CN110223339A - One kind being based on machine vision thermal protector calibration point center positioning method - Google Patents
One kind being based on machine vision thermal protector calibration point center positioning method Download PDFInfo
- Publication number
- CN110223339A CN110223339A CN201910445271.0A CN201910445271A CN110223339A CN 110223339 A CN110223339 A CN 110223339A CN 201910445271 A CN201910445271 A CN 201910445271A CN 110223339 A CN110223339 A CN 110223339A
- Authority
- CN
- China
- Prior art keywords
- point
- circle
- center
- edge
- calibration point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 22
- 230000001012 protector Effects 0.000 title claims abstract description 18
- 238000001514 detection method Methods 0.000 claims abstract description 28
- 238000000605 extraction Methods 0.000 claims abstract description 9
- 238000007781 pre-processing Methods 0.000 claims abstract description 5
- 238000012545 processing Methods 0.000 claims description 6
- 230000001186 cumulative effect Effects 0.000 claims description 3
- 230000000877 morphologic effect Effects 0.000 claims description 3
- 230000011218 segmentation Effects 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 claims description 2
- 238000001914 filtration Methods 0.000 claims description 2
- 238000004364 calculation method Methods 0.000 abstract description 5
- 238000009825 accumulation Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/136—Segmentation; Edge detection involving thresholding
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/155—Segmentation; Edge detection involving morphological operators
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/181—Segmentation; Edge detection involving edge growing; involving edge linking
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/187—Segmentation; Edge detection involving region growing; involving region merging; involving connected component labelling
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/60—Analysis of geometric attributes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30108—Industrial image inspection
- G06T2207/30164—Workpiece; Machine component
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Geometry (AREA)
- Image Analysis (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
本发明公开了一种基于机器视觉热保护器校准点中心定位方法,包括图像预处理,目标提取,校准点区域边缘提取;校准点中心位置确定等步骤,本发明通过改进的随机Hough变换对提取的边缘进行圆检测,获得校准点中心位置。本发明克服了传统的Hough变换检测圆计算量大,占用过多内存的情况,大大地提升了检测速度;本发明克服随机圆检测算法(RCD)对图像的边缘点进行检测时,在复杂背景下存在鲁棒性差的问题,提高系统的鲁棒性,使热保护器校准点中心定位对环境的适应能力增强,系统的应用领域更宽。
The invention discloses a method for locating the center of the calibration point of a thermal protector based on machine vision, including image preprocessing, target extraction, edge extraction of the calibration point area, and determination of the center position of the calibration point. The invention uses an improved random Hough transform to extract The edge of the circle is detected to obtain the center position of the calibration point. The present invention overcomes the situation that the traditional Hough transform detection circle has a large amount of calculation and takes up too much memory, and greatly improves the detection speed; the present invention overcomes the problem that the random circle detection algorithm (RCD) detects the edge points of the image in complex backgrounds. There is a problem of poor robustness, and the robustness of the system is improved, so that the thermal protector calibration point center positioning can enhance the adaptability to the environment, and the application field of the system is wider.
Description
技术领域technical field
本发明属于热保护器技术领域,具体涉及一种基于机器视觉热保护器校准点中心定位方法。The invention belongs to the technical field of thermal protectors, and in particular relates to a method for locating the center of a calibration point of a thermal protector based on machine vision.
背景技术Background technique
热保护器是一种电路保护装置,广泛的应用在各类电器产品中,其主要的工作原理是在常温下保持电路的接通,当温度超出设定阈值之后,切断电路。起主要作用的是内部的双金属片,但双金属片的跳变温度又与校准点深度紧密相关,因此校准点深度测量是产品检验中的重要内容。由于校准点尺寸微小,采用结构光深度检测时第一步要进行校准点中心点的定位,以确保结构光线能够准确打在校准点最深处。Thermal protector is a kind of circuit protection device, which is widely used in various electrical products. Its main working principle is to keep the circuit connected at room temperature, and cut off the circuit when the temperature exceeds the set threshold. The main function is the internal bimetal, but the jump temperature of the bimetal is closely related to the depth of the calibration point, so the depth measurement of the calibration point is an important content in product inspection. Due to the small size of the calibration point, the first step when using structured light depth detection is to locate the center point of the calibration point to ensure that the structured light can accurately hit the deepest part of the calibration point.
热保护器校准点二维成像几何特征为圆形结构,因此可以首先通过检测圆,然后获得圆心坐标实现对校准点中心定位。对于圆的检测,目前有大量的相关研究和检测方法。Hough变换检测圆是最基本检测方法,将平面坐标转化到参数坐标,在参数空间对坐标点进行累积,获得峰值点求得圆参数。传统的Hough变化检测圆计算量大,占用过多的内存。针对传统检测方法的不足,国内外学者在此基础上提出了多种改进方法。(1)Xu等提出了随机Hough变换(RHT),在一定程度上缓解了计算量大和占用内存多的问题。RHT通过在图像空间随机采样非共线的3个边缘点映射到参数空间,提取峰值对应的圆参数,采用这种多对一的映射,大大地提升了检测速度;虽然RHT算法在平面坐标到参数坐标映射时采用多对一的方式,但还存在空间参数累积的问题,因此计算速度有待提高。(2)Chen等人提出的随机圆检测算法(RCD),RCD直接对图像的边缘点进行检测,不存在空间参数累积的问题,在检测速度和检测精度上都得到提升,但是该方法在复杂背景下存在鲁棒性差的问题。(3)李福庆,苏湛提出一种基于粒子群算法的圆检测方法。基于粒子群圆检测算法相比Hough变换检测圆的效率更高,运行时间更短。The two-dimensional imaging geometric feature of the thermal protector calibration point is a circular structure, so the center of the calibration point can be located by first detecting the circle and then obtaining the coordinates of the center of the circle. For circle detection, there are currently a large number of related research and detection methods. The Hough transform detection circle is the most basic detection method. It transforms the plane coordinates into parameter coordinates, accumulates the coordinate points in the parameter space, and obtains the peak point to obtain the circle parameters. The traditional Hough change detection circle is computationally intensive and takes up too much memory. Aiming at the deficiencies of traditional detection methods, scholars at home and abroad have proposed a variety of improved methods on this basis. (1) Xu et al. proposed the Random Hough Transform (RHT), which alleviated the problems of large computation and large memory usage to a certain extent. RHT randomly samples three non-collinear edge points in the image space and maps them to the parameter space, and extracts the circle parameters corresponding to the peak values. This many-to-one mapping greatly improves the detection speed; although the RHT algorithm is in the plane coordinates to The many-to-one method is used for parameter coordinate mapping, but there is still the problem of spatial parameter accumulation, so the calculation speed needs to be improved. (2) The random circle detection algorithm (RCD) proposed by Chen et al., RCD directly detects the edge points of the image, there is no problem of spatial parameter accumulation, and the detection speed and detection accuracy are improved, but this method is complex There is a problem of poor robustness in the background. (3) Li Fuqing and Su Zhan proposed a circle detection method based on particle swarm optimization algorithm. Compared with the Hough transform circle detection algorithm, the particle swarm detection algorithm has higher efficiency and shorter running time.
发明内容Contents of the invention
为了解决当前热保护器光学情况复杂、干扰因素较多、检测效果不理想的问题,本发明提出了一种基于机器视觉热保护器校准点中心定位方法。该方法在原有圆检测方法上进行改进,提出一种改进型Hough变换圆检测算法,实现校准点边缘最优圆的检测和中心定位。In order to solve the problems of complex optical conditions, many interference factors and unsatisfactory detection effect of current thermal protectors, the present invention proposes a center positioning method of calibration points of thermal protectors based on machine vision. This method is improved on the original circle detection method, and an improved Hough transform circle detection algorithm is proposed to realize the detection and center location of the optimal circle at the edge of the calibration point.
本发明的技术方案如下:Technical scheme of the present invention is as follows:
一种基于机器视觉热保护器校准点中心定位方法,包括以下步骤:A method for locating the center of a calibration point of a thermal protector based on machine vision, comprising the following steps:
第一步,图像预处理,具体包括:使用带显微镜头的工业相机对热保护器进行图像采集,对彩色图像进行灰度化处理,对图像进行滤波处理,对图像进行阈值分割;The first step is image preprocessing, which specifically includes: using an industrial camera with a microscope lens to collect images of thermal protectors, grayscale processing of color images, filtering of images, and threshold segmentation of images;
第二步,目标提取,采用形态学中的开运算进行去字符区,使图像轮廓变得光滑,断开狭窄连接并消除毛刺,通过采用连通域面积约束算法,消除形态学处理之后在边缘形成的离散点,通过对连通域标记,确定校准点区域;The second step, target extraction, uses the open operation in morphology to remove character areas, smooths the image contour, disconnects narrow connections and eliminates burrs, and uses the connected domain area constraint algorithm to eliminate the edge formation after morphological processing. The discrete points of , by marking the connected domain, determine the calibration point area;
第三步,校准点区域边缘提取;The third step is to extract the edge of the calibration point area;
第四步,校准点中心位置确定,通过改进的随机Hough变换对提取的边缘进行圆检测,获得校准点中心位置。The fourth step is to determine the center position of the calibration point, and perform circle detection on the extracted edge through the improved random Hough transform to obtain the center position of the calibration point.
具体地,第三步校准点区域边缘提取中采用8邻域区域生长算法对二值化的边缘图像进行处理,确定连通区域。Specifically, in the third step of calibration point region edge extraction, the 8-neighborhood region growing algorithm is used to process the binarized edge image to determine connected regions.
8邻域区域生长算法对二值化的边缘图像进行处理具体包括如下步骤:The 8-neighborhood region growing algorithm specifically includes the following steps to process the binarized edge image:
步骤1,从上到下、从左到右的顺序依次扫描图像,扫描到第一个像素为1的点时,将该点作为基点,并对该点进行标记;Step 1, scan the image sequentially from top to bottom and from left to right, and when the first point with a pixel of 1 is scanned, use this point as the base point and mark the point;
步骤2,以基点为种子点,对其8邻域内的目标像素进行相同的标记;Step 2, take the base point as the seed point, and mark the target pixels in its 8 neighborhoods in the same way;
步骤3,将所有有标记的像素的8邻域内的目标像素标记为相同的标号,直到该连通区域标记完毕;Step 3, mark the target pixels in the 8 neighborhoods of all marked pixels with the same label until the connected region is marked;
步骤4,继续顺序扫描,重复前三步骤,直到所有的像素值为1的点标记结束。Step 4, continue to scan sequentially, and repeat the first three steps, until all point markers with a pixel value of 1 end.
具体地,第四步校准点中心位置确定具体包括:Specifically, the determination of the center position of the calibration point in the fourth step specifically includes:
步骤1,载入图像;Step 1, load the image;
步骤2,对该图像从左到右、从上到下扫描,得到边缘上一点,找到边缘子集中在竖直方向上对应的点,求取两点的对称中心;Step 2, scan the image from left to right and from top to bottom to obtain a point on the edge, find the corresponding point in the vertical direction of the edge subset, and find the center of symmetry of the two points;
步骤3,以两点所在直线绕对称中心点旋转900;Step 3, rotate 900 around the center of symmetry with the straight line where the two points are located;
步骤4,旋转后得到直线与边缘的两交点,以这两个交点作为圆上的点,以两交点的中心对称点作为圆心,确定一圆方程C1;Step 4, obtain the two intersection points of the straight line and the edge after rotation, use these two intersection points as points on the circle, and use the central symmetry point of the two intersection points as the center of the circle to determine a circle equation C1;
步骤5,以圆直径为轴,以圆心为旋转中心,按顺时针方向旋转30度,得到新的两点:Step 5: Take the diameter of the circle as the axis and the center of the circle as the center of rotation, and rotate 30 degrees clockwise to get two new points:
s=(x-a)cos30°-(y-b)sin30°+as=(x-a)cos30°-(y-b)sin30°+a
t=(y-b)cos30°-(x-a)sin30°+bt=(y-b)cos30°-(x-a)sin30°+b
其中x,y表示直径延长线与边缘的交点,a,b为两交点的对称中心坐标,s,t表示旋转后的坐标,获得旋转后坐标(s0,y0),(s1,t1);求过两交点的所在直线:Among them, x, y represent the intersection point of the diameter extension line and the edge, a, b are the symmetrical center coordinates of the two intersection points, s, t represent the coordinates after rotation, obtain the coordinates after rotation (s0, y0), (s1, t1); find A straight line passing through two points of intersection:
直线与边缘相较于两点,求出中心对称点,确定一圆C1,重复该步骤,直到旋转角度累积和超过180°;Comparing the straight line and the edge with two points, find the central symmetry point, determine a circle C1, and repeat this step until the cumulative sum of the rotation angle exceeds 180°;
步骤6,设边缘像素点在第i个圆上的个数为E(Si),点f(si,ti)为圆上点的像素值,则E(Si)可表示为:Step 6, set the number of edge pixels on the i-th circle as E(S i ), point f(s i , t i ) is the pixel value of the point on the circle, then E(S i ) can be expressed as:
用N表示边缘点像素个数,则每个圆的偏差系数为:Use N to represent the number of edge point pixels, then the deviation coefficient of each circle is:
步骤7,偏差值系数最小的圆为最优圆,最优圆的圆心所在点即为校准点的中心位置。Step 7, the circle with the smallest deviation value coefficient is the optimal circle, and the point where the center of the optimal circle is located is the center position of the calibration point.
与现有技术相比,本发明的有益效果在于:Compared with prior art, the beneficial effect of the present invention is:
(1)克服传统的Hough变换检测圆计算量大,占用过多内存的情况,大大地提升了检测速度。(1) It overcomes the traditional Hough transform detection circle, which has a large amount of calculation and takes up too much memory, and greatly improves the detection speed.
(2)克服随机圆检测算法(RCD)对图像的边缘点进行检测时,在复杂背景下存在鲁棒性差的问题,提高系统的鲁棒性。(2) To overcome the problem of poor robustness in the complex background when the random circle detection algorithm (RCD) detects the edge points of the image, and improve the robustness of the system.
(3)使校准点中心位置定位精度提高,相对误差减小。(3) The positioning accuracy of the center position of the calibration point is improved, and the relative error is reduced.
(4)使热保护器校准点中心定位对环境的适应能力增强,系统的应用领域更宽。(4) The central positioning of the calibration point of the thermal protector enhances the adaptability to the environment, and the application field of the system is wider.
附图说明Description of drawings
图1是本发明方法流程图;Fig. 1 is a flow chart of the method of the present invention;
图2是本发明旋转候选圆示意图;Fig. 2 is a schematic diagram of a rotation candidate circle in the present invention;
图3是本发明非唯一最高点误差示意图;Fig. 3 is a schematic diagram of non-unique highest point error of the present invention;
图4是本发明最优圆圆心确定流程图。Fig. 4 is a flow chart of determining the optimal circle center in the present invention.
具体实施方式Detailed ways
下面将结合本发明中的附图,对本发明中的技术方案进行清楚、完整地描述。The technical solutions in the present invention will be clearly and completely described below in conjunction with the accompanying drawings in the present invention.
图1所示为本发明校准点中心定位处理流程图,包括图像预处理、目标提取、校准点区域边缘提取、校准点中心位置确定。Figure 1 is a flow chart of the calibration point center positioning process in the present invention, including image preprocessing, target extraction, calibration point area edge extraction, and calibration point center position determination.
图像预处理包括如下步骤:步骤1,校准点直径在1mm左右,属于微小尺寸测量的范畴,为获得清晰的校准点图像,使用带显微镜头的工业相机对热保护器进行图像采集;步骤2,为了减少计算量,提高计算速度,对彩色图像进行灰度化处理;步骤3,消除金属反光、外界环境的影响,对图像进行滤波处理;步骤4,对图像进行阈值分割。The image preprocessing includes the following steps: step 1, the diameter of the calibration point is about 1 mm, which belongs to the category of micro-size measurement, in order to obtain a clear image of the calibration point, use an industrial camera with a micro lens to collect images of the thermal protector; step 2, In order to reduce the amount of calculation and improve the calculation speed, grayscale processing is performed on the color image; step 3 is to eliminate the influence of metal reflection and external environment, and filter the image; step 4 is to perform threshold segmentation on the image.
预处理后的图像含有数字和英文字母的圆形结构,由双边缘组成,边缘宽度在4到8个像素之间,而校准点区域的边缘宽度在10个像素点以上,所以目标提取是采用形态学中的开运算进行去字符区,使图像轮廓变得光滑,断开狭窄连接并消除毛刺。在形态学处理之后会有边缘离散点,通过采用连通域面积约束算法,将离散点去除,通过对连通域标记,确定校准点区域。The preprocessed image contains a circular structure of numbers and English letters, which is composed of double edges, and the edge width is between 4 and 8 pixels, while the edge width of the calibration point area is more than 10 pixels, so the target extraction is to use The opening operation in the morphology performs de-character area, smoothes the image contour, breaks the narrow connection and eliminates the glitch. After the morphological processing, there will be discrete points on the edge. By using the connected domain area constraint algorithm, the discrete points will be removed, and the calibration point area will be determined by marking the connected domain.
校准点区域边缘提取是采用8邻域区域生长算法对二值化的边缘图像进行处理,确定连通区域。包括如下步骤:步骤1,从上到下、从左到右的顺序依次扫描图像,扫描到第一个像素为1的点时,将该点作为基点,并对该点进行标记;步骤2,以基点为种子点,对其8邻域内的目标像素进行相同的标记;步骤3,将所有有标记的像素的8邻域内的目标像素标记为相同的标号,直到该连通区域标记完毕;步骤4,继续顺序扫描,重复前三步骤,直到所有的像素值为1的点标记结束。The edge extraction of the calibration point area is to use the 8-neighborhood area growing algorithm to process the binarized edge image to determine the connected area. The method comprises the following steps: step 1, scan the image sequentially from top to bottom and from left to right, and when the first pixel is 1 is scanned, use this point as a base point and mark the point; step 2, Using the base point as the seed point, mark the target pixels in the 8 neighborhoods with the same label; step 3, mark the target pixels in the 8 neighborhoods of all marked pixels with the same label until the connected region is marked; step 4 , continue to scan sequentially, and repeat the first three steps until the end of all point markers with pixel values of 1.
校准点中心位置确定是通过改进的随机Hough的圆检测算法对提取的边缘进行圆检测,获得校准点中心位置,流程如图4所示:The determination of the center position of the calibration point is to perform circle detection on the extracted edge through the improved random Hough circle detection algorithm to obtain the center position of the calibration point. The process is shown in Figure 4:
如图2、3,圆是中心对称图形,首先从左到右,从上到下扫描,得到边缘上一点。找到边缘子集中在竖直方向上对应的点,求取两点的对称中心。以两点所在直线绕对称中心点旋转900,旋转后直线与边缘的两交点分别为(x0,y0)、(x1,y1),以两交点作为圆上的点,以两交点的中心对称点作为圆心,确定一圆C1。因为内边缘并不是完全规则的圆,第一次扫描得到的第一个边缘点并非一定为圆的唯一最高点,当边缘点不是唯一最高点的情况,其与对称点的连线l1为所在圆的弦,通过旋转90°即圆直径与弦相垂直,可以消除非唯一最高点带来的误差,如图2中l2与边缘交点可以确定一圆。以圆直径为轴,以圆心为旋转中心,按顺时针方向旋转30度,得到新的两点:As shown in Figures 2 and 3, the circle is a centrally symmetrical figure. First, scan from left to right and from top to bottom to get a point on the edge. Find the corresponding point in the vertical direction of the edge subset, and find the symmetry center of the two points. Rotate the straight line where the two points are located by 900 around the center of symmetry. After the rotation, the two intersections of the straight line and the edge are (x 0 , y 0 ), (x 1 , y 1 ), respectively. The two intersections are taken as points on the circle, and the two intersections The central symmetry point of is taken as the center of the circle, and a circle C1 is determined. Because the inner edge is not a completely regular circle, the first edge point obtained by the first scan is not necessarily the only highest point of the circle. When the edge point is not the only highest point, the line l1 connecting it with the symmetric point is where The chord of the circle can eliminate the error caused by the non-unique highest point by rotating 90°, that is, the diameter of the circle is perpendicular to the chord. As shown in Figure 2, the intersection of l2 and the edge can determine a circle. Taking the diameter of the circle as the axis and the center of the circle as the center of rotation, rotate 30 degrees clockwise to get two new points:
s=(x-a)cos30°-(y-b)sin30°+as=(x-a)cos30°-(y-b)sin30°+a
t=(y-b)cos30°-(x-a)sin30°+bt=(y-b)cos30°-(x-a)sin30°+b
其中x,y表示直径延长线与边缘的交点,a,b为两交点的对称中心坐标,s,t表示旋转后的坐标。获得旋转后坐标(s0,y0),(s1,t1)求过两交点的所在直线:Where x, y represent the intersection of the diameter extension line and the edge, a, b are the symmetrical center coordinates of the two intersections, s, t represent the coordinates after rotation. Obtain the rotated coordinates (s0, y0), (s1, t1) to find the straight line where the two intersection points are located:
直线与边缘相交于两点,求出中心对称点,确定一圆C2,重复该步骤,直到旋转角度累积和超过180°。图3中C1,C2,C3分别为旋转0°、30°、90°对应的圆。The straight line and the edge intersect at two points, find the central symmetry point, determine a circle C2, and repeat this step until the cumulative sum of the rotation angle exceeds 180°. In Figure 3, C1, C2, and C3 are circles corresponding to rotations of 0°, 30°, and 90°, respectively.
设边缘像素点在第i个圆上的个数为E(Si),点f(si,ti)为圆上点的像素值,则E(Si)可表示为:Let the number of edge pixels on the i-th circle be E(S i ), and the point f(s i , t i ) be the pixel value of the point on the circle, then E(S i ) can be expressed as:
用Nuse N
偏差值系数最小的圆为最优圆。最优圆的圆心所在点即为校准点的中心位置,其流程图如图4所示。The circle with the smallest deviation value coefficient is the optimal circle. The point where the center of the optimal circle is located is the center position of the calibration point, and its flow chart is shown in Figure 4.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910445271.0A CN110223339B (en) | 2019-05-27 | 2019-05-27 | A method for locating the center of calibration point based on machine vision thermal protector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910445271.0A CN110223339B (en) | 2019-05-27 | 2019-05-27 | A method for locating the center of calibration point based on machine vision thermal protector |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110223339A true CN110223339A (en) | 2019-09-10 |
CN110223339B CN110223339B (en) | 2021-07-16 |
Family
ID=67818042
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910445271.0A Active CN110223339B (en) | 2019-05-27 | 2019-05-27 | A method for locating the center of calibration point based on machine vision thermal protector |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110223339B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112146593A (en) * | 2020-09-25 | 2020-12-29 | 上海红马饲料有限公司 | Machine vision-based external thread detection method and real-time detection system |
CN112767359A (en) * | 2021-01-21 | 2021-05-07 | 中南大学 | Steel plate corner detection method and system under complex background |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101334263A (en) * | 2008-07-22 | 2008-12-31 | 东南大学 | Method for locating the center of a circular target |
CN107622499A (en) * | 2017-08-24 | 2018-01-23 | 中国东方电气集团有限公司 | A kind of identification and space-location method based on target two-dimensional silhouette model |
CN108170084A (en) * | 2016-12-07 | 2018-06-15 | 杨新高 | A kind of agricultural equipment automatic control system and product |
CN109410285A (en) * | 2018-11-06 | 2019-03-01 | 北京七鑫易维信息技术有限公司 | A kind of calibration method, device, terminal device and storage medium |
-
2019
- 2019-05-27 CN CN201910445271.0A patent/CN110223339B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101334263A (en) * | 2008-07-22 | 2008-12-31 | 东南大学 | Method for locating the center of a circular target |
CN108170084A (en) * | 2016-12-07 | 2018-06-15 | 杨新高 | A kind of agricultural equipment automatic control system and product |
CN107622499A (en) * | 2017-08-24 | 2018-01-23 | 中国东方电气集团有限公司 | A kind of identification and space-location method based on target two-dimensional silhouette model |
CN109410285A (en) * | 2018-11-06 | 2019-03-01 | 北京七鑫易维信息技术有限公司 | A kind of calibration method, device, terminal device and storage medium |
Non-Patent Citations (3)
Title |
---|
XU L 等: ""Randomized Hough transform (RHT): basic mechanisms, algorithms and complexities"", 《COMPUTER VISION AND IMAGE UNDERSTANDING》 * |
何奎: ""基于图像处理技术的圆环零件检测方法研究"", 《中国优秀硕士学位论文全文数据库 信息科技辑》 * |
贾小军 等: ""基于多阈值和改进的Hough变换检测电表接线圆孔尺寸"", 《光电子激光》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112146593A (en) * | 2020-09-25 | 2020-12-29 | 上海红马饲料有限公司 | Machine vision-based external thread detection method and real-time detection system |
CN112767359A (en) * | 2021-01-21 | 2021-05-07 | 中南大学 | Steel plate corner detection method and system under complex background |
CN112767359B (en) * | 2021-01-21 | 2023-10-24 | 中南大学 | Method and system for detecting corner points of steel plate under complex background |
Also Published As
Publication number | Publication date |
---|---|
CN110223339B (en) | 2021-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108921176B (en) | Pointer instrument positioning and identifying method based on machine vision | |
CN105335973B (en) | Apply to the visual processing method of strip machining production line | |
CN109003258B (en) | A high-precision sub-pixel circular part measurement method | |
CN110807355B (en) | A pointer meter detection and reading recognition method based on mobile robot | |
CN103646249B (en) | A kind of greenhouse intelligent mobile robot vision navigation path identification method | |
CN108918526B (en) | A kind of notch defect detection method of flexible IC package substrate circuit | |
CN106683137B (en) | Monocular multi-target recognition and localization method based on artificial markers | |
CN111243032A (en) | An automatic detection method for checkerboard corner points | |
CN107203973B (en) | Sub-pixel positioning method for center line laser of three-dimensional laser scanning system | |
CN107463918A (en) | Lane line extracting method based on laser point cloud and image data fusion | |
CN103530606B (en) | A kind of farm machinery navigation path extraction method under weeds environment | |
CN103150730A (en) | Round small target accurate detection method based on image | |
CN101750051A (en) | Visual navigation based multi-crop row detection method | |
CN102663337A (en) | Method for quick Data Matrix two-dimensional barcode identifying under simple condition background | |
CN107588723B (en) | Circular mark leak source detection method on a kind of High-speed target based on two-step method | |
CN107993224A (en) | A kind of object detection localization method based on circle marker thing | |
CN109064481B (en) | Machine vision positioning method | |
CN107895375A (en) | The complicated Road extracting method of view-based access control model multiple features | |
CN108764234A (en) | A kind of liquid level instrument Recognition of Reading method based on crusing robot | |
CN114037657A (en) | A Lithium Battery Tab Defect Detection Method Combining Region Growth and Ring Correction | |
CN107452030A (en) | Method for registering images based on contour detecting and characteristic matching | |
CN107633507A (en) | LCD defect inspection methods based on contour detecting and characteristic matching | |
CN110223339A (en) | One kind being based on machine vision thermal protector calibration point center positioning method | |
CN115731257A (en) | Image-based Leaf Shape Information Extraction Method | |
CN109883396A (en) | A method for measuring the width of leveling bubble scribe line based on image processing technology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |