CN110221410A - Camera optical camera lens - Google Patents

Camera optical camera lens Download PDF

Info

Publication number
CN110221410A
CN110221410A CN201910581782.5A CN201910581782A CN110221410A CN 110221410 A CN110221410 A CN 110221410A CN 201910581782 A CN201910581782 A CN 201910581782A CN 110221410 A CN110221410 A CN 110221410A
Authority
CN
China
Prior art keywords
lens
camera
curvature
radius
optical camera
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910581782.5A
Other languages
Chinese (zh)
Other versions
CN110221410B (en
Inventor
王小锋
陈佳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AAC Technologies Pte Ltd
Original Assignee
AAC Technologies Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AAC Technologies Pte Ltd filed Critical AAC Technologies Pte Ltd
Priority to CN201910581782.5A priority Critical patent/CN110221410B/en
Publication of CN110221410A publication Critical patent/CN110221410A/en
Application granted granted Critical
Publication of CN110221410B publication Critical patent/CN110221410B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Abstract

The present invention relates to field of optical lens, disclose a kind of camera optical camera lens, the camera optical camera lens sequentially includes from object side to image side: the first lens with positive refracting power, the second lens with negative refracting power, the third lens with negative refracting power, the 4th lens with positive refracting power and with the 5th lens of negative refracting power;The focal length of the camera optical camera lens is f, the focal length of first lens is f1, with a thickness of d5 on the axis of the third lens, distance d6 on the third lens image side surface to the axis of the 4th lens object side, the radius of curvature of 4th lens object side is R7, the radius of curvature of the 4th lens image side surface is R8, meets following relationship: 0.40≤f1/f≤0.60;7.00≤d6/d5≤15.00;6.00≤(R7+R8)/(R7-R8)≤30.00.While camera optical camera lens provided by the invention has favorable optical performance, meet long-focus, the design requirement of ultrathin.

Description

Camera optical camera lens
[technical field]
The present invention relates to field of optical lens, in particular to a kind of to be suitable for the hand-held terminals such as smart phone, digital camera The camera optical camera lens of the photographic devices such as equipment and monitor, PC camera lens.
[background technique]
In recent years, with the rise of smart phone, the demand for minimizing phtographic lens is increasingly improved, and general phtographic lens Sensor devices nothing more than being that photosensitive coupled apparatus (Charge Coupled Device, CCD) or Complimentary Metal-Oxide are partly led Two kinds of body device (Complementary Metal-OxideSemicondctor Sensor, CMOS Sensor), and due to half Conductor manufacturing process technology progresses greatly, so that the Pixel Dimensions of sensor devices reduce, along with electronic product is good with function now And light and short external form is development trend, therefore, the miniaturization pick-up lens for having good image quality becomes at present Mainstream in the market.
To obtain preferable image quality, the camera lens that tradition is equipped on mobile phone camera mostly uses three-chip type or four-piece type saturating Mirror structure.However, with the development of technology and users on diversity increases, constantly contracting in the elemental area of sensor devices It is small, and in the case where requirement continuous improvement of the system to image quality, five chip lens arrangements occur gradually over lens design and work as In, although five common chip lens have had preferable optical property, its focal power, lens spacing and lens shape Being arranged still has certain irrationality, causes lens arrangement while with favorable optical performance, is unable to satisfy focal length Design requirement away from, ultrathin.
[summary of the invention]
In view of the above-mentioned problems, the purpose of the present invention is to provide a kind of camera optical camera lenses, with favorable optical performance While, meet long-focus, the design requirement of ultrathin.
In order to solve the above technical problems, embodiments of the present invention provide a kind of camera optical camera lens, the shooting light Camera lens is learned, sequentially includes from object side to image side: the first lens with positive refracting power, the second lens with negative refracting power, tool There are the third lens of negative refracting power, the 4th lens with positive refracting power and with the 5th lens of negative refracting power;
The system total focal length of the camera optical camera lens is f, and the focal length of first lens is f1, the third lens With a thickness of d5 on axis, distance d6 on the axis of the third lens image side surface to the 4th lens object side, the 4th lens The radius of curvature of object side is R7, and the radius of curvature of the 4th lens image side surface is R8, meets following relationship:
0.40≤f1/f≤0.60;
7.00≤d6/d5≤15.00;
6.00≤(R7+R8)/(R7-R8)≤30.00。
Preferably, the focal length of the third lens is f3, and meets following relationship:
-15.00≤f3/f≤-1.50。
Preferably, the radius of curvature of the second lens object side is the curvature of R3 and the second lens image side surface Radius is R4, and meets following relationship:
-50.00≤R3/R4≤-15.00。
Preferably, the radius of curvature of the first lens object side is R1, the radius of curvature of the first lens image side surface It with a thickness of the optics overall length of d1 and the camera optical camera lens is TTL on the axis of first lens for R2, and under meeting Column relational expression:
-2.93≤(R1+R2)/(R1-R2)≤-0.52;
0.06≤d1/TTL≤0.28。
Preferably, the focal length of second lens is f2, and the radius of curvature of the second lens object side is R3, described the The radius of curvature of two lens image side surfaces is R4, with a thickness of d3 and the camera optical camera lens on the axis of second lens Optics overall length is TTL, and meets following relationship:
-2.53≤f2/f≤-0.47;
0.44≤(R3+R4)/(R3-R4)≤1.44;
0.02≤d3/TTL≤0.16。
Preferably, the radius of curvature of the third lens object side is R5, the radius of curvature of the third lens image side surface Optics overall length for R6 and the camera optical camera lens is TTL, and meets following relationship:
-0.72≤(R5+R6)/(R5-R6)≤33.78;
0.01≤d5/TTL≤0.07。
Preferably, the focal length of the 4th lens is f4, with a thickness of d7 and the camera shooting on the axis of the 4th lens The optics overall length of optical lens is TTL, and meets following relationship:
0.72≤f4/f≤4.70;
0.05≤d7/TTL≤0.17。
Preferably, the focal length of the 5th lens is f5, and the radius of curvature of the 5th lens object side is R9, Yi Jisuo The radius of curvature of the 5th lens image side surface is stated for R10, with a thickness of d9 and the videography optical lens on the axis of the 5th lens The optics overall length of head is TTL, and meets following relationship:
-3.68≤f5/f≤-0.56;
-3.84≤(R9+R10)/(R9-R10)≤-0.67;
0.02≤d9/TTL≤0.09。
Preferably, the combined focal length of first lens and second lens is f12, and meets following relationship:
0.32≤f12/f≤1.30。
Preferably, the aperture F number of the camera optical camera lens is Fno, and meets following relationship:
Fno≤2.55。
The beneficial effects of the present invention are: camera optical camera lens according to the present invention has favorable optical performance, and has Long-focus, the characteristic of ultrathin are particularly suitable for the cell-phone camera mirror being made of photographing elements such as CCD, CMOS of high pixel Head assembly and WEB pick-up lens.
[Detailed description of the invention]
To describe the technical solutions in the embodiments of the present invention more clearly, make required in being described below to embodiment Attached drawing is briefly described, it should be apparent that, drawings in the following description are only some embodiments of the invention, for For those of ordinary skill in the art, without creative efforts, it can also be obtained according to these attached drawings other Attached drawing, in which:
Fig. 1 is the structural schematic diagram of the camera optical camera lens of embodiment one;
Fig. 2 is the axial aberration schematic diagram of camera optical camera lens shown in FIG. 1;
Fig. 3 is the ratio chromatism, schematic diagram of camera optical camera lens shown in FIG. 1;
Fig. 4 is the curvature of field and distortion schematic diagram of camera optical camera lens shown in FIG. 1;
Fig. 5 is the structural schematic diagram of the camera optical camera lens of embodiment two;
Fig. 6 is the axial aberration schematic diagram of camera optical camera lens shown in fig. 5;
Fig. 7 is the ratio chromatism, schematic diagram of camera optical camera lens shown in fig. 5;
Fig. 8 is the curvature of field and distortion schematic diagram of camera optical camera lens shown in fig. 5;
Fig. 9 is the structural schematic diagram of the camera optical camera lens of embodiment three;
Figure 10 is the axial aberration schematic diagram of camera optical camera lens shown in Fig. 9;
Figure 11 is the ratio chromatism, schematic diagram of camera optical camera lens shown in Fig. 9;
Figure 12 is the curvature of field and distortion schematic diagram of camera optical camera lens shown in Fig. 9;
Figure 13 is the structural schematic diagram of the camera optical camera lens of embodiment four;
Figure 14 is the axial aberration schematic diagram of camera optical camera lens shown in Figure 13;
Figure 15 is the ratio chromatism, schematic diagram of camera optical camera lens shown in Figure 13;
Figure 16 is the curvature of field of camera optical camera lens shown in Figure 13 and distortion schematic diagram.
[specific embodiment]
To make the object, technical solutions and advantages of the present invention clearer, below in conjunction with attached drawing to each reality of the invention The mode of applying is explained in detail.However, it will be understood by those skilled in the art that in each embodiment of the present invention, Many technical details are proposed in order to make reader more fully understand the present invention.But even if without these technical details and base In the various changes and modifications of following embodiment, claimed technical solution of the invention also may be implemented.
(first embodiment)
Attached drawing is please referred to, the present invention provides a kind of camera optical camera lenses 10.Fig. 1 show first embodiment of the invention Camera optical camera lens 10, the camera optical camera lens 10 include five lens.Specifically, the camera optical camera lens 10, by object Side to image side sequentially includes: aperture S1, the first lens L1, the second lens L2, the third lens L3, the 4th lens L4 and the 5th saturating Mirror L5.It may be provided with the optical elements such as optical filtering piece (filter) GF between 5th lens L5 and image planes Si.
In present embodiment, the first lens L1 has positive refracting power, and the second lens L2 has negative refracting power, the third lens L3 With negative refracting power, there is the 4th lens L4 positive refracting power and the 5th lens L5 to have negative refracting power.
In the present embodiment, the system total focal length of the camera optical camera lens is f, and the focal length of first lens is F1 meets following relationship: 0.40≤f1/f≤0.60;The ratio for defining the first lens L1 focal length and system total focal length, can With the spherical aberration of effectively balance system and curvature of field amount.
It defines on the axis of the third lens L3 with a thickness of d5, the third lens L3 image side surface to the 4th lens L4 Distance d6 on the axis of object side, meets following relationship: 7.00≤d6/d5≤15.00.It is saturating to define the third lens L3 and the 4th The ratio of airspace and the third lens L3 thickness between mirror L4 facilitates to compress optical system overall length within the scope of conditional, real Existing ultrathin effect.
The radius of curvature for defining the 4th lens object side is R7, and the radius of curvature of the 4th lens image side surface is R8, meet following relationship: 6.00≤(R7+R8)/(R7-R8)≤30.00 is, it is specified that the shape of the 4th lens L4, in this model When enclosing interior, be conducive to the aberration that angle is drawn outside correction axis.
The focal length for defining the third lens L3 is f3, and meets following relationship: -15.00≤f3/f≤- 1.50.Rule The ratio for having determined the third lens L3 focal length Yu system total focal length, by the reasonable distribution of focal length so that system have preferably at As quality and lower sensibility.
The radius of curvature for defining the second lens L2 object side is the curvature of R3 and the second lens L2 image side surface Radius is R4, and meets following relationship: -50.00≤R3/R4≤- 15.00.The shape for defining the second lens L2, at this When within the scope of part, be conducive to chromatic aberation on correction axis.
The radius of curvature for defining the first lens L1 object side is R1, the radius of curvature of the first lens L1 image side surface For R2, and meet following relationship: -2.93≤(R1+R2)/(R1-R2)≤- 0.52;The rationally shape of the first lens L1 of control, The first lens L1 is enabled effectively to correct system spherical aberration.
It defines on the axis of the first lens L1 and is with a thickness of the optics overall length of d1 and the camera optical camera lens 10 TTL, and meet following relationship: 0.06≤d1/TTL≤0.28 is advantageously implemented ultrathin.
Define the second lens L2 focal length be f2, meet following relationship: -2.53≤f2/f≤- 0.47, pass through by The negative power control of second lens L2 is conducive to the aberration for correcting optical system in zone of reasonableness.
The radius of curvature for defining the second lens object side is R3, and the radius of curvature of the second lens image side surface is R4, and meet following relationship: 0.44≤(R3+R4)/(R3-R4)≤1.44, it is specified that the shape of the second lens L2, in range When interior, as camera lens develops to ultra-thin wide angle, be conducive to the axis colouring Aberration Problem that makes corrections.
On the axis of the second lens L2 with a thickness of the optics overall length of d3 and the camera optical camera lens 10 be TTL, and Meet following relationship: 0.02≤d3/TTL≤0.16 is advantageously implemented ultrathin.
The radius of curvature of the third lens L3 object side is the radius of curvature of R5 and the third lens L3 image side surface For R6, meet following relationship: the shape of the third lens L3 is can be effectively controlled in -0.72≤(R5+R6)/(R5-R6)≤33.78, Be conducive to the third lens L3 molding, and avoid causing to form the production of bad and stress because the surface curvature of the third lens L3 is excessive It is raw.
It defines on the axis of the third lens L3 and is with a thickness of the optics overall length of d5 and the camera optical camera lens 10 TTL, and meet following relationship: 0.01≤d5/TTL≤0.07 is advantageously implemented ultrathin.
The focal length for defining the 4th lens L4 is f4, meet following relationship: 0.72≤f4/f≤4.70 are, it is specified that the The ratio of four focal lengths of lens and system focal length, by the reasonable distribution of focal power so that system have preferable image quality and Lower sensibility.
On the axis of the 4th lens L4 with a thickness of the optics overall length of d7 and the camera optical camera lens 10 be TTL, and Meet following relationship: 0.05≤d7/TTL≤0.17 is advantageously implemented ultrathin.
The focal length for defining the 5th lens L5 is f5, meets following relationship: -3.68≤f5/f≤- 0.56.To the 5th The restriction of lens L5 can effectively make the light angle of pick-up lens gentle, reduce tolerance sensitivities.
The radius of curvature for defining the 5th lens L5 object side is R9 and the curvature half of the 5th lens image side surface Diameter is R10, and meets following relationship: -3.84≤(R9+R10)/(R9-R10)≤- 0.67.Define the shape of the 5th lens L5 Shape when in range, with ultrathin, the development of wide angle, is conducive to the problems such as drawing the aberration at angle outside correction axis.
It defines on the axis of the 5th lens L5 and is with a thickness of the optics overall length of d9 and the camera optical camera lens 10 TTL, and meet following relationship: 0.02≤d9/TTL≤0.09 is advantageously implemented ultrathin.
In present embodiment, the optics overall length TTL of camera optical camera lens 10 is less than or equal to 7.24 millimeters, is advantageously implemented Ultrathin.
It is designed in this way, the optics overall length TTL of whole camera optical camera lens 10 is enabled to shorten as far as possible, maintain miniaturization Characteristic.
Further, the system total focal length of camera optical camera lens 10 is f, the group focus of the first lens L1 and the second lens L2 Away from for f12, and meet following relationship: 0.32≤f12/f≤1.30;Whereby, can eliminate the aberration of camera optical camera lens 10 with It distorts, and 10 back focal length of camera optical camera lens can be suppressed, maintain the miniaturization of image lens system group.The light of camera optical camera lens 10 Circle F number meets following relationship: Fno≤2.55 are advantageously implemented large aperture, so that imaging performance is good.Above-mentioned pass ought be met System, so that camera optical camera lens 10 realizes while with good optical imaging performance, moreover it is possible to meet long-focus, big light The design requirement of circle, ultrathin;According to the characteristic of the optical lens 10, which is particularly suitable for by high pixel The mobile phone camera lens component and WEB pick-up lens that the photographing elements such as CCD, CMOS are constituted.
Camera optical camera lens 10 of the invention will be illustrated with example below.The documented following institute of symbol in each example Show.Distance on focal length, axis, radius of curvature, thickness on axis, point of inflexion position, stationary point position unit be mm.
TTL: optics overall length (distance on the object side to the axis of imaging surface of the first lens L1), unit mm;
Preferably, it is also provided with the point of inflexion and/or stationary point on the object side of the lens and/or image side surface, with full The imaging demand of sufficient high-quality, specific implementable solution are joined lower described.
Table 1, table 2 show the design data of the camera optical camera lens 10 of first embodiment of the invention.
[table 1]
Wherein, the meaning of each symbol is as follows.
S1: aperture;
R: being center radius of curvature when the radius of curvature of optical surface, lens;
The radius of curvature of the object side of R1: the first lens L1;
The radius of curvature of the image side surface of R2: the first lens L1;
The radius of curvature of the object side of R3: the second lens L2;
The radius of curvature of the image side surface of R4: the second lens L2;
The radius of curvature of R5: the third lens L3 object side;
R6: the radius of curvature of the image side surface of the third lens L3;
The radius of curvature of the object side of R7: the four lens L4;
The radius of curvature of the image side surface of R8: the four lens L4;
The radius of curvature of the object side of R9: the five lens L5;
The radius of curvature of the image side surface of R10: the five lens L5;
R11: the radius of curvature of the object side of optical filtering piece GF;
R12: the radius of curvature of the image side surface of optical filtering piece GF;
D: distance on the axis on the axis of lens between thickness and lens;
Distance on the axis of the object side of d0: aperture S1 to first lens L1;
Thickness on the axis of d1: the first lens L1;
Distance on the image side surface of d2: the first lens L1 to the axis of the object side of the second lens L2;
Thickness on the axis of d3: the second lens L2;
Distance on the image side surface of d4: the second lens L2 to the axis of the object side of the third lens L3;
D5: thickness on the axis of the third lens L3;
D6: distance on the axis of the image side surface of the third lens L3 to the object side of the 4th lens L4;
Thickness on the axis of d7: the four lens L4;
Distance on the image side surface of d8: the four lens L4 to the axis of the object side of the 5th lens L5;
Thickness on the axis of d9: the five lens L5;
Distance on the image side surface of d10: the five lens L5 to the axis of the object side of optical filtering piece GF;
D11: thickness on the axis of optical filtering piece GF;
D12: distance on the image side surface to the axis of image planes of optical filtering piece GF;
The refractive index of nd:d line;
The refractive index of the d line of nd1: the first lens L1;
The refractive index of the d line of nd2: the second lens L2;
The refractive index of nd3: the third lens L3 d line;
The refractive index of the d line of nd4: the four lens L4;
The refractive index of the d line of nd5: the five lens L5;
Ndg: the refractive index of the d line of optical filtering piece GF;
Vd: Abbe number;
The Abbe number of v1: the first lens L1;
The Abbe number of v2: the second lens L2;
V3: the Abbe number of the third lens L3;
The Abbe number of v4: the four lens L4;
The Abbe number of v5: the five lens L5;
Vg: the Abbe number of optical filtering piece GF.
Table 2 shows the aspherical surface data of each lens in the camera optical camera lens 10 of first embodiment of the invention.
[table 2]
Wherein, k is circular cone coefficient, and A4, A6, A8, A10, A12, A14, A16, A18, A20 are asphericity coefficients.
Y=(x2/R)/[1+{1-(k+1)(x2/R2)}1/2]+A4x4+A6x6+A8x8+A10x10+A12x12+A14x14+ A16x16+A18x18+A20x20 (1)
For convenience, each lens face is aspherical using aspherical shown in above-mentioned formula (1).But this hair The bright aspherical polynomial form for being not limited to the formula (1) expression.
Table 3, table 4 show the point of inflexion of each lens and stationary point in the camera optical camera lens 10 of first embodiment of the invention Design data.Wherein, P1R1, P1R2 respectively represent object side and the image side surface of the first lens L1, and P2R1, P2R2 respectively represent The object side of two lens L2 and image side surface, P3R1, P3R2 respectively represent object side and the image side surface of the third lens L3, P4R1, P4R2 respectively represents object side and the image side surface of the 4th lens L4, P5R1, P5R2 respectively represent the 5th lens L5 object side and Image side surface." point of inflexion position " field corresponding data is the point of inflexion set by each lens surface to 10 optical axis of camera optical camera lens Vertical range." stationary point position " field corresponding data is stationary point set by each lens surface to 10 optical axis of camera optical camera lens Vertical range.
[table 3]
[table 4]
Stationary point number Stationary point position 1
P1R1 0 0
P1R2 1 0.675
P2R1 1 0.195
P2R2 0 0
P3R1 1 0.415
P3R2 0 0
P4R1 0 0
P4R2 0 0
P5R1 0 0
P5R2 0 0
Fig. 2 shows light the taking the photograph by first embodiment that wavelength is 436nm, 486nm, 546nm, 587nm and 656nm As the axial aberration schematic diagram after optical lens 10, it is 436nm, 486nm, 546nm, 587nm and 656nm that Fig. 3, which shows wavelength, Camera optical camera lens 10 of the light by first embodiment after ratio chromatism, schematic diagram.Fig. 4 is then shown, and wavelength is The curvature of field and distortion schematic diagram after camera optical camera lens 10 of the light of 546nm by first embodiment, the curvature of field S of Fig. 4 is arc Swear the curvature of field in direction, T is the curvature of field of meridian direction.
The table 17 occurred afterwards show in each embodiment one, two, three, four in various numerical value and conditional as defined in parameter Corresponding value.
As shown in table 17, first embodiment meets each conditional.
In the present embodiment, the Entry pupil diameters of the camera optical camera lens are 3.045mm, and full filed image height is 3.266mm, the field angle of diagonal are 46.14 °, so that 10 wide angle of camera optical camera lens, ultrathin, ultra-thin Change, chromatic aberation sufficiently makes corrections on axis, outside axis, and has outstanding optical signature.
(second embodiment)
Second embodiment is essentially identical with first embodiment, and symbol meaning is identical with first embodiment, this second The structure type of the camera optical camera lens 20 of embodiment please join shown in Fig. 5, only list difference below.
Table 5, table 6 show the design data of the camera optical camera lens 20 of second embodiment of the invention.
[table 5]
Table 6 shows the aspherical surface data of each lens in the camera optical camera lens 20 of second embodiment of the invention.
[table 6]
Table 7, table 8 show the point of inflexion of each lens and stationary point in the camera optical camera lens 20 of second embodiment of the invention Design data.
[table 7]
Point of inflexion number Point of inflexion position 1 Point of inflexion position 2
P1R1 1 1.455 0
P1R2 0 0 0
P2R1 1 0.075 0
P2R2 0 0 0
P3R1 1 0.285 0
P3R2 0 0 0
P4R1 1 1.715 0
P4R2 2 1.885 2.105
P5R1 1 1.755 0
P5R2 1 2.385 0
[table 8]
Fig. 6 shows light the taking the photograph by second embodiment that wavelength is 436nm, 486nm, 546nm, 587nm and 656nm As the axial aberration schematic diagram after optical lens 20, it is 436nm, 486nm, 546nm, 587nm and 656nm that Fig. 7, which shows wavelength, Camera optical camera lens 20 of the light by second embodiment after ratio chromatism, schematic diagram.Fig. 8 is then shown, and wavelength is The curvature of field and distortion schematic diagram after camera optical camera lens 20 of the light of 546nm by second embodiment.
As shown in table 17, second embodiment meets each conditional.
In the present embodiment, the Entry pupil diameters of the camera optical camera lens are 3.032mm, and full filed image height is 3.266mm, the field angle of diagonal is 46.24 °, so that 20 wide angle of camera optical camera lens, ultrathin, axis Upper, the outer chromatic aberation of axis sufficiently makes corrections, and has outstanding optical signature.
(third embodiment)
Third embodiment and first embodiment are essentially identical, and symbol meaning is identical with first embodiment, the third The structure type of the camera optical camera lens 30 of embodiment please join shown in Fig. 9, only list difference below.
Table 9, table 10 show the design data of the camera optical camera lens 30 of third embodiment of the invention.
[table 9]
Table 10 shows the aspherical surface data of each lens in the camera optical camera lens 30 of third embodiment of the invention.
[table 10]
Table 11, table 12 show the point of inflexion of each lens in the camera optical camera lens 30 of third embodiment of the invention and stay Point design data.
[table 11]
Point of inflexion number Point of inflexion position 1 Point of inflexion position 2
P1R1 1 1.435 0
P1R2 2 0.505 1.145
P2R1 1 0.145 0
P2R2 0 0 0
P3R1 1 0.205 0
P3R2 0 0 0
P4R1 1 1.655 0
P4R2 1 1.845 0
P5R1 1 1.805 0
P5R2 1 2.305 0
[table 12]
Stationary point number Stationary point position 1 Stationary point position 2
P1R1 0 0 0
P1R2 2 0.945 1.255
P2R1 1 0.245 0
P2R2 0 0 0
P3R1 1 0.345 0
P3R2 0 0 0
P4R1 0 0 0
P4R2 0 0 0
P5R1 0 0 0
P5R2 0 0 0
Figure 10 shows the light that wavelength is 436nm, 486nm, 546nm, 587nm and 656nm and passes through third embodiment Axial aberration schematic diagram after camera optical camera lens 30, Figure 11 show wavelength be 436nm, 486nm, 546nm, 587nm and Ratio chromatism, schematic diagram after camera optical camera lens 30 of the light of 656nm by third embodiment.Figure 12 is then shown, wavelength For the curvature of field and distortion schematic diagram after camera optical camera lens 30 of the light by third embodiment of 546nm.
Following table 17 lists the numerical value that each conditional is corresponded in present embodiment according to the above conditions.Obviously, this reality The imaging optical system for applying mode meets above-mentioned conditional.
In the present embodiment, the Entry pupil diameters of the camera optical camera lens are 2.93mm, and full filed image height is 3.266mm, the field angle of diagonal is 47.50 °, so that 30 wide angle of camera optical camera lens, ultrathin, focal length Away from chromatic aberation sufficiently makes corrections on axis, outside axis, and has outstanding optical signature.
(the 4th embodiment)
4th embodiment and first embodiment are essentially identical, and symbol meaning is identical with first embodiment, and the 4th The structure type of the camera optical camera lens 40 of embodiment please join shown in Figure 13, only list difference below.
Table 13, table 14 show the design data of the camera optical camera lens 40 of four embodiment of the invention.
[table 13]
Table 14 shows the aspherical surface data of each lens in the camera optical camera lens 40 of four embodiment of the invention.
[table 14]
Table 15, table 16 show the point of inflexion of each lens in the camera optical camera lens 40 of four embodiment of the invention and stay Point design data.
[table 15]
Point of inflexion number Point of inflexion position 1 Point of inflexion position 2
P1R1 1 1.425 0
P1R2 1 0.495 0
P2R1 1 0.885 0
P2R2 1 1.015 0
P3R1 1 0.805 0
P3R2 0 0 0
P4R1 2 1.725 1.905
P4R2 2 1.885 2.105
P5R1 1 1.905 0
P5R2 2 0.015 2.435
[table 16]
Figure 14 shows the light that wavelength is 436nm, 486nm, 546nm, 587nm and 656nm and passes through the 4th embodiment Axial aberration schematic diagram after camera optical camera lens 40, Figure 15 show wavelength be 436nm, 486nm, 546nm, 587nm and Ratio chromatism, schematic diagram of the light of 656nm after the camera optical camera lens 40 of the 4th embodiment.Figure 16 is then shown, wavelength For the curvature of field of the light after the camera optical camera lens 40 of the 4th embodiment and distortion schematic diagram of 546nm.
Following table 17 lists the numerical value that each conditional is corresponded in present embodiment according to the above conditions.Obviously, this reality The imaging optical system for applying mode meets above-mentioned conditional.
In the present embodiment, the Entry pupil diameters of the camera optical camera lens are 2.909mm, and full filed image height is 3.266mm, the field angle of diagonal is 47.92 °, so that 40 wide angle of camera optical camera lens, ultrathin, axis Upper, the outer chromatic aberation of axis sufficiently makes corrections, and has outstanding optical signature.
[table 17]
It will be understood by those skilled in the art that the respective embodiments described above are to realize specific embodiment party of the invention Formula, and in practical applications, can to it, various changes can be made in the form and details, without departing from spirit and model of the invention It encloses.

Claims (10)

1. a kind of camera optical camera lens, which is characterized in that the camera optical camera lens sequentially includes: having from object side to image side First lens of positive refracting power, the second lens with negative refracting power, the third lens with negative refracting power have positive refracting power The 4th lens and the 5th lens with negative refracting power;
The system total focal length of the camera optical camera lens is f, and the focal lengths of first lens is f1, on the axis of the third lens With a thickness of d5, distance d6 on the axis of the third lens image side surface to the 4th lens object side, the 4th lens object side The radius of curvature in face is R7, and the radius of curvature of the 4th lens image side surface is R8, meets following relationship:
0.40≤f1/f≤0.60;
7.00≤d6/d5≤15.00;
6.00≤(R7+R8)/(R7-R8)≤30.00。
2. camera optical camera lens according to claim 1, which is characterized in that the focal length of the third lens is f3, and full Sufficient following relationship:
-15.00≤f3/f≤-1.50。
3. camera optical camera lens according to claim 1, which is characterized in that the radius of curvature of the second lens object side Radius of curvature for R3 and the second lens image side surface is R4, and meets following relationship:
-50.00≤R3/R4≤-15.00。
4. camera optical camera lens according to claim 1, which is characterized in that the radius of curvature of the first lens object side For R1, the radius of curvature of the first lens image side surface is R2, with a thickness of d1 and the camera shooting on the axis of first lens The optics overall length of optical lens is TTL, and meets following relationship:
-2.93≤(R1+R2)/(R1-R2)≤-0.52;
0.06≤d1/TTL≤0.28。
5. camera optical camera lens according to claim 1, which is characterized in that the focal length of second lens is f2, described The radius of curvature of second lens object side is R3, and the radius of curvature of the second lens image side surface is R4, second lens With a thickness of the optics overall length of d3 and the camera optical camera lens it is TTL on axis, and meets following relationship:
-2.53≤f2/f≤-0.47;
0.44≤(R3+R4)/(R3-R4)≤1.44;
0.02≤d3/TTL≤0.16。
6. camera optical camera lens according to claim 1, which is characterized in that the radius of curvature of the third lens object side For R5, the radius of curvature of the third lens image side surface is R6 and the optics overall length of the camera optical camera lens is TTL, and Meet following relationship:
-0.72≤(R5+R6)/(R5-R6)≤33.78;
0.01≤d5/TTL≤0.07。
7. camera optical camera lens according to claim 1, which is characterized in that the focal length of the 4th lens is f4, described With a thickness of the optics overall length of d7 and the camera optical camera lens it is TTL on the axis of 4th lens, and meets following relationship:
0.72≤f4/f≤4.70;
0.05≤d7/TTL≤0.17。
8. camera optical camera lens according to claim 1, which is characterized in that the focal length of the 5th lens is f5, described The radius of curvature of 5th lens object side is R9 and the radius of curvature of the 5th lens image side surface is R10, and the described 5th thoroughly With a thickness of the optics overall length of d9 and the camera optical camera lens it is TTL on the axis of mirror, and meets following relationship:
-3.68≤f5/f≤-0.56;
-3.84≤(R9+R10)/(R9-R10)≤-0.67;
0.02≤d9/TTL≤0.09。
9. camera optical camera lens according to claim 1, which is characterized in that first lens and second lens Combined focal length is f12, and meets following relationship:
0.32≤f12/f≤1.30。
10. camera optical camera lens according to claim 1, which is characterized in that the aperture F number of the camera optical camera lens is Fno, and meet following relationship:
Fno≤2.55。
CN201910581782.5A 2019-06-30 2019-06-30 Image pickup optical lens Active CN110221410B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910581782.5A CN110221410B (en) 2019-06-30 2019-06-30 Image pickup optical lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910581782.5A CN110221410B (en) 2019-06-30 2019-06-30 Image pickup optical lens

Publications (2)

Publication Number Publication Date
CN110221410A true CN110221410A (en) 2019-09-10
CN110221410B CN110221410B (en) 2021-07-30

Family

ID=67815348

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910581782.5A Active CN110221410B (en) 2019-06-30 2019-06-30 Image pickup optical lens

Country Status (1)

Country Link
CN (1) CN110221410B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112230389A (en) * 2020-10-31 2021-01-15 诚瑞光学(苏州)有限公司 Image pickup optical lens
WO2021119888A1 (en) * 2019-12-16 2021-06-24 诚瑞光学(常州)股份有限公司 Optical camera lens
WO2021119885A1 (en) * 2019-12-16 2021-06-24 诚瑞光学(常州)股份有限公司 Optical camera lens
WO2021127834A1 (en) * 2019-12-23 2021-07-01 诚瑞光学(常州)股份有限公司 Camera optical lens
WO2021168878A1 (en) * 2020-02-24 2021-09-02 诚瑞光学(常州)股份有限公司 Camera optical lens
JP7409811B2 (en) 2019-09-19 2024-01-09 東京晨美光学電子株式会社 imaging lens

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014155468A1 (en) * 2013-03-25 2014-10-02 富士フイルム株式会社 Imaging lens and imaging device provided with imaging lens
CN105093493A (en) * 2015-03-06 2015-11-25 玉晶光电(厦门)有限公司 Portable electronic device and optical imaging lens thereof
CN107664811A (en) * 2017-09-07 2018-02-06 南昌欧菲光电技术有限公司 Eyeglass module
CN107748432A (en) * 2013-07-04 2018-03-02 核心光电有限公司 Small-sized focal length lens external member
CN108398770A (en) * 2018-06-05 2018-08-14 浙江舜宇光学有限公司 Optical imaging lens
CN109407266A (en) * 2017-08-15 2019-03-01 大立光电股份有限公司 Image system lens assembly, image capturing device and electronic device
CN208672895U (en) * 2018-08-14 2019-03-29 江苏光腾光学有限公司 Optical shooting lens group
CN109725407A (en) * 2019-03-05 2019-05-07 浙江舜宇光学有限公司 Optical imaging lens

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014155468A1 (en) * 2013-03-25 2014-10-02 富士フイルム株式会社 Imaging lens and imaging device provided with imaging lens
CN205281004U (en) * 2013-03-25 2016-06-01 富士胶片株式会社 Pick -up lens and image pick -up device equipped with same
CN107748432A (en) * 2013-07-04 2018-03-02 核心光电有限公司 Small-sized focal length lens external member
CN105093493A (en) * 2015-03-06 2015-11-25 玉晶光电(厦门)有限公司 Portable electronic device and optical imaging lens thereof
CN109407266A (en) * 2017-08-15 2019-03-01 大立光电股份有限公司 Image system lens assembly, image capturing device and electronic device
CN107664811A (en) * 2017-09-07 2018-02-06 南昌欧菲光电技术有限公司 Eyeglass module
CN108398770A (en) * 2018-06-05 2018-08-14 浙江舜宇光学有限公司 Optical imaging lens
CN208672895U (en) * 2018-08-14 2019-03-29 江苏光腾光学有限公司 Optical shooting lens group
CN109725407A (en) * 2019-03-05 2019-05-07 浙江舜宇光学有限公司 Optical imaging lens

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7409811B2 (en) 2019-09-19 2024-01-09 東京晨美光学電子株式会社 imaging lens
WO2021119888A1 (en) * 2019-12-16 2021-06-24 诚瑞光学(常州)股份有限公司 Optical camera lens
WO2021119885A1 (en) * 2019-12-16 2021-06-24 诚瑞光学(常州)股份有限公司 Optical camera lens
WO2021127834A1 (en) * 2019-12-23 2021-07-01 诚瑞光学(常州)股份有限公司 Camera optical lens
WO2021168878A1 (en) * 2020-02-24 2021-09-02 诚瑞光学(常州)股份有限公司 Camera optical lens
CN112230389A (en) * 2020-10-31 2021-01-15 诚瑞光学(苏州)有限公司 Image pickup optical lens
CN112230389B (en) * 2020-10-31 2022-03-01 诚瑞光学(苏州)有限公司 Image pickup optical lens

Also Published As

Publication number Publication date
CN110221410B (en) 2021-07-30

Similar Documents

Publication Publication Date Title
CN110297314A (en) Camera optical camera lens
CN110297312A (en) Camera optical camera lens
CN110221410A (en) Camera optical camera lens
CN110488463A (en) Camera optical camera lens
CN110333590A (en) Camera optical camera lens
CN110412737A (en) Camera optical camera lens
CN110515178A (en) Camera optical camera lens
CN110361840A (en) Camera optical camera lens
CN110361844A (en) Camera optical camera lens
CN110398822A (en) Camera optical camera lens
CN110488462A (en) Camera optical camera lens
CN110221409A (en) Camera optical camera lens
CN110515179A (en) Camera optical camera lens
CN110398821A (en) Camera optical camera lens
CN110221411A (en) Camera optical camera lens
CN110488464A (en) Camera optical camera lens
CN110346910A (en) Camera optical camera lens
CN110361841A (en) Camera optical camera lens
CN110297315A (en) Camera optical camera lens
CN110361839A (en) Camera optical camera lens
CN110346922A (en) Camera optical camera lens
CN110398824A (en) Camera optical camera lens
CN110262008A (en) Camera optical camera lens
CN110262007A (en) Camera optical camera lens
CN110398818A (en) Camera optical camera lens

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20200423

Address after: No. 8, 2 floor, 85 Cavendish Science Park Avenue, Singapore

Applicant after: Raytheon solutions Pte Ltd

Address before: No. 8, 2 floor, 85 Cavendish Science Park Avenue, Singapore

Applicant before: Raytheon Technology (Singapore) Co., Ltd

GR01 Patent grant
GR01 Patent grant