CN110215739A - 一种离子型亲水前处理硅胶材料的制备方法 - Google Patents

一种离子型亲水前处理硅胶材料的制备方法 Download PDF

Info

Publication number
CN110215739A
CN110215739A CN201910637846.9A CN201910637846A CN110215739A CN 110215739 A CN110215739 A CN 110215739A CN 201910637846 A CN201910637846 A CN 201910637846A CN 110215739 A CN110215739 A CN 110215739A
Authority
CN
China
Prior art keywords
silica gel
ionic
gel material
preparation
hydrophilic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910637846.9A
Other languages
English (en)
Inventor
赵艳艳
张丽媛
彭金咏
董佩佩
刘静
齐艳
王立恒
金越
张建斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Medical University
Original Assignee
Dalian Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Medical University filed Critical Dalian Medical University
Priority to CN201910637846.9A priority Critical patent/CN110215739A/zh
Publication of CN110215739A publication Critical patent/CN110215739A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/10Selective adsorption, e.g. chromatography characterised by constructional or operational features
    • B01D15/20Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to the conditioning of the sorbent material
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/79Acids; Esters
    • C07D213/80Acids; Esters in position 3
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/11Compounds covalently bound to a solid support

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本发明属于分析化学领域,更具体地涉及一种离子型亲水前处理硅胶材料的制备方法。具体步骤如下:(1)将功能单体2‑巯基烟酸与丙炔基修饰的硅胶溶于溶剂中,磁力搅拌混合均匀;(2)加入适量催化剂并在65℃温度下,恒温反应10‑70小时。反应结束以后,将产物采用砂芯漏斗抽滤,用甲醇进行冲洗。洗涤后产物干燥,即得本发明的离子型亲水前处理硅胶材料。

Description

一种离子型亲水前处理硅胶材料的制备方法
技术领域
本发明属于分析化学领域,具体地涉及一种离子型亲水前处理硅胶材料的制备方法。
背景技术
糖蛋白作为一种最重要的蛋白质翻译后修饰的产物,能够影响细胞分裂、肿瘤免疫、炎症的发生以及蛋白质与蛋白质间的相互作用[1-8]。研究表明,很多疾病的发生发展都与糖基化蛋白或糖基化多肽上糖链的变化息息相关。因此,对糖蛋白和糖肽的研究不仅能够为生物学机理研究方面提供重要的信息,而且对疾病诊断标志物的发现具有极其重要的作用。然而,糖蛋白通常是低丰度蛋白[9-12],糖链又具有微观不均一性,在质谱分析过程中,高丰度的非糖蛋白对糖蛋白的信号有抑制作用,更加阻碍了糖基化蛋白的研究[13,14]。如何从复杂的生物体系中高效全面的分离出糖蛋白,是研究的难点和关键点。
目前,凝集素亲和法[15,16,17]、肼化学法[18,19,20]、硼酸亲和法[21]、亲水作用色谱法[22-24]、氧化钛分离方法[25]等被应用于分离富集糖蛋白/糖肽。HILIC的概念最先是由Alpert在1990年提出并命名的。采用亲水作用色谱分离富集糖蛋白和糖肽是由于糖蛋白或糖肽上的糖基带有较强的亲水性,因而能够被保留在亲水固定相上。当流动相中水含量增高,会减弱糖蛋白和固定相的作用力,使糖蛋白得以洗脱[26]。另外,HILIC所使用的流动相条件对极性样品的溶解性较高,并且具有较强的质谱兼容性,因而尤其适合极性较大的糖肽糖蛋白的分离富集。亲水作用色谱的糖肽富集选择性主要取决于材料提供的亲水作用力大小,因此发展亲水性较强的新型功能化亲水富集材料具有很重要的意义。两性离子亲水色谱法(ZIC-HILIC)是一种新兴的亲水作用色谱,在两性离子亲水固定相的表面一般同时存在着正电荷中心和负电荷中心,从而形成一个牢固的吸附水层[27],增强了亲水性。同时,这两种带相反电荷基团的摩尔比例相同,净电荷几乎为零,不易产生自发聚合,且双电层可有效的避免硅羟基(基质)的死吸附[28]。因此,ZIC-HILIC在分离富集极性较大的物质时应用优势较为显著。
“点击化学”是由美国科学家K.Barry Sharpless[29]在2001年首次提出的一种有机合成方法,它的核心在于通过碳-杂原子键(C-X-C)的共价键来实现分子连接,因其具有高效,高转化率等特点,可应用于大规模的模块化有机合成。但常规的点击化学反应使用重金属Cu(I)作为催化剂,其具有生物毒性且易残留于产物中,可能会导致蛋白质变性,从而限制了该反应的应用。近年来,无铜催化的巯基-炔基“点击”化学反应蓬勃发展,反应原理包括自由基加成与链转移过程[30],最终使巯基与炔基通过共价键相连,生成新的化合物。该反应[31]的优点是操作简单、对各种溶剂,温度和pH适用范围广,且所用化学试剂相对环保,不会引入重金属。然而目前没有报道采用此种方法合成离子型亲水材料的报道。
参考文献
[1]Lehle L,Strahl S,Tanner W.Protein glycosylation,conserved fromyeast to man:a model organism helps elucidate congenital humandiseases.Angewandte Chemie Internationzl Edition,2006,45(41):6956~6972.
[2]Shade KT,PlatzerB,WashburnN,et al.Asingle glycan onIgE isindispensable for initiation of anaphylaxis.Journal of Experimental Medicine,2015,212(4):457~467.
[3]KolarichD,LepeniesB,SeebergerPH.Glycomics,glycoproteomics and theimmune system.Current Opinion in Chemical Biology,2012,16(1-2):214~220.
[4]Arnold JN,Wormald MR,Sim RB,Rudd PM,Dwek RA.The impact ofglycosylation on the biological function and structure of humanimmunoglobulins.Annual Review of Immunology,2007,25(25):21~50.
[5]Almeida A,Kolarich D.The promise of protein glycosylation forpersonalised medicine.Biochimica Biophysica Acta,2016,1860(8):1853~1898.
[6]AdamczykB,TharmalingamT,Rudd PM.Glycans as cancerbiomarkers.Biochimica Biophysica Acta,2012,1820(9):1347~1353.
[7]K,Bones J,Kattla JJ,Rudd PM.A systematic approach to proteinglycosylation analysis:a path through the maze.Nature Chemical Biology,2010,6(10):713~723.
[8]Zielinska DF,Gnad F,Schropp K,Wisniewski JR,Mann M.Mapping N-glycosylation sites across seven evolutionarily distant species reveals adivergent substrate proteome despite a common core machinery.Molecular Cell,2012,46(4):542~548.
[9]Wohlgemuth J,Karas M,Eichhorn T,Hendriks R,Andrecht S.Quantitativesite-specific analysis of protein glycosylation by LC-MS using differentglycopeptide-enrichment strategies.Analytical Biochemistry,2009,395(2):178~188.
[10]Stavenhagen K,Hinneburg H,Thaysenandersen M,et al.Quantitativemapping of glycoprotein micro-heterogeneity and macro-heterogeneity:anevaluation of mass spectrometry signal strengths using synthetic peptides andglycopeptides.Journal of Mass Spectrometry,2013,48(6):627~639.
[11]PasingY,SickmannA,LewandrowskiU.N-glycoproteomics:massspectrometry-based glycosylation site annotation.Biological Chemistry,2012,393(4):249~258.
[12]Calvano CD,Zambonin CG,Jensen ON.Assessment of lectin and HILICbased enrichment protocols for characterization of serum glycoproteins bymass spectrometry.Journal of Proteomics,2008,71(3):304~314.
[13]An HJ,Froehlich JW,Lebrilla CB.Determination of glycosylationsites and site-specific heterogeneity in glycoproteins.Current Opinion inChemical Biology,2009,13(4):421~426.
[14]Blake TA,Williams TL,Pirkle JL,Barr JR.Targeted N-linkedglycosylation analysis of H5N1 influenza hemagglutinin by selective samplepreparation and liquid chromatography/tandem mass spectrometry.AnalyticalChemistry,2009,81(8):3109~3118.
[15]Jung K,Cho W.Serial affinity chromatography as a selection toolin glycoproteomics.Analytical Chemistry,2013,85(15):7125~7132.
[16]Ferreira JA,Daniel-da-Silva AL,Alves RM,et al.Synthesis andoptimization of lectin functionalized nanoprobes for the selective recoveryof glycoproteins from human body fluids.Analytical Chemistry,2011,83(18):7035~7043.
[17]Wang Y,Wu S,Hancock WS.Approaches to the study of N-linkedglycoproteins in human plasma using lectin affinity chromatography and nano-HPLC coupled to electrospray linear ion trap--Fourier transform massspectrometry.Glycobiology,2006,16(6):514~523.
[18]Cao Q,Ma C,Bai H,et al.Multivalent hydrazide-functionalizedmagnetic nanoparticles for glycopeptide enrichment andidentification.Analyst,2014,139(3):603~609.
[19]Yang SJ,Zhang H.Glycan analysis by reversible reaction tohydrazide beads and mass spectrometry.Analytical Chemistry,2012,84(5):2232~2238.
[20]Zou Z,Ibisate M,Zhou Y,Aebersold R,Xia Y,Zhang H.Synthesis andevaluation of superparamagnetic silica particles for extraction ofglycopeptides in the microtiter plate format.Analytical Chemistry,2008,80(4):1228~1234.
[21]Qu Y,Liu J,Yang K,Liang Z,et al.Boronic acid functionalized core–shell polymer nanoparticles prepared by distillation precipitationpolymerization for glycopeptide enrichment.Chemistry,2012,18(29):9056~9062.
[22]Yeh CH,Chen SH,Li DT,Lin HP,et al.Magnetic bead-based hydrophilicinteraction liquid chromatography for glycopeptide enrichments.Journal ofChromatographyA,2012,1224:70~78.
[23]Xiong ZC,Zhao L,Wang FJ,Zhu J,Qin HQ,Wu RA,et al.Synthesis ofbranched PEG brushes hybrid hydrophilic magnetic nanoparticles for theselective enrichment of N-linked glycopeptides.Chemical Communications,2012,48(65):8138~8140.
[24]Xiong ZC,Qin HQ,Wan H,Huang G,Zhang Z,Dong J,et al.Layer-by-layerassembly of multilayer polysaccharide coated magnetic nanoparticles for theselective enrichment of glycopeptides.Chemical Communications,2013,49(81):9284~9286.
[25]Wang ST,Chen D,Ding J,Yuan BF,FengYQ.Borated titania,a new optionfor the selective enrichment of cis-diol biomolecules.Chemistry,2013,19(2):606~612.
[26]Alpert AJ.Hydrophilic-interaction chromatography for theseparation of peptides,nucleic acids and other polar compounds.Journal ofChromatography,1990,19(499):177~196.
[27]Kane RS,DeschateletsP,Whitesides GM.Kosmotropes form the basis ofprotein resistant surfaces.Langmuir,2003,19(6):2388~2391.
[28]Guo Y,Gaiki S.Retention behavior of small polar compounds onpolar stationary phases inhydrophilic interaction chromatography.Journal ofChromatography A,2005,1074(1-2):71~80.
[29]Kolb HC,Finn MG,Sharpless KB.Click Chemistry:Diverse ChemicalFunction from a Few Good Reactions.Angew Chem Int Ed Engl,2001,40(11):2004~2021.
[30]Konkolewicz D,Gray-Weale A,Perrier S.Hyperbranched polymers bythiol-yne Chemistry:From small molecules to functional polymers.Journal ofthe American Chemical Society,2009,131(50):18075~18077.
发明内容
本发明的目的是提供一种离子型亲水前处理硅胶材料制备方法,具体步骤如下:
(1)将功能单体2-巯基烟酸与丙炔基修饰的硅胶溶于溶剂中,磁力搅拌混合均匀;
(2)加入适量催化剂并在65℃温度下,恒温反应10-70小时。反应结束以后,将产物采用砂芯漏斗抽滤,用甲醇进行冲洗。洗涤后产物干燥,即得本发明的离子型亲水前处理硅胶材料。
在本发明的一个实施方案中,步骤1中所述的材料为丙炔基修饰的硅胶材料,为实验室自制,制备和表征方法均参照文献(Chem.Commun.,2007,2491–2493);溶剂为甲醇。
在本发明的另一个实施方案中,炔基修饰的硅胶、2-巯基烟酸与甲醇的重量比为1:0.5~5:10~500。优先重量比为1:0.7:100。
在本发明又一个实施方案中,步骤(2)中所述催化剂为2,2’-偶氮二异丁腈,2-巯基烟酸与催化剂的重量比为10:1,反应温度优选为65℃,反应时间为24小时。
具体实施方式
下面将进一步的来举例说明本发明。需要指出的是,以下说明仅仅是对本发明要求保护的技术方案的举例说明,并非对这些技术方案的任何限制。本发明的保护范围以所附权利要求书记载的内容为准。
实施例1
(1)称取2-巯基烟酸(120mg,0.77mmol)溶解于甲醇溶液(10mL)中,再加入炔基硅胶(160mg,0.38mmol)及2,2’-偶氮二异丁腈(5mg,0.02mmol)搅拌使其混合均匀。加毕,于氮气保护下,保持65℃恒温持续回流搅拌48h。
(2)反应结束后,用砂芯漏斗抽滤,并用300mL甲醇溶液洗涤材料,所得固体材料随即在60℃烘箱中干燥。既得离子型亲水前处理硅胶材料。
实施例2
将实施例1制备的离子型亲水前处理硅胶材料和分散溶液甲醇以一定比例(1:1.5,v:v)混合后超声分散5min,倒入40mL匀浆罐中,用填装机于60MPa将色谱填料装填于不锈钢管中(150mm×4.6mm),并使用丙酮作为顶替液,顶替15min。制备出的色谱柱备用。
实施例3
以极性较强的鸟苷为分离对象,考察实施例2制备的离子型亲水前处理硅胶材料的柱效。高效液相色谱条件为:进样体积2μL(标准品在50%甲醇水溶液的浓度为1mg/mL),流速1.0mL/min,检测系统为紫外检测器,波长设定为280nm,色谱柱为实施例2所制备的离子型亲水前处理硅胶柱(150mm×4.6mm,5μm)。流动相为95%乙腈水溶液,柱温为30℃。测量峰面积和保留时间,并计算柱效。
另外,本发明还设定了以下对比例,具体如下:
对比例1:溶剂改为乙醇,其他同实施例2;
对比例2:溶剂改为丙酮,其他同实施例2;
对比例3:2-巯基烟酸、丙炔基硅胶材料与溶剂的重量比为0.5:1:100,其他同实施例2;
对比例4:2-巯基烟酸、丙炔基硅胶材料与溶剂的重量比为1:1:10,其他同实施例2;
对比例5:催化剂为醋酸铁,其他同实施例2;
对比例6:催化剂为硫酸亚铁,其他同实施例2。
实施例制备的离子型亲水前处理硅胶柱的色谱行为,具体柱效及相同亲水条件下鸟苷的保留时间详见表1,结果表明,本发明所优化的条件对鸟苷保留时间较长,柱效较高。
表1.实施例和对比例HPLC条件下色谱行为结果
实施例4
进行糖肽选择性富集实验,采用三重四级杆-飞行时间质谱(Q-TOF MS)以辣根过氧化物酶(HRP)和牛血清白蛋白(BSA)的酶解混合物作为分离对象,进行糖肽选择性富集,富集条件为:称取0.5mg离子型亲水前处理硅胶材料,用200μL的80%ACN溶液配制成2.5μg/μL的材料悬浮液,取50μL材料悬浮液,向其中加入HRP与BSA以1:10摩尔比混合的酶解物混合溶液,然后加入200μL的98%ACN/1%TFA上样缓冲液,室温条件下涡旋,摇床震荡孵化0.5h后,13000r/min离心10min,弃去上清液。继续用同样的上样缓冲液对材料清洗2次,每次200μL。最后采用200μL的80%ACN/1%FA洗脱液对糖肽进行洗脱,室温下涡旋10min,13000r/min离心10min后保留上清液,冷冻干燥。用20μL的50%ACN/0.1%FA将冻干的样品溶解,随即用Q-TOF质谱进行检测。
具体结果如表2显示
表2实施例和对比例的糖肽选择性富集结果
本发明内容仅仅举例说明了要求保护的一些具体实施方案,其中一个或更多个技术方案中所记载的技术特征可以与任意的一个或多个技术方案相组合,这些经组合而得到的技术方案也在本申请保护范围内,就像这些经组合而得到的技术方案已经在本发明公开内容中具体记载一样。

Claims (5)

1.一种离子型亲水前处理硅胶材料的制备方法,具体步骤如下:
(1)氮气保护下,将2,2’-偶氮二异丁腈加入功能单体的甲醇溶液中,磁力搅拌混合均匀;
(2)在搅拌的溶液中加入丙炔基修饰的硅胶,并在65℃条件下将样品反应10-70小时;
(3)反应结束以后,将产物采用砂芯漏斗抽滤,并分别用甲醇,水,甲醇进行顺序冲洗;洗涤后产物干燥,即得本发明的离子型亲水前处理硅胶材料。
2.根据权利要求1所述的一种离子型亲水前处理硅胶材料的制备方法,其特征在于,步骤1中2,2’-偶氮二异丁腈与功能单体2-巯基烟酸的摩尔比为1:5~50。
3.根据权利要求1所述的一种离子型亲水前处理硅胶材料的制备方法,其特征在于,步骤2中炔基修饰的硅胶、2-巯基烟酸与甲醇的重量比为1:0.5~5:10~500。
4.根据权利要求3所述的一种离子型亲水前处理硅胶材料的制备方法,其特征在于,步骤2中炔基修饰的硅胶、2-巯基烟酸与甲醇的重量比为1:0.7:100。
5.根据权利要求1所述的一种离子型亲水前处理硅胶材料的制备方法,其特征在于2-巯基烟酸与2,2’-偶氮二异丁腈的重量比为24:1,反应时间为48小时。
CN201910637846.9A 2019-07-15 2019-07-15 一种离子型亲水前处理硅胶材料的制备方法 Pending CN110215739A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910637846.9A CN110215739A (zh) 2019-07-15 2019-07-15 一种离子型亲水前处理硅胶材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910637846.9A CN110215739A (zh) 2019-07-15 2019-07-15 一种离子型亲水前处理硅胶材料的制备方法

Publications (1)

Publication Number Publication Date
CN110215739A true CN110215739A (zh) 2019-09-10

Family

ID=67812511

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910637846.9A Pending CN110215739A (zh) 2019-07-15 2019-07-15 一种离子型亲水前处理硅胶材料的制备方法

Country Status (1)

Country Link
CN (1) CN110215739A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2047751A1 (en) * 1989-03-03 1990-09-04 Alain Huc Cosmetic composition for the hair, containing a glycoprotein
WO2004032916A1 (en) * 2002-10-04 2004-04-22 Unifund Corporation Limited A composition comprising selegeline, procaine, vinpocetine, trimethylglycinean and a n-gaba ingredient for treating neurodegenerative disorders
CN1972961A (zh) * 2004-06-07 2007-05-30 厄普弗朗特色谱公司 血浆或者血清蛋白的分离
CN101111511A (zh) * 2004-06-07 2008-01-23 Avt血浆有限公司 蛋白质分离的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2047751A1 (en) * 1989-03-03 1990-09-04 Alain Huc Cosmetic composition for the hair, containing a glycoprotein
WO2004032916A1 (en) * 2002-10-04 2004-04-22 Unifund Corporation Limited A composition comprising selegeline, procaine, vinpocetine, trimethylglycinean and a n-gaba ingredient for treating neurodegenerative disorders
CN1972961A (zh) * 2004-06-07 2007-05-30 厄普弗朗特色谱公司 血浆或者血清蛋白的分离
CN101111511A (zh) * 2004-06-07 2008-01-23 Avt血浆有限公司 蛋白质分离的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
VAN CAPELLEVEEN, JULIAN C.等: "Thematic Review Series: Lipoprotein (a): Coming of Age at Last Current therapies for lowering lipoprotein (a)", 《JOURNAL OF LIPID RESEARCH》 *
张丽媛等: "《基于巯基-炔基点击化学的苯硼酸功能化材料的制备及其在糖蛋白/糖肽选择性富集中的应用研究》", 《分析化学(FENXIHUAXUE)》 *

Similar Documents

Publication Publication Date Title
Zheng et al. Bifunctional magnetic supramolecular-organic framework: a nanoprobe for simultaneous enrichment of glycosylated and phosphorylated peptides
Bie et al. Precision imprinting of glycopeptides for facile preparation of glycan-specific artificial antibodies
Chen et al. Coupling of phosphate-imprinted mesoporous silica nanoparticles-based selective enrichment with matrix-assisted laser desorption ionization-time-of-flight mass spectrometry for highly efficient analysis of protein phosphorylation
Li et al. Novel Fe3O4@ TiO2 core− shell microspheres for selective enrichment of phosphopeptides in phosphoproteome analysis
Zhu et al. Centrifugation assisted microreactor enables facile integration of trypsin digestion, hydrophilic interaction chromatography enrichment, and on-column deglycosylation for rapid and sensitive N-glycoproteome analysis
Chen et al. Facile preparation of core–shell magnetic metal–organic framework nanoparticles for the selective capture of phosphopeptides
Wang et al. Highly efficient enrichment method for glycopeptide analyses: using specific and nonspecific nanoparticles synergistically
Zhang et al. In situ synthesis of magnetic mesoporous phenolic resin for the selective enrichment of glycopeptides
Tang et al. Hydrophilic materials in sample pretreatment
Li et al. Functionalized magnetic nanoparticles for sample preparation in proteomics and peptidomics analysis
Zhou et al. Specific phosphopeptide enrichment with immobilized titanium ion affinity chromatography adsorbent for phosphoproteome analysis
Qin et al. Trypsin immobilization on hairy polymer chains hybrid magnetic nanoparticles for ultra fast, highly efficient proteome digestion, facile 18O labeling and absolute protein quantification
Chu et al. Application of click chemistry on preparation of separation materials for liquid chromatography
Li et al. Cerium ion-chelated magnetic silica microspheres for enrichment and direct determination of phosphopeptides by matrix-assisted laser desorption ionization mass spectrometry
Chang et al. Selective extraction and enrichment of multiphosphorylated peptides using polyarginine-coated diamond nanoparticles
Ji et al. Efficient enrichment of glycopeptides using metal–organic frameworks by hydrophilic interaction chromatography
Qiao et al. Specific on-plate enrichment of phosphorylated peptides for direct MALDI-TOF MS analysis
Zou et al. Synthesis and evaluation of superparamagnetic silica particles for extraction of glycopeptides in the microtiter plate format
Pan et al. Preparation of sequence-controlled triblock copolymer-grafted silica microparticles by sequential-ATRP for highly efficient glycopeptides enrichment
Zhao et al. Synthesis of magnetic zwitterionic–hydrophilic material for the selective enrichment of N-linked glycopeptides
Dong et al. In-depth analysis of glycoprotein sialylation in serum using a dual-functional material with superior hydrophilicity and switchable surface charge
Zhou et al. Proteomic reactors and their applications in biology
Hirschberg et al. Detection of phosphorylated peptides in proteomic analyses using microfluidic compact disk technology
Ghamat et al. Click reactions: Recent trends in preparation of new sorbents and stationary phases for extraction and chromatographic applications
Jabeen et al. Silica–lanthanum oxide: pioneer composite of rare-earth metal oxide in selective phosphopeptides enrichment

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190910

WD01 Invention patent application deemed withdrawn after publication