成分的中心点对称分布的一段连续数据向量表示为xSi,则x表示为
步骤5、若队列Qx中有完整的Si,检查队列Qc中是否也有完整的Si,若队列Qc中无完整的Si,将x经通带为[601000]Hz的滤波器进行滤波,滤波后插入队列Qr中,xSi经滤波器滤波得到并将x01与x02分别赋值为全零向量001与002,将全零向量001与002插入队列Qc中,删除队列Qx中的数据;
步骤6、判断队列Qc中Si成分的数量,若只有1个Si成分,复制出以该成分的中心点对称分布的一段连续数据向量c1,利用xSi与c1计算其各自的协方差矩阵R0与R1以及参考协方差矩阵Rref0与Rref1,对R0与R1作广义特征值分解得到广义特征向量矩阵U和广义特征值向量d,对Rref0与Rref1作广义特征值分解得到广义特征向量矩阵Uref和广义特征值向量dref;若有2个或者2个以上的Si成分,选择最近的2个Si成分,复制出以2个Si成分的中心点对称分布的两段连续数据向量c1与c2,利用xSi、c1与c2计算其各自的协方差矩阵R0、R1与R2以及参考协方差矩阵Rref0、Rref1与Rref2,对R0、R1与R2作联合对角化得到特征向量构成的矩阵U和三个对应特征值向量d0、d1与d2,对Rref0、Rref1与Rref2作联合对角化得到特征向量构成的矩阵Uref和三个对应特征值向量dref0、dref1与dref2
步骤7、将特征向量矩阵U与Uref各列按各自对应特征值从大到小顺序重新排列,选择占总能量99.5%的特征值所对应的特征向量分别构成待选特征向量矩阵US与参考特征向量矩阵US,ref
步骤8、利用待选特征向量矩阵US与参考特征向量矩阵US,ref之间的相关性,选择与心音Si成分对应的特征向量构成心音特征矩阵USi
步骤9、利用心音特征矩阵USi构成投影矩阵PSi,并由PSi求得分离后的心音信号向量xc与肺音信号向量xr
步骤10、将心音信号向量xc插入队列Qc中,将肺音信号向量xr插入队列Qr中,删除队列Qx中的数据;若仍有数据进入缓存,执行步骤2,若再无数据进入缓存,任务结束,退出。
2.根据权利要求1所述的一种电子听诊器的实时心肺音自动分离方法,其特征在于:所述步骤6中,利用xSi与c1计算其各自的协方差矩阵R0与R1以及参考协方差矩阵Rref0与Rref1,包括以下步骤:
H1、分别对xSi与c1利用上截止频率为100Hz的低通滤波器进行滤波,并分别得到参考数据向量xSi,ref与c1,ref
H2、将xSi、c1、xSi,ref与c1,ref数据向量都构造成数据矩阵X=[x1,x2,...,xN]的形式,其中,xn=[xn,xn+1,...,xM+n-1]T,n=1,2,...,N,当Si为S1时,M等于0.14秒时长数据的采样点数,当Si为S2时,M等于0.11秒时长数据的采样点数,而M+N-1则等于原数据向量xSi、c1、xSi,ref与c1,ref的长度;
H3、基于数据向量xSi、c1、xSi,ref与c1,ref所各自对应的数据矩阵X,利用R=(X-μ1T)(X-μ1T)T/N分别计算得到协方差矩阵R0与R1以及参考协方差矩阵Rref0与Rref1,其中,为各列X的均值,1为全1向量。
3.根据权利要求1所述的一种电子听诊器的实时心肺音自动分离方法,其特征在于:所述步骤6中,将R0与R1作广义特征值进行分解,得到广义特征向量矩阵U和广义特征值向量d的过程,采用方法如下:
W1、矩阵R0与R1为实对称矩阵,利用广义特征值分解的Lanczos算法,计算矩阵束(R0,R1)的广义特征对(λk,uk),k=1,2,...,M,使得R0uk=λkR1uk,k=1,2,...,M;
W2、分别提取uk和λk,分别构成广义特征向量矩阵U=[u1,u2,...,uM]和广义特征值向量d=[λ12,...,λM]T
4.根据权利要求1所述的一种电子听诊器的实时心肺音自动分离方法,其特征在于:所述步骤7中,将特征向量矩阵U与Uref各列按各自对应特征值从大到小顺序重新排列,包括以下步骤:
P1、若步骤6得到广义特征值向量d和dref:首先对广义特征值向量d从大到小排序得到并将广义特征向量矩阵U中的各列按照中各元素的重排顺序重排得到然后对参考协方差矩阵的广义特征值向量dref从大到小排序得到并将参考广义特征向量矩阵Uref中的各列按照中各元素的重排顺序重排得到
P2、若由步骤5得到广义特征值向量d0、d1与d2以及dref0、dref1与dref2,首先计算将向量中的各元素按照从大到小重新排序,并将广义特征向量矩阵U中的各列按照中各元素的重排顺序重排得到然后计算将向量中的各元素按照从大到小重新排序,并将参考广义特征向量矩阵Uref中的各列按照中各元素的重排顺序重排得到
5.根据权利要求1所述的一种电子听诊器的实时心肺音自动分离方法,其特征在于:所述步骤7中,选择占总能量99.5%的特征值所对应的特征向量分别构成待选特征向量矩阵US与参考特征向量矩阵US,ref,包括以下步骤:
Q1、从的最大值出发不断增加其元素序号n,计算直到该值大于等于99.5%时停止,记此时元素序号为n=Np,则待选特征向量矩阵US构成;
Q2、从的最大值出发,计算直到该值大于等于99.5%时停止,记该索引值为Np,ref,则参考特征向量矩阵US,ref构成。
6.根据权利要求1所述的一种电子听诊器的实时心肺音自动分离方法,其特征在于:所述步骤8中,利用选特征向量矩阵US与参考特征向量矩阵US,ref之间的相关性,获得心音特征矩阵USi的方法,包括以下步骤:
F1、假设待选特征向量矩阵US的列数为m1,参考特征向量矩阵US,ref的列数为m2,计算相关系数均值i=1,2,...,m1,其中ui为US的第i列,uref,k为US,ref的第k列;
F2、将ri与阈值Thr进行比较,其中,i=1,2,...,m1,Thr一般取0.6,若ri大于Thr,则该特征向量ui属于心音成分;
F3、将所有通过阈值Thr判定属于心音成分的特征向量作为列,构成与心音Si成分对应的特征向量矩阵USi
7.根据权利要求1所述的一种电子听诊器的实时心肺音自动分离方法,其特征在于:所述步骤9中,求得分离后的心音信号向量xc与肺音信号向量xr的方法,包括以下步骤:
K1、利用心音特征矩阵USi,构造投影矩阵
K2、计算XSi,c=PSiXSi,其中XSi是步骤5中由xSi构造而成的数据矩阵;
K3、从待分离心肺音队列Qx的数据向量x中分离出的心音信号向量表示为并根据心音信号向量求得肺音信号向量xr=x-xc
CN201910476790.3A 2019-06-03 2019-06-03 一种电子听诊器的实时心肺音自动分离方法 Active CN110236589B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910476790.3A CN110236589B (zh) 2019-06-03 2019-06-03 一种电子听诊器的实时心肺音自动分离方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910476790.3A CN110236589B (zh) 2019-06-03 2019-06-03 一种电子听诊器的实时心肺音自动分离方法

Publications (2)

Publication Number Publication Date
CN110236589A true CN110236589A (zh) 2019-09-17
CN110236589B CN110236589B (zh) 2022-04-29

Family

ID=67885911

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910476790.3A Active CN110236589B (zh) 2019-06-03 2019-06-03 一种电子听诊器的实时心肺音自动分离方法

Country Status (1)

Country Link
CN (1) CN110236589B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110705624A (zh) * 2019-09-26 2020-01-17 广东工业大学 一种基于多信噪比模型的心肺音分离方法及系统
CN112842271A (zh) * 2021-01-11 2021-05-28 武汉理工大学 基于光纤传感的生理信号分离提取系统及方法

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6527729B1 (en) * 1999-11-10 2003-03-04 Pacesetter, Inc. Method for monitoring patient using acoustic sensor
US20030204380A1 (en) * 2002-04-22 2003-10-30 Dishman John F. Blind source separation utilizing a spatial fourth order cumulant matrix pencil
US20070122041A1 (en) * 2005-11-29 2007-05-31 Baback Moghaddam Spectral method for sparse linear discriminant analysis
EP1943952A1 (de) * 2007-01-12 2008-07-16 Enverdis GmbH Medizinischer Schallsensor sowie Diagnoseverfahren zur Diagnose von Herz- und/ oder Lungenerkrankungen
US20090060008A1 (en) * 2007-08-29 2009-03-05 Harris Corporation System and method for blind source separation of signals using noise estimator
CN103295193A (zh) * 2013-05-10 2013-09-11 天津理工大学 基于互功率谱的盲源分离方法
EP2869770A1 (en) * 2012-07-05 2015-05-13 Pulmonary Apps, LLC Wireless stethoscope and method of use thereof
CN104655425A (zh) * 2015-03-06 2015-05-27 重庆大学 基于稀疏表示和大间隔分布学习的轴承故障分类诊断方法
CN107798350A (zh) * 2017-11-08 2018-03-13 华南师范大学 一种心肺音信号识别方法和系统
CN107837091A (zh) * 2017-11-15 2018-03-27 广东工业大学 一种单通道心肺音分离方法及系统
CN108364659A (zh) * 2018-02-05 2018-08-03 西安电子科技大学 基于多目标优化的频域卷积盲信号分离方法
CN108814642A (zh) * 2018-05-16 2018-11-16 合肥康聆医疗科技有限公司 一种电子听诊器的心音定位及心率计算方法
CN208128510U (zh) * 2018-05-16 2018-11-20 合肥康聆医疗科技有限公司 基于低功耗蓝牙的双通道心肺音采集无线传输实时系统
CN109711073A (zh) * 2018-12-29 2019-05-03 广东工业大学 一种基于稀疏表示的心肺音混叠信号盲源分离方法
CN109805954A (zh) * 2019-01-23 2019-05-28 苏州美糯爱医疗科技有限公司 一种电子听诊器的摩擦音干扰自动消除方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6527729B1 (en) * 1999-11-10 2003-03-04 Pacesetter, Inc. Method for monitoring patient using acoustic sensor
US20030204380A1 (en) * 2002-04-22 2003-10-30 Dishman John F. Blind source separation utilizing a spatial fourth order cumulant matrix pencil
US20070122041A1 (en) * 2005-11-29 2007-05-31 Baback Moghaddam Spectral method for sparse linear discriminant analysis
EP1943952A1 (de) * 2007-01-12 2008-07-16 Enverdis GmbH Medizinischer Schallsensor sowie Diagnoseverfahren zur Diagnose von Herz- und/ oder Lungenerkrankungen
US20090060008A1 (en) * 2007-08-29 2009-03-05 Harris Corporation System and method for blind source separation of signals using noise estimator
EP2869770A1 (en) * 2012-07-05 2015-05-13 Pulmonary Apps, LLC Wireless stethoscope and method of use thereof
CN103295193A (zh) * 2013-05-10 2013-09-11 天津理工大学 基于互功率谱的盲源分离方法
CN104655425A (zh) * 2015-03-06 2015-05-27 重庆大学 基于稀疏表示和大间隔分布学习的轴承故障分类诊断方法
CN107798350A (zh) * 2017-11-08 2018-03-13 华南师范大学 一种心肺音信号识别方法和系统
CN107837091A (zh) * 2017-11-15 2018-03-27 广东工业大学 一种单通道心肺音分离方法及系统
CN108364659A (zh) * 2018-02-05 2018-08-03 西安电子科技大学 基于多目标优化的频域卷积盲信号分离方法
CN108814642A (zh) * 2018-05-16 2018-11-16 合肥康聆医疗科技有限公司 一种电子听诊器的心音定位及心率计算方法
CN208128510U (zh) * 2018-05-16 2018-11-20 合肥康聆医疗科技有限公司 基于低功耗蓝牙的双通道心肺音采集无线传输实时系统
CN109711073A (zh) * 2018-12-29 2019-05-03 广东工业大学 一种基于稀疏表示的心肺音混叠信号盲源分离方法
CN109805954A (zh) * 2019-01-23 2019-05-28 苏州美糯爱医疗科技有限公司 一种电子听诊器的摩擦音干扰自动消除方法

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
FOX, NA; LEWIS, M: "CARDIAC RESPONSE TO SPEECH SOUNDS IN PRETERM INFANTS - EFFECTS OF POSTNATAL ILLNESS AT 3 MONTHS", 《PSYCHOPHYSIOLOGY》 *
YANG, XIAO-YUN; WANG, LIN; ZHOU, NING: "[Antiatherosclerotic mechanism of aspirin: experiment with rabbits", 《ZHONGHUA YI XUE ZA ZHI》 *
YEREDOR, A (YEREDOR, ARIE): "Performance Analysis of GEVD-Based Source Separation With Second-Order Statistics", 《IEEE TRANSACTIONS ON SIGNAL PROCESSING》 *
ZHOU, NING;HU, NAN;CAI, SHENGSHENG;XU, XINGGUO: "A Cardiac Sound Localization and Identification Method for Electronic Stethoscope", 《2018 IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, COMMUNICATIONS AND COMPUTING (ICSPCC)》 *
毛蕾.: "基于多模态统计量融合处理的联合盲分离", 《万方》 *
穆俊生: "基于特征值筛选的子空间语音增强算法研究", 《万方》 *
费丽萍 司裕龙 周宁 郭艳霞 宋凯 卫杏利: "心脏骤停经110分钟抢救成功1例", 《中国急救医学》 *
赵一鸣: "基于盲信号分离的肺音信号提取研究", 《万方》 *
郭鹿鸣: "基于盲源分离的心肺音信号分离方法研究与应用", 《万方》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110705624A (zh) * 2019-09-26 2020-01-17 广东工业大学 一种基于多信噪比模型的心肺音分离方法及系统
CN112842271A (zh) * 2021-01-11 2021-05-28 武汉理工大学 基于光纤传感的生理信号分离提取系统及方法
CN112842271B (zh) * 2021-01-11 2021-12-17 武汉理工大学 基于光纤传感的生理信号分离提取系统及方法

Also Published As

Publication number Publication date
CN110236589B (zh) 2022-04-29

Similar Documents

Publication Publication Date Title
CHRISTIANSON The relationship between maternal smoking and the incidence of congenital anomalies
Mantel et al. Statistical aspects of the analysis of data from retrospective studies of disease
Bland et al. Social network and blood pressure: a population study.
Kryger et al. Excessive polycythemia of high altitude: role of ventilatory drive and lung disease
Soufflet et al. Intraction between tracheal sound and flow rate: a comparison of some different flow evaluations from lung sounds
CN106108889A (zh) 基于深度学习算法的心电图分类方法
CN110236589A (zh) 一种电子听诊器的实时心肺音自动分离方法
Snowdon et al. Years of life with good and poor mental and physical function in the elderly
Dart THE PHYSICAL CHARACTERS OF THE|? AUNI-≠ KHOMNI BUSHMEN
CN105725966A (zh) 一种基于神经网络模型的心电信号质量判别方法
Zackon et al. Occlusion pressure responses in asthma and chronic obstructive pulmonary disease
CN105726013A (zh) 一种具有心电信号质量判别功能的心电监测系统
Malcolm Growth and development of the Kaiapit children of the Markham Valley, New Guinea
GJØRUP et al. Interobserver variation in assessment of respiratory signs: Physicians' guesses as to interobserver variation
Strong et al. The health of overseas-born Australians, 1994-1996
Huicho et al. Oxygen saturation and heart rate in healthy school children and adolescents living at high altitude
CN109711073B (zh) 一种基于稀疏表示的心肺音混叠信号盲源分离方法
Marzbanrad et al. Assessment of fetal development using cardiac valve intervals
Dwire et al. Repeated measures of vocal fundamental frequency perturbation obtained using the Visi-Pitch
PERZIGIAN Human odontometric variation: an evolutionary and taxonomic assessment
Cotes et al. Lung function and the response to exercise in New Guineans: role of genetic and environmental factors
Royster et al. Age effect hearing levels for a black nonindustrial noise exposed population (NINEP)
Gibson et al. Lung function in an Australian population: 1. Spirometric standards for non‐smoking adults
Oliver The antithesis of structure and function in renal activity. The problem of its correlation in the nephrons and the kidney and an approach towards its resolution by structural-functional equivalents.
Studebaker et al. Prediction and statistical evaluation of speech recognition test scores

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant