CN110223779A - 一种肺癌患者的吸烟与患病关联性研究方法 - Google Patents
一种肺癌患者的吸烟与患病关联性研究方法 Download PDFInfo
- Publication number
- CN110223779A CN110223779A CN201910507511.5A CN201910507511A CN110223779A CN 110223779 A CN110223779 A CN 110223779A CN 201910507511 A CN201910507511 A CN 201910507511A CN 110223779 A CN110223779 A CN 110223779A
- Authority
- CN
- China
- Prior art keywords
- lung cancer
- smoking
- illness
- risk
- patients
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000000391 smoking effect Effects 0.000 title claims abstract description 34
- 206010058467 Lung neoplasm malignant Diseases 0.000 title claims abstract description 31
- 201000005202 lung cancer Diseases 0.000 title claims abstract description 31
- 208000020816 lung neoplasm Diseases 0.000 title claims abstract description 31
- 238000000034 method Methods 0.000 title claims abstract description 13
- 238000011160 research Methods 0.000 title claims abstract description 9
- 238000013210 evaluation model Methods 0.000 claims abstract description 5
- 239000000779 smoke Substances 0.000 claims 1
- 241000208125 Nicotiana Species 0.000 abstract description 3
- 235000002637 Nicotiana tabacum Nutrition 0.000 abstract description 3
- 201000010099 disease Diseases 0.000 abstract description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 abstract description 3
- 238000012502 risk assessment Methods 0.000 abstract description 2
- 238000009936 smoking Methods 0.000 abstract 1
- 235000019504 cigarettes Nutrition 0.000 description 4
- 230000034994 death Effects 0.000 description 3
- 231100000517 death Toxicity 0.000 description 3
- 206010028980 Neoplasm Diseases 0.000 description 2
- 201000011510 cancer Diseases 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 230000004083 survival effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000013399 early diagnosis Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000002980 postoperative effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/30—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/70—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Public Health (AREA)
- Data Mining & Analysis (AREA)
- Biomedical Technology (AREA)
- Databases & Information Systems (AREA)
- Pathology (AREA)
- Epidemiology (AREA)
- General Health & Medical Sciences (AREA)
- Primary Health Care (AREA)
- Medical Treatment And Welfare Office Work (AREA)
Abstract
本发明涉及一种肺癌患者的吸烟与患病关联性研究方法,通过对患者基本数据及吸烟状况的统计,并规统计结果进行风险评估,最终将所有数据上传至云端服务器,通过其中的处理器对大数据样本进行分类存储;通过基于大数据的风险评估模型,只需要患者提供本人患病情况及吸烟情况,即可马上得出风险系数,有利于医生对吸烟与肺癌患病之间的关联性进行直观观察及研究分析,进而指导肺癌易感人群的生活,减少肺癌发病率。
Description
技术领域
本发明涉及肺癌患者管理技术领域,具体是一种肺癌患者的吸烟与患病关联性研究方法。
背景技术
肺癌是当今世界各国最常见的恶性肿瘤,其死亡率居于各种肿瘤的首位,对人类健康和生命构成极大威胁。在我国,肺癌每年约致50万例患者死亡,占整个癌症病例的28%,而肺癌病人的5年存活率只有14%。然而,研究显示I期肺癌术后10年生存率可达到92%。因此,降低肺癌患者死亡率的关键在于早期诊断和早期治疗。
目前,在肺癌诊疗过程中发现,肺癌患者与吸烟状况之间存在联系,但由于医院样本数量的限制,难以对患病情况与吸烟状况之间的关联性进行研究,随着云计算平台及大数据技术的发展,如果能够通过搜集大量肺癌患者及其吸烟状况的数据,通过云计算平台进行基于大数据的统计分析,从数据上定量对吸烟与患病之间的关联性进行计算分析,必将对肺癌的诊断、预防产生重要的指导作用。
发明内容
本发明所要解决的技术问题是提供一种肺癌患者的吸烟与患病关联性研究方法,以解决现有技术中存在的缺陷。
本发明解决上述技术问题的技术方案如下:
一种肺癌患者的吸烟与患病关联性研究方法,包括下列步骤:
第一步:获取肺癌患者的详细信息,包括患者本人吸烟状况、患病时长、周围人吸烟状况;
第二步:统计患者本人吸烟状况与患病时长之间的列表,并计算本人吸烟与患病风险度D1;
第三步:统计患者周围人吸烟状况与患病时长之间的列表,并计算患者周围人吸烟状况与患病风险度D2;
第四步:将上述风险度D1、D2进行归一化处理,得出其分别对应的患病风险度系数F1、F2;
第五步:将患者信息与风险度系数通过无线方式上传至远端服务器;
第六步:云端服务器包括处理器,所述处理器对所有样本进行基于大数据的分类存储;并构建风险评估模型。
本发明的有益效果是:通过基于大数据的风险评估模型,只需要患者提供本人患病情况及吸烟情况,即可马上得出风险系数,有利于医生对吸烟与肺癌患病之间的关联性进行直观观察及研究分析,进而指导肺癌易感人群的生活,减少肺癌发病率。
附图说明
图1为本发明结构示意图;
具体实施方式
以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。
如图1所示,一种肺癌患者的吸烟与患病关联性研究方法,包括下列步骤:
第一步:获取肺癌患者的详细信息,包括患者本人吸烟状况、患病时长、周围人吸烟状况;
第二步:统计患者本人吸烟状况与患病时长之间的列表,并计算本人吸烟与患病风险度D1;
第三步:统计患者周围人吸烟状况与患病时长之间的列表,并计算患者周围人吸烟状况与患病风险度D2;
第四步:将上述风险度D1、D2进行归一化处理,得出其分别对应的患病风险度系数F1、F2;
第四步:将患者信息与风险度系数通过无线方式上传至远端服务器;
第五步:云端服务器包括处理器,所述处理器对所有样本进行基于大数据的分类存储;并构建风险评估模型。
具体工作原理:
本发明方法主要为基于云计算平台的大数据肺癌患者吸烟与患病关联性研究方法,通过对患者基本数据及吸烟状况的统计,并规统计结果进行风险评估,最终将所有数据上传至云端服务器,通过其中的处理器对大数据样本进行分类存储,建立基于大数据的风险评估模型,后续使用时,只需要患者提供本人患病情况及吸烟情况,即可马上得出风险系数,有利于医生对吸烟与肺癌患病之间的关联性进行直观观察及研究分析,进而指导肺癌易感人群的生活,减少肺癌发病率。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (1)
1.一种肺癌患者的吸烟与患病关联性研究方法,其特征在于,包括下列步骤:
S1:获取肺癌患者的详细信息,包括患者本人吸烟状况、患病时长、周围人吸烟状况;
S2:统计患者本人吸烟状况与患病时长之间的列表,并计算本人吸烟与患病风险度D1;
S3:统计患者周围人吸烟状况与患病时长之间的列表,并计算患者周围人吸烟状况与患病风险度D2;
S4:将上述风险度D1、D2进行归一化处理,得出其分别对应的患病风险度系数F1、F2;
S5:将患者信息与风险度系数通过无线方式上传至远端服务器;
S6:云端服务器包括处理器,所述处理器对所有样本进行基于大数据的分类存储;并构建风险评估模型。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910507511.5A CN110223779A (zh) | 2019-06-12 | 2019-06-12 | 一种肺癌患者的吸烟与患病关联性研究方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910507511.5A CN110223779A (zh) | 2019-06-12 | 2019-06-12 | 一种肺癌患者的吸烟与患病关联性研究方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110223779A true CN110223779A (zh) | 2019-09-10 |
Family
ID=67816802
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910507511.5A Pending CN110223779A (zh) | 2019-06-12 | 2019-06-12 | 一种肺癌患者的吸烟与患病关联性研究方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110223779A (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20100045227A (ko) * | 2008-10-23 | 2010-05-03 | 목포대학교산학협력단 | 사례기반 암 발생 위험도 평가 알고리즘 |
US20160110516A1 (en) * | 2014-10-20 | 2016-04-21 | Liwei Ma | Dynamic monitoring early cancer risk |
CN106874663A (zh) * | 2017-01-26 | 2017-06-20 | 中电科软件信息服务有限公司 | 心脑血管疾病风险预测方法及系统 |
CN107451390A (zh) * | 2017-02-22 | 2017-12-08 | Cc和I研究有限公司 | 用于预测慢性阻塞性肺疾病急性加重的系统 |
CN107610779A (zh) * | 2017-10-25 | 2018-01-19 | 医渡云(北京)技术有限公司 | 疾病评价及患病风险评估方法及装置 |
-
2019
- 2019-06-12 CN CN201910507511.5A patent/CN110223779A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20100045227A (ko) * | 2008-10-23 | 2010-05-03 | 목포대학교산학협력단 | 사례기반 암 발생 위험도 평가 알고리즘 |
US20160110516A1 (en) * | 2014-10-20 | 2016-04-21 | Liwei Ma | Dynamic monitoring early cancer risk |
CN106874663A (zh) * | 2017-01-26 | 2017-06-20 | 中电科软件信息服务有限公司 | 心脑血管疾病风险预测方法及系统 |
CN107451390A (zh) * | 2017-02-22 | 2017-12-08 | Cc和I研究有限公司 | 用于预测慢性阻塞性肺疾病急性加重的系统 |
CN107610779A (zh) * | 2017-10-25 | 2018-01-19 | 医渡云(北京)技术有限公司 | 疾病评价及患病风险评估方法及装置 |
Non-Patent Citations (1)
Title |
---|
刘志强,何斐,蔡琳: "吸烟、被动吸烟与肺癌发病风险的病例对照研究", 《中华疾病控制杂志》 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | Emerging tobacco‐related cancer risks in C hina: A nationwide, prospective study of 0.5 million adults | |
CN207137169U (zh) | 呼吸健康感测系统 | |
CN107247887A (zh) | 基于人工智能帮助肺癌筛查的方法及系统 | |
Park et al. | Sex differences in the prevalence of head and neck cancers: a 10-year follow-up study of 10 million healthy people | |
Baldur-Felskov et al. | Increased incidence of penile cancer and high-grade penile intraepithelial neoplasia in Denmark 1978–2008: a nationwide population-based study | |
CN113506630B (zh) | 一种乳腺癌术后全程全方位智能管理系统 | |
CN104376409A (zh) | 一种基于网络医院的分诊数据处理方法及系统 | |
CN104739390A (zh) | 一种智能化人体健康及室内环境监测系统 | |
JP2012157699A (ja) | インスリン耐性の監視 | |
Rodrigues et al. | Trends in hospitalization and mortality for ambulatory care sensitive conditions among older adults | |
Ding et al. | Mouth-level intake of benzo [a] pyrene from reduced nicotine cigarettes | |
CN108257648A (zh) | 一种基于大数据的医疗健康数据管理系统 | |
CN105160157A (zh) | 三高健康管理动态监测和管理系统及方法 | |
Harkness et al. | Changing trends in incidence of lung cancer by histologic type in Scotland | |
Shaji et al. | Analysis of the mortality trends of 23 major cancers in the Indian population between 2000 and 2019: A joinpoint regression analysis | |
CN110223779A (zh) | 一种肺癌患者的吸烟与患病关联性研究方法 | |
US20160110516A1 (en) | Dynamic monitoring early cancer risk | |
Musk et al. | Patterns of airway disease and the clinical diagnosis of asthma in the Busselton population | |
Chen et al. | A comparative population-based study of prostate cancer incidence and mortality rates in Singapore, Sweden and Geneva, Switzerland from 1973 to 2006 | |
CN105833400A (zh) | 基于智能吸入器的呼吸疾病网络监测系统及其应用 | |
CN203366329U (zh) | 社区医疗健康服务系统 | |
CN106228020A (zh) | 一种呼吸道疾病的临床数据支撑系统 | |
Jun et al. | Sleep pattern analysis in unconstrained and unconscious state | |
CN113140275A (zh) | 一种肝癌靶向治疗疗效的监测系统及方法 | |
CN105380651A (zh) | 用于口腔口气检测和预警的系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20190910 |