CN110219843B - A pumpless hydraulic loading and positioning device - Google Patents
A pumpless hydraulic loading and positioning device Download PDFInfo
- Publication number
- CN110219843B CN110219843B CN201910390819.6A CN201910390819A CN110219843B CN 110219843 B CN110219843 B CN 110219843B CN 201910390819 A CN201910390819 A CN 201910390819A CN 110219843 B CN110219843 B CN 110219843B
- Authority
- CN
- China
- Prior art keywords
- hydraulic
- cylinder
- chamber
- pressure
- loading
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000006243 chemical reaction Methods 0.000 claims abstract description 61
- 239000007788 liquid Substances 0.000 claims abstract description 36
- 238000006073 displacement reaction Methods 0.000 claims abstract description 32
- 230000007246 mechanism Effects 0.000 claims abstract description 19
- 239000003921 oil Substances 0.000 description 58
- 238000000034 method Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 4
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 239000010720 hydraulic oil Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 239000010727 cylinder oil Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000009347 mechanical transmission Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B11/00—Servomotor systems without provision for follow-up action; Circuits therefor
- F15B11/16—Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B15/00—Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
- F15B15/08—Characterised by the construction of the motor unit
- F15B15/14—Characterised by the construction of the motor unit of the straight-cylinder type
- F15B15/1423—Component parts; Constructional details
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B15/00—Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
- F15B15/20—Other details, e.g. assembly with regulating devices
- F15B15/28—Means for indicating the position, e.g. end of stroke
- F15B15/2815—Position sensing, i.e. means for continuous measurement of position, e.g. LVDT
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Supply Devices, Intensifiers, Converters, And Telemotors (AREA)
- Actuator (AREA)
Abstract
本发明公开了一种无泵型液压加载及定位装置,属于液压加载设备领域。该装置包括:线性驱动器、加载液压缸、承压筒、回退机构和处理器;线性驱动器的输出端具有活塞推杆;加载液压缸包括缸体、活塞杆和位移传感器;承压筒具有储油室,储油室一端开有供线性驱动器的活塞推杆进入的活塞孔,另一端通过第一液压管路与加载液压缸的高压腔连通;回退机构包括气液压力转换缸和气压源,气液压力转换缸的液压腔通过第二液压管路连接加载液压缸的低压腔;气液压力转换缸的气压腔连接气压源;处理器连接位移传感器和线性驱动器,对活塞杆的位移进行闭环控制。本发明无需液压泵站,降低加载系统的能量损失并避免液压泵站噪声,且能够对活塞杆进行精确定位。
The invention discloses a pumpless hydraulic loading and positioning device, which belongs to the field of hydraulic loading equipment. The device includes: a linear drive, a loading hydraulic cylinder, a pressure-bearing cylinder, a retraction mechanism and a processor; the output end of the linear drive is provided with a piston push rod; the loading hydraulic cylinder includes a cylinder block, a piston rod and a displacement sensor; the pressure-bearing cylinder has a storage Oil chamber, one end of the oil storage chamber is provided with a piston hole for the piston push rod of the linear drive to enter, and the other end is communicated with the high pressure chamber of the loading hydraulic cylinder through the first hydraulic pipeline; the retraction mechanism includes a gas-hydraulic pressure conversion cylinder and a gas pressure source , the hydraulic chamber of the gas-hydraulic pressure conversion cylinder is connected to the low-pressure chamber of the loading hydraulic cylinder through the second hydraulic pipeline; the air-pressure chamber of the gas-liquid pressure conversion cylinder is connected to the air pressure source; the processor is connected to the displacement sensor and the linear driver to carry out the displacement of the piston rod. Closed-loop control. The invention does not need a hydraulic pump station, reduces the energy loss of the loading system, avoids the noise of the hydraulic pump station, and can accurately position the piston rod.
Description
技术领域technical field
本发明属于液压加载设备领域,更具体地,涉及一种无泵型液压加载及定位装置,尤其适用于对加载液压缸活塞位移有高精度要求的情况,既能工作在加载模式,也能工作在定位模式。The invention belongs to the field of hydraulic loading equipment, and more particularly relates to a pumpless hydraulic loading and positioning device, which is especially suitable for the situation where high precision is required for the displacement of the piston of the loading hydraulic cylinder, which can work not only in the loading mode but also in the loading mode. in positioning mode.
背景技术Background technique
液压加载装置可在实验条件下完成对大型设备关键承载部件(如船舶主推进轴系和舵机等)的负载模拟和性能评测。其对于优化结构设计、节约研发时间、降低实验成本和提高设备可靠性具有重要意义。The hydraulic loading device can complete the load simulation and performance evaluation of the key bearing components of large equipment (such as ship main propulsion shafting and steering gear, etc.) under experimental conditions. It is of great significance for optimizing structural design, saving development time, reducing experimental cost and improving equipment reliability.
传统的液压加载装置主要采用阀控液压缸作为执行元件,通过调节伺服阀的开度来改变加载液压油缸内部的油液压力,从而获得系统所期望的加载力。由于液压阀件自身节流损失的影响,加载装置能量利用率很低,易发生液压油过热现象,降低了系统的稳定性和控制精度。而且,其大多以液压泵站作为动力源,通过控制大量电液伺服阀的开闭来实现加载液压缸活塞的回退。该方法使用的液压泵站所产生的噪声会妨碍现场操作人员工作,同时液压泵站占用空间较大,影响了设备的利用效率。The traditional hydraulic loading device mainly uses the valve-controlled hydraulic cylinder as the actuator, and adjusts the opening of the servo valve to change the oil pressure inside the loading hydraulic cylinder, so as to obtain the desired loading force of the system. Due to the influence of the throttling loss of the hydraulic valve itself, the energy utilization rate of the loading device is very low, and the hydraulic oil is prone to overheating, which reduces the stability and control accuracy of the system. Moreover, most of them use the hydraulic pump station as the power source, and realize the retraction of the loading hydraulic cylinder piston by controlling the opening and closing of a large number of electro-hydraulic servo valves. The noise generated by the hydraulic pump station used in the method will hinder the work of the on-site operators, and at the same time, the hydraulic pump station occupies a large space, which affects the utilization efficiency of the equipment.
发明内容SUMMARY OF THE INVENTION
针对现有技术的以上缺陷或改进需求,本发明提供了一种无泵型液压加载及定位装置,其目的在于,利用线性驱动器作为施压源驱动加载缸加载,而利用气压源作为施压源驱动加载缸回退,从而在不使用液压泵站的条件下实现加载缸活塞的驱动及回退,有效降低加载系统的能量损失,并避免液压泵站运行产生的噪声;同时,通过位移传感器、处理器、线性驱动器进行位移闭环控制,实现加载缸活塞的精确定位,提升控制精度。In view of the above defects or improvement needs of the prior art, the present invention provides a pumpless hydraulic loading and positioning device, the purpose of which is to use a linear drive as a pressure source to drive a loading cylinder to load, and use a pneumatic source as a pressure source. Drive the loading cylinder to retreat, so as to realize the driving and retraction of the loading cylinder piston without using the hydraulic pump station, effectively reduce the energy loss of the loading system, and avoid the noise generated by the operation of the hydraulic pump station; at the same time, through the displacement sensor, The processor and linear driver perform displacement closed-loop control to achieve precise positioning of the loading cylinder piston and improve control accuracy.
为实现上述目的,按照本发明的一个方面,提供了一种无泵型液压加载及定位装置,包括:线性驱动器、加载液压缸、承压筒、第一液压管路、第二液压管路、回退机构和处理器;In order to achieve the above object, according to one aspect of the present invention, a pumpless hydraulic loading and positioning device is provided, comprising: a linear drive, a loading hydraulic cylinder, a pressure bearing cylinder, a first hydraulic pipeline, a second hydraulic pipeline, fallback mechanisms and processors;
线性驱动器的输出端具有活塞推杆;The output end of the linear drive has a piston push rod;
加载液压缸包括缸体、活塞杆和位移传感器,活塞杆将缸体分隔为高压腔和低压腔;位移传感器用于测量活塞杆的位置。The loading hydraulic cylinder includes a cylinder block, a piston rod and a displacement sensor. The piston rod divides the cylinder block into a high-pressure chamber and a low-pressure chamber; the displacement sensor is used to measure the position of the piston rod.
承压筒具有储油室,储油室一端开有活塞孔,以供线性驱动器的活塞推杆进入,另一端通过第一液压管路与加载液压缸的高压腔相连通;The pressure-bearing cylinder has an oil storage chamber, one end of the oil storage chamber is provided with a piston hole for the entry of the piston push rod of the linear drive, and the other end is communicated with the high-pressure chamber of the loading hydraulic cylinder through the first hydraulic pipeline;
回退机构包括气液压力转换缸和气压源;气液压力转换缸内部设有气液压力转换活塞,气液压力转换活塞将气液压力转换缸分隔为液压腔和气压腔;气液压力转换缸的液压腔通过第二液压管路连接加载液压缸的低压腔;气液压力转换缸的气压腔连接气压源;The retraction mechanism includes a gas-liquid pressure conversion cylinder and an air pressure source; a gas-liquid pressure conversion piston is arranged inside the gas-liquid pressure conversion cylinder, and the gas-liquid pressure conversion piston separates the gas-liquid pressure conversion cylinder into a hydraulic chamber and an air pressure chamber; the gas-liquid pressure conversion piston The hydraulic chamber of the cylinder is connected to the low pressure chamber of the loading hydraulic cylinder through the second hydraulic pipeline; the air pressure chamber of the gas-hydraulic pressure conversion cylinder is connected to the air pressure source;
处理器连接位移传感器和线性驱动器,以根据位移传感器反馈的位移信号对活塞杆的位移进行闭环控制。The processor connects the displacement sensor and the linear driver to perform closed-loop control on the displacement of the piston rod according to the displacement signal fed back by the displacement sensor.
进一步地,气液压力转换缸的液压腔的截面积不大于气压腔的截面积。Further, the cross-sectional area of the hydraulic chamber of the air-to-hydraulic pressure conversion cylinder is not greater than the cross-sectional area of the air pressure chamber.
进一步地,液压腔的截面积小于气压腔的截面积;气液压力转换活塞包括相互固连的液压腔塞体和气压腔塞体,液压腔塞体位于液压腔内,气压腔塞体位于气压腔内;液压腔塞体的截面形状尺寸与液压腔的截面相同,气压腔塞体的截面形状尺寸与气压腔的截面相同。Further, the cross-sectional area of the hydraulic chamber is smaller than the cross-sectional area of the air pressure chamber; the gas-liquid pressure conversion piston includes a hydraulic chamber plug body and an air pressure chamber plug body that are fixed to each other, the hydraulic chamber plug body is located in the hydraulic chamber, and the air pressure chamber plug body is located in the air pressure chamber. The cross-sectional shape and size of the plug body of the hydraulic chamber are the same as the cross-section of the hydraulic chamber, and the cross-sectional shape and size of the plug body of the air pressure chamber are the same as the cross-section of the air pressure chamber.
进一步地,包括数量相等且一一对应的多个加载液压缸、第一液压管路和第二液压管路;各加载液压缸通过各自对应的第一液压管路和第二液压管路并联接入承压筒与气液压力转换缸之间。Further, it includes a plurality of loading hydraulic cylinders, a first hydraulic pipeline and a second hydraulic pipeline with an equal number and a one-to-one correspondence; each loading hydraulic cylinder is connected in parallel through its corresponding first hydraulic pipeline and second hydraulic pipeline Enter between the pressure-bearing cylinder and the gas-hydraulic pressure conversion cylinder.
进一步地,每个第一液压管路上均设有压力表、第一截止阀和压力传感器;处理器连接压力传感器,以根据压力传感器反馈的压力信号,对第一液压管路的压力进行闭环控制。Further, each first hydraulic pipeline is provided with a pressure gauge, a first cut-off valve and a pressure sensor; the processor is connected to the pressure sensor to perform closed-loop control on the pressure of the first hydraulic pipeline according to the pressure signal fed back by the pressure sensor .
进一步地,各第一液压管路汇入第一液压总管,并通过第一液压总管连接储油室;各第二液压管路汇入第二液压总管,并通过第二液压总管连接液压腔;第一液压总管和第二液压总管上分别设有压力表,第二液压总管上还设有第二截止阀。Further, each first hydraulic pipeline merges into the first hydraulic manifold, and is connected to the oil storage chamber through the first hydraulic manifold; each second hydraulic pipeline merges into the second hydraulic manifold, and is connected to the hydraulic chamber through the second hydraulic manifold; The first hydraulic main pipe and the second hydraulic main pipe are respectively provided with pressure gauges, and the second hydraulic main pipe is also provided with a second stop valve.
进一步地,其特征在于,还包括蓄油缸,蓄油缸连接承压筒的进油口。Further, it is characterized in that it also includes an oil storage cylinder, and the oil storage cylinder is connected to the oil inlet of the pressure-bearing cylinder.
进一步地,承压筒的出油口设置溢流阀。Further, the oil outlet of the pressure-bearing cylinder is provided with a relief valve.
本发明的另一目的在于,利用线性驱动器作为施压源驱动加载缸加载,而利用气压源作为施压源驱动加载缸回退,从而在不使用液压泵站的条件下实现加载缸活塞的驱动及回退,有效降低加载系统的能量损失,并避免液压泵站运行产生的噪声。Another object of the present invention is to use a linear actuator as a pressure source to drive the loading cylinder to load, and use a pneumatic source as a pressure source to drive the loading cylinder to retreat, so as to realize the driving of the loading cylinder piston without using a hydraulic pump station It can effectively reduce the energy loss of the loading system and avoid the noise generated by the operation of the hydraulic pump station.
为了实现上述目的,按照本发明的另一个方面,提供了一种无泵型液压加载装置,包括:线性驱动器、加载液压缸、承压筒、第一液压管路、第二液压管路和回退机构;In order to achieve the above object, according to another aspect of the present invention, a pumpless hydraulic loading device is provided, comprising: a linear drive, a loading hydraulic cylinder, a pressure bearing cylinder, a first hydraulic pipeline, a second hydraulic pipeline and a return withdrawal agency;
线性驱动器的输出端具有活塞推杆;The output end of the linear drive has a piston push rod;
加载液压缸包括缸体和活塞杆,活塞杆将缸体分隔为高压腔和低压腔;The loading hydraulic cylinder includes a cylinder body and a piston rod, and the piston rod divides the cylinder body into a high-pressure chamber and a low-pressure chamber;
承压筒具有储油室,储油室一端开有活塞孔,以供线性驱动器的活塞推杆进入,另一端通过第一液压管路与加载液压缸的高压腔相连通;The pressure-bearing cylinder has an oil storage chamber, one end of the oil storage chamber is provided with a piston hole for the entry of the piston push rod of the linear drive, and the other end is communicated with the high-pressure chamber of the loading hydraulic cylinder through the first hydraulic pipeline;
回退机构包括气液压力转换缸和气压源;气液压力转换缸内部设有气液压力转换活塞,气液压力转换活塞将气液压力转换缸分隔为液压腔和气压腔;气液压力转换缸的液压腔通过第二液压管路连接加载液压缸的低压腔;气液压力转换缸的气压腔连接气压源。The retraction mechanism includes a gas-liquid pressure conversion cylinder and an air pressure source; a gas-liquid pressure conversion piston is arranged inside the gas-liquid pressure conversion cylinder, and the gas-liquid pressure conversion piston separates the gas-liquid pressure conversion cylinder into a hydraulic chamber and an air pressure chamber; the gas-liquid pressure conversion piston The hydraulic chamber of the cylinder is connected to the low pressure chamber of the loading hydraulic cylinder through the second hydraulic pipeline; the air pressure chamber of the gas-liquid pressure conversion cylinder is connected to the air pressure source.
进一步地,气液压力转换缸的液压腔的截面积不大于气压腔的截面积;其中,当液压腔的截面积小于气压腔的截面积时:Further, the cross-sectional area of the hydraulic chamber of the gas-liquid pressure conversion cylinder is not greater than the cross-sectional area of the air pressure chamber; wherein, when the cross-sectional area of the hydraulic chamber is smaller than the cross-sectional area of the air pressure chamber:
气液压力转换活塞包括相互固连的液压腔塞体和气压腔塞体,液压腔塞体位于液压腔内,气压腔塞体位于气压腔内;液压腔塞体的截面形状尺寸与液压腔的截面相同,气压腔塞体的截面形状尺寸与气压腔的截面相同。The gas-liquid pressure conversion piston includes a hydraulic cavity plug body and an air pressure cavity plug body that are fixed to each other, the hydraulic cavity plug body is located in the hydraulic cavity, and the air pressure cavity plug body is located in the air pressure cavity; The cross-section is the same, and the cross-sectional shape and size of the plug body of the air pressure chamber are the same as the cross-section of the air pressure chamber.
总体而言,本发明所构思的以上技术方案与现有技术相比,能够取得下列有益效果:In general, compared with the prior art, the above technical solutions conceived by the present invention can achieve the following beneficial effects:
1)利用线性驱动器和承压筒作为压力放大元件驱动加载液压缸运动,同时利用气压源驱动加载液压缸复位,避免了传统阀控电液加载装置如液压泵站等容易产生噪声的问题;通过处理器、位移传感器以及线性驱动装置组成位移闭环反馈控制模块,利用位移传感器反馈的数据实时调节线性驱动装置的活塞推杆位移,从而实现对加载液压缸活塞位移的实时调节和精确定位,具有极高的可靠性。1) The linear driver and pressure-bearing cylinder are used as pressure amplifying elements to drive the movement of the loading hydraulic cylinder, and at the same time, the pressure source is used to drive the loading hydraulic cylinder to reset, which avoids the problem of noise easily generated by traditional valve-controlled electro-hydraulic loading devices such as hydraulic pump stations; The processor, displacement sensor and linear drive device form a displacement closed-loop feedback control module, which uses the data fed back by the displacement sensor to adjust the displacement of the piston push rod of the linear drive device in real time, so as to realize real-time adjustment and precise positioning of the displacement of the loading hydraulic cylinder piston. High reliability.
2)由于本发明的液压回路中几乎不存在节流损失,能量传递过程中的损耗主要来源于机械传动,与传统的阀控电液加载装置相比具有更高的能量效率;2) Since there is almost no throttling loss in the hydraulic circuit of the present invention, the loss in the energy transmission process mainly comes from mechanical transmission, which has higher energy efficiency compared with the traditional valve-controlled electro-hydraulic loading device;
3)本发明的回退机构利用气体的可压缩性,在加载液压缸执行加载工作时可以被自由压缩,不干扰其正常运行;而在需要复位时,可以直接利用因气体压缩储存的能量推动加载液压缸复位,不仅无需使用液压泵站,还能够节约能源,提高了加载装置空间利用率;3) The retraction mechanism of the present invention utilizes the compressibility of the gas, and can be freely compressed when the loading hydraulic cylinder performs the loading work without interfering with its normal operation; and when it needs to be reset, it can be directly pushed by the energy stored due to the gas compression. The reset of the loading hydraulic cylinder not only eliminates the need to use a hydraulic pump station, but also saves energy and improves the space utilization of the loading device;
4)本发明可以支持多加载液压缸并联,通过控制各个第一截止阀的启闭,实现将不同的加载液压缸接入油路,可以对并联的加载液压缸进行独立控制或并行控制,操作灵活;4) The present invention can support the parallel connection of multiple loading hydraulic cylinders. By controlling the opening and closing of each first stop valve, different loading hydraulic cylinders can be connected to the oil circuit, and the parallel loading hydraulic cylinders can be controlled independently or in parallel. flexible;
5)本发明可以通过处理器、压力传感器以及线性驱动装置组成压力闭环反馈控制机构,利用压力传感器反馈的数据实时调节线性驱动装置的活塞推杆位移,从而实现对加载力的实时调节和精确控制,具有极高的可靠性。5) The present invention can form a pressure closed-loop feedback control mechanism through a processor, a pressure sensor and a linear drive device, and use the data fed back by the pressure sensor to adjust the displacement of the piston push rod of the linear drive device in real time, thereby realizing real-time adjustment and precise control of the loading force. , with extremely high reliability.
附图说明Description of drawings
图1为本发明优选实施例的无泵型液压加载装置的系统原理图;1 is a system schematic diagram of a pumpless hydraulic loading device according to a preferred embodiment of the present invention;
图2为图1中的线性驱动器与承压筒连接示意图;FIG. 2 is a schematic diagram of the connection between the linear driver and the pressure-bearing cylinder in FIG. 1;
图3为图1中的承压筒剖视结构示意图;Fig. 3 is the cross-sectional structural schematic diagram of the pressure-bearing cylinder in Fig. 1;
图4为图1中的加载液压缸的剖视结构简图;Fig. 4 is the sectional structure diagram of the loading hydraulic cylinder in Fig. 1;
图5为图1中的气液压力转换缸的剖视结构简图;Fig. 5 is the sectional structure diagram of the gas-hydraulic pressure conversion cylinder in Fig. 1;
图6为本发明第二实施例的气液压力转换缸的剖视结构简图。6 is a schematic cross-sectional structural diagram of a gas-hydraulic pressure conversion cylinder according to a second embodiment of the present invention.
在所有附图中,相同的附图标记用来表示相同的元件或结构,其中:Throughout the drawings, the same reference numbers are used to refer to the same elements or structures, wherein:
1-线性驱动器,2-蓄油缸,3-承压筒,4-压力表,5-第一截止阀,6-压力传感器,7-位移传感器,8-加载液压缸,9-回退机构,10-气液压力转换缸,11-气压源,12-第三截止阀,13-溢流阀,14-注油控制阀组,15-承压筒出油口,16-承压筒前端盖,17-储油室,18-承压筒后端盖,19-活塞推杆,20-电动缸,21-减速器,22-伺服电机,23-轴封块,24-进油口,25-溢流口接头,26-出油接头,27-高压腔,28-活塞杆,29-低压腔,30-液压腔,31-气液压力转换活塞,32-气压腔,33-第一液压管路,34-第二液压管路,35-第二截止阀。1-Linear drive, 2-Oil accumulator, 3-Pressure cylinder, 4-Pressure gauge, 5-First stop valve, 6-Pressure sensor, 7-Displacement sensor, 8-Load hydraulic cylinder, 9-Retraction mechanism, 10-Pneumatic-hydraulic pressure conversion cylinder, 11-Air pressure source, 12-Third globe valve, 13-Relief valve, 14-Oil injection control valve group, 15-Pressure cylinder oil outlet, 16-Pressure cylinder front end cover, 17-Oil storage chamber, 18-Back end cover of pressure cylinder, 19-Piston push rod, 20-Electric cylinder, 21-Reducer, 22-Servo motor, 23-Shaft seal block, 24-Oil inlet, 25- Overflow port connector, 26-oil outlet connector, 27-high pressure chamber, 28-piston rod, 29-low pressure chamber, 30-hydraulic chamber, 31-air-hydraulic pressure conversion piston, 32-air pressure chamber, 33-first hydraulic pipe Road, 34-second hydraulic pipeline, 35-second stop valve.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention. In addition, the technical features involved in the various embodiments of the present invention described below can be combined with each other as long as they do not conflict with each other.
本发明的原理在于,通过强制改变密闭容器内液压油的体积以调节容器内部的压力。本发明即运用上述液体压力与体积的反比关系来达到加载的目的。具体方法是:线性驱动器1的活塞推杆19通过密封圈进入承压筒3内部,依靠活塞推杆19的伸缩改变承压筒3内部封闭油液的体积,根据油液压力与体积的反比关系产生期望的加载压力,并推动加载液压缸8的活塞杆28以输出指定的加载力。The principle of the present invention is to adjust the pressure inside the container by forcibly changing the volume of hydraulic oil in the closed container. The present invention uses the inverse relationship between the above-mentioned liquid pressure and volume to achieve the purpose of loading. The specific method is: the
如图1所示,本发明优选实施例的无泵型液压加载装置包括:线性驱动器1、蓄油缸2、承压筒3、压力表4、截止阀5、压力传感器6、位移传感器7、加载液压缸8、回退机构9、气液压力转换缸10、气压源11、第三截止阀12、溢流阀13、注油控制阀组14、第一液压管路33、第二液压管路34以及第二截止阀35。As shown in FIG. 1 , the pumpless hydraulic loading device according to the preferred embodiment of the present invention includes: a linear drive 1, an
其中,线性驱动器1连接承压筒3,蓄油缸2用于通过注油管路向承压筒3注油,注油管路上设有第三截止阀12。溢流阀13连接承压筒3和蓄油缸2,蓄油缸2由气体驱动注油,注油控制阀组14包括两个电磁阀和一个手动阀,用于电动或手动控制气体向蓄油缸2的活塞施压,实现注油,图中略去了蓄油缸2的气源,常规加压气源均可使用。加载液压缸8两端分别通过第一液压管路33、第二液压管路34连接承压筒3和回退机构9的左端。回退机构9的右端连接气压源11。Wherein, the linear actuator 1 is connected to the pressure-bearing
优选地,气压源11可以是工业气瓶、理想气源或者蓄能器,从而既能提供稳定气压,也能在加载过程中利用气体压缩特性进行蓄能。也可以直接采用类似蓄油缸2使用的供气方式,直接在复位时进行供气。Preferably, the
请参照图1~5,本实施例的线性驱动器1包括活塞推杆19、电动缸20、减速器21以及伺服电机22。活塞推杆19是电动缸20的内置部件,电动缸20可以直接购买现有产品。采用伺服电机22可以精确控制活塞推杆19的进给量,从而精确控制液压以及加载液压缸8的加载力以及活塞杆28的位置。在其他实施例中,活塞推杆19可以搭载在任意直线进给机构上进行驱动,例如搭载在滚珠丝杠的动子上,具体结构形式不限,能够直线往复运动,实现承压筒3的加压、泄压即可。加载液压缸8包括缸体和活塞杆28,活塞杆28将缸体分隔为高压腔27和低压腔29,如图4所示。Referring to FIGS. 1 to 5 , the linear actuator 1 of this embodiment includes a
承压筒3具有储油室17,储油室17一端开有活塞孔,以供线性驱动器1的活塞推杆19进入,活塞推杆19通过轴封块23以轴封的方式与承压筒后端盖18密封连接,并能在轴向自由往复运动。储油室17的另一端通过第一液压管路33与加载液压缸8的高压腔27相连通。承压筒3还包括承压筒出油口15、承压筒前端盖16、进油口24、溢流口接头25以及出油接头26。承压筒出油口15通过出油接头26连接第一液压管路33,通过溢流口接头25连接溢流阀13。储油室17通过进油口24连接进油管路和蓄油缸2。The
回退机构9包括气液压力转换缸10和气压源11。气液压力转换缸10内部设有气液压力转换活塞31,气液压力转换活塞31将气液压力转换缸11分隔为液压腔30和气压腔32。气液压力转换缸10的液压腔30通过第二液压管路34连接加载液压缸8的低压腔29。气液压力转换缸10的气压腔32连接气压源11,气压源11用于提供稳定气压。The retraction mechanism 9 includes a gas-hydraulic pressure conversion cylinder 10 and a
优选地,为了增大液压腔30内的压力,从而能够利用压力较小的气压源11提供较大的回复力,液压腔30的截面积小于气压腔32的截面积。具体地,如图5所示,气液压力转换活塞31包括相互固连的液压腔塞体和气压腔塞体,液压腔塞体位于液压腔30内,气压腔塞体位于气压腔32内。液压腔塞体的截面形状尺寸与液压腔30的截面相同,气压腔塞体的截面形状尺寸与气压腔32的截面相同。液压腔30与气压腔32的比值决定了压力转换倍数。Preferably, the cross-sectional area of the
优选地,本实施例采用多缸并联,独立控制的方案。具体地,如图1所示,本实施例设置了数量相等且一一对应的多个加载液压缸8、第一液压管路33和第二液压管路34;各加载液压缸8通过各自对应的第一液压管路33和第二液压管路34并联接入承压筒3与气液压力转换缸10之间。每个第一液压管路33上均设有压力表4、第一截止阀5和压力传感器6。各第一液压管路33汇入第一液压总管,并通过第一液压总管连接储油室17;各第二液压管路34汇入第二液压总管,并通过第二液压总管连接液压腔30;第一液压总管和第二液压总管上分别设有压力表4,第二液压总管上还设有第二截止阀35。每个加载液压缸8均设有位移传感器7,用于测量活塞杆8的位置。处理器(未图示)连接位移传感器7和线性驱动器1,组成位移闭环反馈控制机构,用于精确控制线性驱动器1中活塞推杆19的进给量,从而精确控制加载液压缸8的活塞杆28的位置,实现精确定位。处理器(未图示)连接压力传感器6和线性驱动器1,组成压力闭环反馈控制机构,用于精确控制线性驱动器1中活塞推杆19的进给量,从而精确控制加载液压缸8的加载力。Preferably, in this embodiment, a multi-cylinder parallel and independent control scheme is adopted. Specifically, as shown in FIG. 1 , in this embodiment, a plurality of loading
下面,以使用的气压源11为工业气瓶为例,介绍本实施例的工作过程及工作原理:Hereinafter, the working process and working principle of this embodiment will be introduced by taking the used
在进行加载前,需对承压筒3注入油液。打开注油控制阀组14的手动阀或电磁阀以及注油管路上的第三截止阀12,利用空气压力推动蓄油缸2内的活塞将油液注入承压筒3的储油室17。当承压筒3的加载压力过高时,通过溢流阀13开启溢流,与蓄油缸2相连,防止线性驱动器1出现过载情况。注油完毕后,关闭第三截止阀12。Before loading, it is necessary to inject oil into the pressure-bearing
在进行加载时,根据实际工作要求,打开第二截止阀35以及任意第一截止阀5,然后启动伺服电机22控制电动缸1的活塞推杆19产生指定的位移,从而强制改变承压筒3的储油室17内部油液体积,进而改变其内部压力。加载时,伺服电机22正转,活塞推杆19伸长,将承压筒3内的高压油注入相应的加载液压缸8的高压腔27,推动活塞杆28产生相应的加载力。此时,气液压力转换缸10的气压腔32内的气体被压缩回工业气瓶内。此外,由于气体受压的反作用力,可以使得活塞杆28的运动更加平稳。When loading, according to the actual work requirements, open the second cut-off
优选地,本发明既可以工作在定位模式,也可以工作在加载模式:Preferably, the present invention can work both in the positioning mode and in the loading mode:
对于定位工作模式,在加载过程中可以通过位移传感器7的反馈信号,对输入电动缸1的控制量进行修正,实现对加载液压缸8的活塞杆28的位移的精确控制;For the positioning working mode, during the loading process, the control amount input to the electric cylinder 1 can be corrected through the feedback signal of the displacement sensor 7, so as to realize the precise control of the displacement of the
对于加载工作模式,在加载过程中可以通过压力传感器6的反馈信号,对输入电动缸1的控制量进行修正,实现对加载液压缸8的活塞杆28的加载力的精确控制。For the loading working mode, during the loading process, the control amount input to the electric cylinder 1 can be corrected through the feedback signal of the
本发明可使加载压力达到一定程度后保持不变。具体操作为,加载到指定力后,关闭或暂停伺服电机22,并关闭第一截止阀5和第二截止阀35即可。此时,电动缸1无输入,活塞推杆19不产生动作,而加载液压缸8的高压腔27内的油液与外界隔绝,保持恒定的压力。The present invention can keep the loading pressure unchanged after reaching a certain level. The specific operation is as follows: after loading the specified force, the
加载结束后,利用气体可压缩性原理,实现加载液压缸8活塞杆的回退。具体地,加载结束后,打开第一截止阀5和第二截止阀35,处理器控制伺服电机22反转,驱动电动缸1的活塞推杆19回退,承压筒3内腔油液恢复加载前的初始压力。同时,气液压力转换缸10的液压腔30泄压,工业气瓶内的气体重新充入气液压力转换缸10的气压腔内,推动气液压力转换活塞31恢复初始位置,并同步推动液压腔30内的油液经第二液压管路34注入加载液压缸8的低压腔29,推动加载液压缸8的活塞推杆19回退到初始位置。After the loading, the piston rod of the loading
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。Those skilled in the art can easily understand that the above are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention, etc., All should be included within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910390819.6A CN110219843B (en) | 2019-05-10 | 2019-05-10 | A pumpless hydraulic loading and positioning device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910390819.6A CN110219843B (en) | 2019-05-10 | 2019-05-10 | A pumpless hydraulic loading and positioning device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110219843A CN110219843A (en) | 2019-09-10 |
CN110219843B true CN110219843B (en) | 2020-08-14 |
Family
ID=67820776
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910390819.6A Active CN110219843B (en) | 2019-05-10 | 2019-05-10 | A pumpless hydraulic loading and positioning device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110219843B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110985456B (en) * | 2019-12-31 | 2024-07-16 | 中核武汉核电运行技术股份有限公司 | Gas-liquid combined rotary motion structure |
CN114962387B (en) * | 2021-02-26 | 2024-08-16 | 西北核技术研究所 | Hydraulic displacement amplifier and hydraulic displacement amplifying low-frequency sound wave transmitting device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1821589A (en) * | 2006-03-16 | 2006-08-23 | 靖江宝骊叉车有限公司 | Double action cylinder loading test device |
CN201225342Y (en) * | 2008-07-14 | 2009-04-22 | 上海建设路桥机械设备有限公司 | Hydraulic device |
CN201568393U (en) * | 2009-04-25 | 2010-09-01 | 孙家茂 | Hydraulic system without pump |
KR20130114863A (en) * | 2012-04-10 | 2013-10-21 | 현대중공업 주식회사 | Electro hydraulic system for electric excavator |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10220406B4 (en) * | 2001-07-02 | 2011-02-03 | Bosch Rexroth Aktiengesellschaft | Driving device for a moving part, in particular mold clamping device for an injection molding machine, and method for operating such a drive device |
US8225606B2 (en) * | 2008-04-09 | 2012-07-24 | Sustainx, Inc. | Systems and methods for energy storage and recovery using rapid isothermal gas expansion and compression |
-
2019
- 2019-05-10 CN CN201910390819.6A patent/CN110219843B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1821589A (en) * | 2006-03-16 | 2006-08-23 | 靖江宝骊叉车有限公司 | Double action cylinder loading test device |
CN201225342Y (en) * | 2008-07-14 | 2009-04-22 | 上海建设路桥机械设备有限公司 | Hydraulic device |
CN201568393U (en) * | 2009-04-25 | 2010-09-01 | 孙家茂 | Hydraulic system without pump |
KR20130114863A (en) * | 2012-04-10 | 2013-10-21 | 현대중공업 주식회사 | Electro hydraulic system for electric excavator |
Also Published As
Publication number | Publication date |
---|---|
CN110219843A (en) | 2019-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8359856B2 (en) | Systems and methods for efficient pumping of high-pressure fluids for energy storage and recovery | |
CN103644151B (en) | The test bed hydraulic control system of energy-conservation low impact hydraulic cylinder | |
CN110219843B (en) | A pumpless hydraulic loading and positioning device | |
CN202360325U (en) | Hydraulic-drive gas compressor | |
CN103047222A (en) | Pressure boost and pressure maintaining system of hydraulic cylinder | |
CN102392810A (en) | Hydraulically driven gas compressor | |
CN102322413B (en) | Hydraulic oil piston type natural gas sub-station compressor | |
CN106151126B (en) | A kind of servo control mechanism of parallel operation is from boost-up circuit | |
ES8501051A1 (en) | Compact electro-hydraulic actuator for turbine valves. | |
CN201206575Y (en) | Hydraulic damping device for simulating biaxial loading | |
CN110630582B (en) | Cylinder energy storage type hydraulic cylinder | |
CN108266413B (en) | Asymmetric electro-hydrostatic actuator based on pressure selection valve | |
CN105351260B (en) | Gas-liquid mixed multi-stage high-speed ejection device | |
CN219622965U (en) | Servo pressurizing mechanism | |
CN112555231B (en) | Shield constructs quick-witted tool changing arm electro-hydraulic actuator unit test system | |
CN100371612C (en) | Hydraulic system | |
CN201513310U (en) | Reciprocating piston pump | |
CN205396077U (en) | Electric motor car is with braking operating mechanism with electron hydraulic pressure helping hand function | |
CN201013547Y (en) | Double power compact type gas-liquid blower pump | |
CN203072136U (en) | A hydraulic driving system of an underwater acoustical generator | |
CN106930988A (en) | Sound state bidirectional hydraulic loading device and its control method based on accumulator | |
CN206668637U (en) | Sound state bidirectional hydraulic loading device based on accumulator | |
CN201476716U (en) | High specific power electrohydraulic closed loop angular displacement controlling system | |
CN218348438U (en) | Gas-liquid linkage actuating mechanism | |
CN2818870Y (en) | Hydraulic system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |