CN110232687A - 一种电力巡检图像中带销螺栓缺陷的检测方法 - Google Patents
一种电力巡检图像中带销螺栓缺陷的检测方法 Download PDFInfo
- Publication number
- CN110232687A CN110232687A CN201910541355.4A CN201910541355A CN110232687A CN 110232687 A CN110232687 A CN 110232687A CN 201910541355 A CN201910541355 A CN 201910541355A CN 110232687 A CN110232687 A CN 110232687A
- Authority
- CN
- China
- Prior art keywords
- bolt
- image
- defect
- cotter
- cotter bolt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 60
- 230000007547 defect Effects 0.000 title claims abstract description 50
- 238000000034 method Methods 0.000 title claims abstract description 45
- 230000008569 process Effects 0.000 title claims abstract description 25
- 238000007689 inspection Methods 0.000 title claims abstract description 18
- 238000012549 training Methods 0.000 claims abstract description 18
- 238000012360 testing method Methods 0.000 claims abstract description 8
- 238000013527 convolutional neural network Methods 0.000 claims description 44
- 238000012545 processing Methods 0.000 claims description 12
- 238000006243 chemical reaction Methods 0.000 claims description 10
- 239000000284 extract Substances 0.000 claims description 9
- 238000001228 spectrum Methods 0.000 claims description 9
- 238000000605 extraction Methods 0.000 claims description 7
- 230000000007 visual effect Effects 0.000 claims description 7
- 230000011218 segmentation Effects 0.000 claims description 4
- 230000001629 suppression Effects 0.000 claims description 4
- 230000004913 activation Effects 0.000 claims description 3
- 238000005286 illumination Methods 0.000 claims description 3
- 238000000691 measurement method Methods 0.000 claims description 3
- 230000002093 peripheral effect Effects 0.000 claims description 3
- 238000007781 pre-processing Methods 0.000 claims description 3
- 230000000694 effects Effects 0.000 claims 1
- 230000006870 function Effects 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 1
- 235000011613 Pinus brutia Nutrition 0.000 description 1
- 241000018646 Pinus brutia Species 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 238000013136 deep learning model Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/06—Energy or water supply
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/90—Dynamic range modification of images or parts thereof
- G06T5/94—Dynamic range modification of images or parts thereof based on local image properties, e.g. for local contrast enhancement
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
- G06T7/0008—Industrial image inspection checking presence/absence
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/136—Segmentation; Edge detection involving thresholding
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30108—Industrial image inspection
- G06T2207/30164—Workpiece; Machine component
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2210/00—Indexing scheme for image generation or computer graphics
- G06T2210/22—Cropping
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Business, Economics & Management (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Health & Medical Sciences (AREA)
- Computational Linguistics (AREA)
- Molecular Biology (AREA)
- Software Systems (AREA)
- Mathematical Physics (AREA)
- General Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Evolutionary Computation (AREA)
- Data Mining & Analysis (AREA)
- Economics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Public Health (AREA)
- Water Supply & Treatment (AREA)
- Human Resources & Organizations (AREA)
- Primary Health Care (AREA)
- General Business, Economics & Management (AREA)
- Marketing (AREA)
- Tourism & Hospitality (AREA)
- Strategic Management (AREA)
- Quality & Reliability (AREA)
- Image Analysis (AREA)
Abstract
Description
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910541355.4A CN110232687B (zh) | 2019-06-21 | 2019-06-21 | 一种电力巡检图像中带销螺栓缺陷的检测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910541355.4A CN110232687B (zh) | 2019-06-21 | 2019-06-21 | 一种电力巡检图像中带销螺栓缺陷的检测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110232687A true CN110232687A (zh) | 2019-09-13 |
CN110232687B CN110232687B (zh) | 2022-04-12 |
Family
ID=67856989
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910541355.4A Active CN110232687B (zh) | 2019-06-21 | 2019-06-21 | 一种电力巡检图像中带销螺栓缺陷的检测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110232687B (zh) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110827251A (zh) * | 2019-10-30 | 2020-02-21 | 江苏方天电力技术有限公司 | 一种基于航拍图像的输电线路锁紧销缺陷检测方法 |
CN110910360A (zh) * | 2019-11-14 | 2020-03-24 | 腾讯云计算(北京)有限责任公司 | 电网图像的定位方法和图像定位模型的训练方法 |
CN111459178A (zh) * | 2020-04-30 | 2020-07-28 | 广东电网有限责任公司 | 一种自动激光消缺的5g智能巡视系统 |
CN111598013A (zh) * | 2020-05-19 | 2020-08-28 | 广东电网有限责任公司 | 一种螺母-销钉状态的识别方法及相关装置 |
CN111798447A (zh) * | 2020-07-18 | 2020-10-20 | 太原理工大学 | 一种基于Faster RCNN的深度学习塑化材料缺陷检测方法 |
CN111815623A (zh) * | 2020-07-28 | 2020-10-23 | 南方电网数字电网研究院有限公司 | 输电线路开口销缺失识别方法 |
CN111898575A (zh) * | 2020-08-06 | 2020-11-06 | 华北电力大学(保定) | 一种基于Faster R-CNN检测器的栓母对自动组合方法 |
CN112233071A (zh) * | 2020-09-28 | 2021-01-15 | 国网浙江省电力有限公司杭州供电公司 | 基于复杂环境下输电网图片的多粒度隐患检测方法及系统 |
CN112364754A (zh) * | 2020-11-09 | 2021-02-12 | 云南电网有限责任公司迪庆供电局 | 螺栓缺陷检测方法及系统 |
CN112733742A (zh) * | 2021-01-14 | 2021-04-30 | 哈尔滨市科佳通用机电股份有限公司 | 一种基于深度学习的铁路货车下拉杆圆销故障检测方法 |
CN113627378A (zh) * | 2021-08-19 | 2021-11-09 | 国网上海市电力公司 | 一种基于Phash算法结合深度学习的线路螺栓缺陷识别方法 |
WO2021232613A1 (zh) * | 2020-05-22 | 2021-11-25 | 五邑大学 | 酒瓶表面缺陷检测方法、电子装置及存储介质 |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040113625A1 (en) * | 2002-08-29 | 2004-06-17 | Pagano Dominick A. | Method and system for analysis of ultrasonic reflections in real time |
CN102298746A (zh) * | 2010-06-25 | 2011-12-28 | 上海九钻电子商务有限公司 | 基于图像处理及图形学技术的戒指在线试戴系统实现方法 |
CN204591286U (zh) * | 2015-04-27 | 2015-08-26 | 浙江大学城市学院 | 一种小曲率半径隧道盾构推进轴线控制机构 |
CN106326894A (zh) * | 2016-08-31 | 2017-01-11 | 西南交通大学 | 一种高铁接触网旋转双耳横向销钉不良状态检测方法 |
CN106372291A (zh) * | 2016-08-29 | 2017-02-01 | 西北工业大学 | 一种公差约束下的叶片余量优化模型建立及求解方法 |
CN107271263A (zh) * | 2015-09-21 | 2017-10-20 | 张志雄 | 螺纹锁销橡胶压板铜基合金蜗轮台板检测玻璃装置 |
US20180005372A1 (en) * | 2016-06-30 | 2018-01-04 | Shanghai United Imaging Healthcare Co., Ltd. | Methods and systems for detecting a centerline of a vessel |
CN107609563A (zh) * | 2017-09-15 | 2018-01-19 | 成都澳海川科技有限公司 | 图片语义描述方法及装置 |
CN107798326A (zh) * | 2017-10-20 | 2018-03-13 | 华南理工大学 | 一种轮廓视觉检测算法 |
CN108052940A (zh) * | 2017-12-17 | 2018-05-18 | 南京理工大学 | 基于深度学习的sar遥感图像水面目标检测方法 |
CN108509839A (zh) * | 2018-02-02 | 2018-09-07 | 东华大学 | 一种基于区域卷积神经网络高效的手势检测识别方法 |
CN109255776A (zh) * | 2018-07-23 | 2019-01-22 | 中国电力科学研究院有限公司 | 一种输电线路开口销缺损自动识别方法 |
CN109886947A (zh) * | 2019-02-19 | 2019-06-14 | 浙江理工大学 | 基于区域的卷积神经网络的高压电线缺陷检测方法 |
-
2019
- 2019-06-21 CN CN201910541355.4A patent/CN110232687B/zh active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040113625A1 (en) * | 2002-08-29 | 2004-06-17 | Pagano Dominick A. | Method and system for analysis of ultrasonic reflections in real time |
CN102298746A (zh) * | 2010-06-25 | 2011-12-28 | 上海九钻电子商务有限公司 | 基于图像处理及图形学技术的戒指在线试戴系统实现方法 |
CN204591286U (zh) * | 2015-04-27 | 2015-08-26 | 浙江大学城市学院 | 一种小曲率半径隧道盾构推进轴线控制机构 |
CN107271263A (zh) * | 2015-09-21 | 2017-10-20 | 张志雄 | 螺纹锁销橡胶压板铜基合金蜗轮台板检测玻璃装置 |
US20180005372A1 (en) * | 2016-06-30 | 2018-01-04 | Shanghai United Imaging Healthcare Co., Ltd. | Methods and systems for detecting a centerline of a vessel |
CN106372291A (zh) * | 2016-08-29 | 2017-02-01 | 西北工业大学 | 一种公差约束下的叶片余量优化模型建立及求解方法 |
CN106326894A (zh) * | 2016-08-31 | 2017-01-11 | 西南交通大学 | 一种高铁接触网旋转双耳横向销钉不良状态检测方法 |
CN107609563A (zh) * | 2017-09-15 | 2018-01-19 | 成都澳海川科技有限公司 | 图片语义描述方法及装置 |
CN107798326A (zh) * | 2017-10-20 | 2018-03-13 | 华南理工大学 | 一种轮廓视觉检测算法 |
CN108052940A (zh) * | 2017-12-17 | 2018-05-18 | 南京理工大学 | 基于深度学习的sar遥感图像水面目标检测方法 |
CN108509839A (zh) * | 2018-02-02 | 2018-09-07 | 东华大学 | 一种基于区域卷积神经网络高效的手势检测识别方法 |
CN109255776A (zh) * | 2018-07-23 | 2019-01-22 | 中国电力科学研究院有限公司 | 一种输电线路开口销缺损自动识别方法 |
CN109886947A (zh) * | 2019-02-19 | 2019-06-14 | 浙江理工大学 | 基于区域的卷积神经网络的高压电线缺陷检测方法 |
Non-Patent Citations (7)
Title |
---|
OZAN ERSOY等: "Skeleton-based edge bundling for graph visualization", 《IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS》 * |
ZHENBING ZHAO等: "Insulator Detection Method in Inspection Image Based on Improved Faster R-CNN", 《ENERGIES》 * |
周卫林: "基于深度分层特征的激光视觉焊缝检测与跟踪系统的研究", 《中国优秀硕士学位论文全文数据库 (工程科技Ⅰ辑)》 * |
张建伟等: "基于形态学的硬币镜面区域缺陷检测算法研究", 《成都大学学报(自然科学版)》 * |
林丽华等: "面向RP的CT图象反求技术", 《计算机辅助设计与制造》 * |
许庆勇: "《基于深度学习理论的纹身图像识别与检测研究》", 31 December 2018, 《华中科技大学出版社》 * |
赵振兵等: "基于改进的R-FCN航拍巡线图像中的绝缘子检测方法", 《计算机科学》 * |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110827251B (zh) * | 2019-10-30 | 2023-03-28 | 江苏方天电力技术有限公司 | 一种基于航拍图像的输电线路锁紧销缺陷检测方法 |
CN110827251A (zh) * | 2019-10-30 | 2020-02-21 | 江苏方天电力技术有限公司 | 一种基于航拍图像的输电线路锁紧销缺陷检测方法 |
CN110910360A (zh) * | 2019-11-14 | 2020-03-24 | 腾讯云计算(北京)有限责任公司 | 电网图像的定位方法和图像定位模型的训练方法 |
CN111459178A (zh) * | 2020-04-30 | 2020-07-28 | 广东电网有限责任公司 | 一种自动激光消缺的5g智能巡视系统 |
CN111598013A (zh) * | 2020-05-19 | 2020-08-28 | 广东电网有限责任公司 | 一种螺母-销钉状态的识别方法及相关装置 |
WO2021232613A1 (zh) * | 2020-05-22 | 2021-11-25 | 五邑大学 | 酒瓶表面缺陷检测方法、电子装置及存储介质 |
CN111798447A (zh) * | 2020-07-18 | 2020-10-20 | 太原理工大学 | 一种基于Faster RCNN的深度学习塑化材料缺陷检测方法 |
CN111798447B (zh) * | 2020-07-18 | 2023-03-10 | 太原理工大学 | 一种基于Faster RCNN的深度学习塑化材料缺陷检测方法 |
CN111815623A (zh) * | 2020-07-28 | 2020-10-23 | 南方电网数字电网研究院有限公司 | 输电线路开口销缺失识别方法 |
CN111815623B (zh) * | 2020-07-28 | 2024-02-23 | 南方电网数字电网研究院有限公司 | 输电线路开口销缺失识别方法 |
CN111898575B (zh) * | 2020-08-06 | 2022-09-02 | 华北电力大学(保定) | 一种基于Faster R-CNN检测器的栓母对自动组合方法 |
CN111898575A (zh) * | 2020-08-06 | 2020-11-06 | 华北电力大学(保定) | 一种基于Faster R-CNN检测器的栓母对自动组合方法 |
CN112233071A (zh) * | 2020-09-28 | 2021-01-15 | 国网浙江省电力有限公司杭州供电公司 | 基于复杂环境下输电网图片的多粒度隐患检测方法及系统 |
CN112364754A (zh) * | 2020-11-09 | 2021-02-12 | 云南电网有限责任公司迪庆供电局 | 螺栓缺陷检测方法及系统 |
CN112364754B (zh) * | 2020-11-09 | 2024-05-14 | 云南电网有限责任公司迪庆供电局 | 螺栓缺陷检测方法及系统 |
CN112733742A (zh) * | 2021-01-14 | 2021-04-30 | 哈尔滨市科佳通用机电股份有限公司 | 一种基于深度学习的铁路货车下拉杆圆销故障检测方法 |
CN113627378A (zh) * | 2021-08-19 | 2021-11-09 | 国网上海市电力公司 | 一种基于Phash算法结合深度学习的线路螺栓缺陷识别方法 |
CN113627378B (zh) * | 2021-08-19 | 2024-07-02 | 国网上海市电力公司 | 一种基于Phash算法结合深度学习的线路螺栓缺陷识别方法 |
Also Published As
Publication number | Publication date |
---|---|
CN110232687B (zh) | 2022-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110232687A (zh) | 一种电力巡检图像中带销螺栓缺陷的检测方法 | |
Zhang et al. | SOD‐YOLO: a small target defect detection algorithm for wind turbine blades based on improved YOLOv5 | |
CN113569667B (zh) | 基于轻量级神经网络模型的内河船舶目标识别方法及系统 | |
CN105095856B (zh) | 基于掩模的有遮挡人脸识别方法 | |
CN110909690B (zh) | 一种基于区域生成的遮挡人脸图像检测方法 | |
CN111179262B (zh) | 一种结合形状属性的电力巡检图像金具检测方法 | |
US11556732B2 (en) | Method for extracting rivet points in large scale three-dimensional point cloud base on deep learning | |
WO2022105521A1 (zh) | 弯曲文本图像的文字识别方法、装置及计算机设备 | |
CN111080615B (zh) | 基于卷积神经网络的pcb缺陷检测系统及检测方法 | |
CN112989995B (zh) | 文本检测方法、装置及电子设备 | |
CN113837994B (zh) | 一种基于边缘检测卷积神经网络的光伏板缺陷诊断方法 | |
CN116206112A (zh) | 基于多尺度特征融合和sam的遥感图像语义分割方法 | |
CN117911350A (zh) | 一种基于改进YOLOv7-tiny的PCB表面缺陷检测方法 | |
CN117292313A (zh) | 一种基于改进YOLOv7模型的小目标漂浮垃圾检测方法 | |
CN118351380A (zh) | 基于多模态数据融合框架的天气检测方法 | |
CN110135400A (zh) | 一种基于度量学习的餐饮场景违规识别方法 | |
Tian et al. | Detection of early bruises on apples using near‐infrared camera imaging technology combined with adaptive threshold segmentation algorithm | |
Zhang et al. | A machine vision-based character recognition system for suspension insulator iron caps | |
CN111310899B (zh) | 基于共生关系和小样本学习的电力缺陷识别方法 | |
CN110910352A (zh) | 基于深度学习的太阳能电池缺陷检测系统及检测方法 | |
CN114372502A (zh) | 一种角度自适应的椭圆模板目标检测器 | |
CN114067159A (zh) | 一种基于eus的粘膜下肿瘤细粒度分类方法 | |
CN112581467A (zh) | 一种基于疑似危险品评价的智能安检方法 | |
Kashevnik et al. | AI-Based Method for Frame Detection in Engineering Drawings | |
An et al. | Few-shot Catenary Pipe Cap Defect Detection Based on WGAN-GP and Cascading Network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information |
Inventor after: Zhao Zhenbing Inventor after: Nie Liqiang Inventor after: Zhang Wanzheng Inventor after: Xiong Jianping Inventor after: Luo Wang Inventor after: Zhao Yanqing Inventor after: Zhen Zhen Inventor after: Qi Yincheng Inventor after: Zhai Yongjie Inventor before: Zhao Zhenbing Inventor before: Zhen Zhen Inventor before: Qi Yincheng Inventor before: Zhai Yongjie |
|
CB03 | Change of inventor or designer information | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20220218 Address after: 071003 Hebei province Baoding Yonghua No. 619 North Street Applicant after: NORTH CHINA ELECTRIC POWER University (BAODING) Applicant after: SHANDONG University Applicant after: Zhiyang Innovation Technology Co.,Ltd. Applicant after: ZHEJIANG DAHUA TECHNOLOGY Co.,Ltd. Applicant after: NARI Group Corp. Address before: 071003 Hebei province Baoding Yonghua No. 619 North Street Applicant before: NORTH CHINA ELECTRIC POWER University (BAODING) |
|
TA01 | Transfer of patent application right | ||
GR01 | Patent grant | ||
GR01 | Patent grant |