CN110210456A - 一种基于3d卷积神经网络的头部姿态估计方法 - Google Patents

一种基于3d卷积神经网络的头部姿态估计方法 Download PDF

Info

Publication number
CN110210456A
CN110210456A CN201910530482.4A CN201910530482A CN110210456A CN 110210456 A CN110210456 A CN 110210456A CN 201910530482 A CN201910530482 A CN 201910530482A CN 110210456 A CN110210456 A CN 110210456A
Authority
CN
China
Prior art keywords
head pose
neural networks
convolutional
convolution kernel
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910530482.4A
Other languages
English (en)
Inventor
曾凯
张志聪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guizhou Institute of Technology
Original Assignee
Guizhou Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guizhou Institute of Technology filed Critical Guizhou Institute of Technology
Priority to CN201910530482.4A priority Critical patent/CN110210456A/zh
Publication of CN110210456A publication Critical patent/CN110210456A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Software Systems (AREA)
  • Molecular Biology (AREA)
  • Computational Linguistics (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Mathematical Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Biology (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Image Analysis (AREA)

Abstract

本发明公开了一种基于3D卷积神经网络的头部姿态估计方法,属于深度学习和模式识别领域。对一个人的同类头部姿态进行叠加处理构建输入层。对于头部转动角度只限于平面内,将所有的转动角度转换为平面坐标,头部姿态主要分为中、上、下、左、右、左上、右上、左下、右下9类,每种头部姿态有9个角度,表现在垂直水平坐标系中为9个坐标点。网络结构在C2层分为两路进行卷积、池化计算,在C4层合并进行卷积、池化计算,C5层再将网络分为两路进行卷积、池化、全连接计算,在F2层进行全连接合并,计算SoftMax,最后输出对应的头部姿态类别。

Description

一种基于3D卷积神经网络的头部姿态估计方法
技术领域
本发明属于深度学习、模式识别领域,尤其涉及到基于深度卷积神经网络的头部姿态估计方法。
背景技术
在计算机视觉的背景下,头部姿势估计最常被解释为推断人的头部相对于相机视图的方向的能力。更严格的是,头部姿势估计是推断头部相对于全局坐标系的方向的能力,但是这种细微差别需要知道固有的相机参数以消除来自透视畸变的感知偏差。一般成年男性的头部运动范围包括从-60.4°到69.6°的矢状屈曲和伸展(即从颈部向后运动),正面侧向弯曲(即颈部从右向左弯曲) - 40.9°至36.3°,水平轴向旋转(从头部向左旋转)从-79.8°到75.3°[26]。肌肉旋转和相对取向的组合是经常被忽略的模糊性(例如,当相机从正面观看时与相机从正面和头部观看时相比,头部的轮廓视图看起来不完全相同转向侧面)。尽管存在这个问题,但通常假设人头部可以被建模为无实体的刚性物体。在这种假设下,人体头部的姿势受限于3个自由度(DOF),其特征可以是俯仰角,滚动角和偏航角。
目前对驾驶行为的智能分析大多基于传统的图像处理手段,通过支持向量机来构建图像分类器。近些年来的相关研究表明,深度学习方法能够大大提高图像分类和预测的准确率。本发明基于3D深度神经网络,对分心驾驶行为做出预判,能够更好地规范驾驶行为,提高道路交通的安全性。
目前对头部姿态估计的智能计算大多使用基于模型的方法和基于外观的方法,其中使用最普遍的是基于外观的方法,对头部姿态图片进行特征提取,假定获取的人脸图像和真实图像存在某种特定关系,使用统计或者概率的方法训练关系模型来推断头部姿态。近些年的相关研究表明,使用深度学习方法对图片进行特征提取,并使用提取的特征对网络模型进行训练能大幅度提高图片分类和预测的准确率。本发明基于3D深度神经网络,对头部姿态进行预判,能让计算机准确的检测出人头部的姿态,实际应用可以极大的推进增强现实、人机交互、医疗康复、游戏娱乐等领域的发展。
发明内容
本发明的目的在于提供一种基于 3D 卷积神经网络的头部姿态估计方方法。
实现本发明目的的技术方案如下:对一个人的不同头部角度转动做叠加处理构建输入层。首先对图片立方体做卷积运算为网络的C1卷积层;然后通过两路不同的卷积核进行做卷积运算,连续重复两次,为网络的C2、C3卷积层;然后将C3输出的两类特征图做合并处理,再经过一次卷积运算,之后进行一次平均池化运算,为网络的C4卷积层;然后再通过两路不同的卷积核进行卷积运算,连续重复两次,第二次卷积进行完之后再进行一次最大池化运算,为网络的C5、C6卷积层;最后还是分两路的情况下对两类特征图分别经过全连接层F1,然后全连接层F2对两路全连接层进行合并,进行SoftMax计算,最后输出对应的头部姿态分类。
具体步骤如下:
步骤1:将头部姿态定义为9类。将图片强制缩放为150*120,然后将同一类头部姿态图片做叠加处理,将2D图片输入转为3D输入。
步骤2:使用步骤1获得的训练样本训练3D卷积神经网络
步骤2.1:输入立方体经过卷积计算,为C1卷积层;
步骤2.2:对步骤2.1输出的特征图立方体,通过两路不同的卷积核做卷积计算,连续重复两次,为网络的C2、C3卷积层。
步骤2.3:对步骤2.2输出的特征立方体图进行合并做卷积计算,在做平均池化计算。为网络的C4卷积层。
步骤2.4:对步骤2.3输出的特征立方体图形,通过两路不同的卷积核做卷积计算,连续两次,并在第二次卷积运算后进行最大池化运算,为网络的C5、C6卷积层。
步骤2.5:对步骤2.4输出的特征图立方体,通过两路相同的全连接层,为F1全连接层。
步骤2.6:对步骤2.5两路相同全连接层输出结果合并,为F2全连接层。
步骤2.7:对步骤2.6输出计算Softmax、loss,并根据loss反向修正网络参数。重复步骤2.1-步骤2.7,直至loss收敛。
步骤3:将测试图片根据步骤1中的数据预处理方式进行叠加处理,构建3D立方体结构。利用步骤2得到的3D卷积神经网络测试分类结果。
上述步骤1中,将2D图片输入转化为3D立方体输入包括:首先数据集在采集使用平面内的头部转动角度,主要分为垂直角度和水平角度,垂直角度分为+90、+60、+30、+15、+0、-15、-30、-60、-90,水平角度分为+90、+60、+30、+15、+0、-15、-30、-60、-90,头部姿态主要9类,分别为中、上、下、左、右、左上、右上、左下、右下,每个人每一类有9张图像,数据输入时先将图片大小缩放为统一尺寸,然后将同一类的9张图片做叠加处理后输入3D网络。
上述步骤2.1中,C1层的卷积核尺寸为32@3*5*2。
上述步骤2.2使用的两路不同卷积核,C2层卷积核尺寸为64@5*7*1和64@3*8*1;C3层的卷积核尺寸为:128@5*6*2和128@7*5*2。
上述步骤2.3中,C4层的卷积核尺寸为256@6*10*3。
上述步骤2.4中,C5层的卷积核尺寸分别为512@5*11*2和512@11*11*2,C6层的卷积核尺寸分别为512@8*6*2和512@5*6*2。
上述步骤2.5使用的两路相同全连接,F1层全连接使用1*1*4096,F2层全连接使用1*1*2048。
本发明的有益效果:(1)深度学习结构方面:采用双路不同卷积尺寸的卷积核做特征提取,双路相同全连接层进行数据处理,提高网络泛化能力。
(2)模型适配应用方面:本发明采用图片叠加方式构建输入层,对输入数据为视频的情况同样适用,只需要从视频中选择需要的一段头部转动视频,并从视频中选择若干帧构建3D立方体数据即可。
(3)产品实施应用方面:应用在人机交互、虚拟现实领域,通过对使用者的头部姿态分析系统做出相应回应,实现实时交互。
附图说明
图1为本发明的流程图。
图2为本发明的3D卷积神经网络结构图。
具体实施方法
步骤1:将头部姿态定义为9类。将图片强制缩放为120*150,然后将每个人同一类的9张头部姿态图片做叠加处理,此时立方体尺寸为3@120*150*9,其中3为通道数,9表示9张图片叠加,120*150为空间维度的大小。
步骤2:使用步骤1获得的训练样本训练3D卷积神经网络
步骤2.1:C1为神经网络第一层,对输入立方体做卷积计算。卷积核尺寸32@3*5*2,2是时间维度大小,3*5是空间维度大小,共有32个卷积核,步长为(1,1,1)。卷积计算之后输出的特征图的尺寸是32@(120-3+1)*(150-5+1)*(9-2+1)=32@118*146*8。其中卷积计算公式如下:
步骤2.2:C2层为神经网络第二层,使用两路不同卷积核对特征图立方体进行卷积计算。右边卷积层的卷积核尺寸为64@5*7*1,步长为(1,1,1)。卷积计算后输出的特征图尺寸为64@(118-5+1)*(146-7+1)*(8-1+1)=64@114*140*8。左边卷积层的卷积核尺寸为64@3*8*1,步长为(1,1,1)。卷积计算后输出的特征图尺寸为64@(118-3+1)*(146-8+1)*(8-1+1)=64@116*139*8。
C3层为神经网络第三层,此层分别对C2层输出的特征图做卷积计算。右边卷积层的卷积核尺寸为128@5*6*2,步长为(1,1,1)。卷积计算后输出的特征图尺寸为128@(114-5+1)*(140-6+1)*(8-2+1)=128@110*135*7。左边卷积层的卷积核尺寸为128@7*5*2,步长为(1,1,1)。卷积计算后输出的特征图尺寸为128@(116-7+1)*(139-5+1)*(8-2+1)=128@110*135*7。
步骤2.3:C4层对C3卷积层的两路数据合并之后进行卷积运算,C4层的卷积核尺寸为256@6*10*3,步长为(1,1,1)。卷积计算后输出的特征图尺寸为256@(110-6+1)*(135-10+1)*(7-3+1)=256@105*126*5。C4池化窗口大小为3*3*1,池化后特征图大小为256@(105/3)*(126/3)*(5/1)=256@35*42*5。
步骤2.4:对步骤2.3输出的特征立方体图形,再次通过两路不同的卷积核做卷积计算。
C5为神经网络的第五层,右边卷积层的卷积核尺寸为512@5*11*2,步长为(1,1,1)。卷积计算后输出的特征图尺寸为512@(35-5+1)*(42-11+1)*(5-3+1)=512@31*32*4。左边卷积层的卷积核尺寸为512@11*11*2,步长为(1,1,1)。卷积计算后输出的特征图尺寸为512@(35-11+1)*(42-11+1)*(5-2+1)=512@25*32*4。
C6为神经网络的第六层,右边卷积层的卷积核尺寸为512@8*6*2,步长为(1,1,1)。卷积计算后输出的特征图尺寸为512@(31-8+1)*(32-6+1)*(5-2+1)=512@24*27*3。C6右边卷积层的池化窗口大小为3*3*1,池化计算后特征图大小为64@(24/3)*(27/3)*(3/1)=512@8*9*3。左边卷积层的卷积核尺寸为512@5*6*2,步长为(1,1,1)。卷积计算后输出的特征图尺寸为512@(25-5+1)*(32-6+1)*(5-2+1)=512@21*27*3。C6左边卷积层的池化窗口大小为3*3*1,池化计算后特征图大小为64@(21/3)*(27/3)*(3/1)=512@7*9*3。
步骤2.5:F1作为第一个全连接层,左右两层的全连接层相同,都有4096个神经元,右边全连接中每个神经元维度为512*8*9*3,得到的输出为1*1*1*4096。左边全连接中每个神经元维度为512*7*9*3,得出的输出为1*1*1*4096。F2层为第二层全连接层,是网络的输出层。F2层使用n个1*1*1*2048维神经元对F1层的输出合并再进行全连接计算,F2的输出大小为1*1*1*n。
其中全连接计算公式如下:
步骤2.6:根据步骤2.5的输出计算Softmax、loss,并根据loss反向修正网络参数。重复步骤2.1-步骤2.6,直至loss收敛。Softmax和loss的计算公式如下:
步骤3:将测试图片使用步骤1的方式进行图片叠加,将每个人同一类的9张头部姿态图片做叠加处理构建3D立方体输入。利用步骤2得到的3D卷积神经网络测试分类结果。
每类头部姿态转动角度如下表:

Claims (7)

1.一种基于 3D 卷积神经网络的头部姿态估计方法,其特征在于该方法包括:
步骤1:将头部姿态定义为9类;通过对同类2D图片叠加的方式对原始头部姿态图片进行预处理;
步骤2:使用步骤1获得的训练样本训练3D卷积神经网络
步骤2.1:输入立方体经过卷积计算,为C1卷积层;
步骤2.2:对步骤2.1输出的特征图立方体,通过两路不同的卷积核做卷积计算,连续重复两次,为网络的C2、C3卷积层;
步骤2.3:对步骤2.2输出的特征立方体图进行合并做卷积计算,再做平均池化计算,为网络的C4卷积层;
步骤2.4:对步骤2.3输出的特征立方体图形,通过两路不同的卷积核做卷积计算,连续两次,并在C6卷积层卷积运算后进行最大池化运算,为网络的C5、C6卷积层;
步骤2.5:对步骤2.4输出的特征图立方体,分为通过两路相同的全连接层,做全连接计算,为F1全连接层;
步骤2.6:对步骤2.5两路相同全连接层输出结果合并,为F2全连接层;
步骤2.7:对步骤2.6输出计算Softmax、loss,并根据loss反向修正网络参数;重复步骤2.1-步骤2.7,直至loss收敛;
步骤3:将测试图片根据步骤1中的数据预处理方式进行叠加处理,构建3D立方体结构;利用步骤2得到的3D卷积神经网络测试分类结果。
2.如权利要求1所述的一种基于3D卷积神经网络的头部姿态估计方法,其特征在于所述步骤1将2D图片输入转化为3D立方体输入包括:首先数据集在采集使用平面内的头部转动角度,主要分为垂直角度和水平角度,垂直角度分为+90、+60、+30、+15、+0、-15、-30、-60、-90,水平角度分为+90、+60、+30、+15、+0、-15、-30、-60、-90,头部姿态主要9类,分别为中、上、下、左、右、左上、右上、左下、右下,每个人每一类有9张图像,数据输入时先将图片大小缩放为统一尺寸,然后将同一类的9张图片做叠加处理后输入3D网络。
3.如权利要求1所述的一种基于3D卷积神经网络的头部姿态估计方法,其特征是:步骤2.1中,C1层的卷积核尺寸为32@3*5*2。
4.如权利要求1所述的一种基于3D卷积神经网络的头部姿态估计方法,步骤2.2使用的两路不同卷积核,其特征是:C2层卷积核尺寸为64@5*7*1和64@3*8*1;C3层的卷积核尺寸为:128@5*6*2和128@7*5*2。
5.如权利要求1所述的一种基于3D卷积神经网络的头部姿态估计方法,其特征是:步骤2.3中,C4层的卷积核尺寸为256@6*10*3。
6.如权利要求1所述的一种基于3D卷积神经网络的头部姿态估计方法,其特征是:步骤2.4中,C5层的卷积核尺寸分别为512@5*11*2和512@11*11*2,C6层的卷积核尺寸分别为512@8*6*2和512@5*6*2。
7.如权利要求1所述的一种基于3D卷积神经网络的头部姿态估计方法,步骤2.5使用的两路相同全连接,其特征是:F1层全连接使用1*1*4096,F2层全连接使用1*1*2048。
CN201910530482.4A 2019-06-19 2019-06-19 一种基于3d卷积神经网络的头部姿态估计方法 Pending CN110210456A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910530482.4A CN110210456A (zh) 2019-06-19 2019-06-19 一种基于3d卷积神经网络的头部姿态估计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910530482.4A CN110210456A (zh) 2019-06-19 2019-06-19 一种基于3d卷积神经网络的头部姿态估计方法

Publications (1)

Publication Number Publication Date
CN110210456A true CN110210456A (zh) 2019-09-06

Family

ID=67793512

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910530482.4A Pending CN110210456A (zh) 2019-06-19 2019-06-19 一种基于3d卷积神经网络的头部姿态估计方法

Country Status (1)

Country Link
CN (1) CN110210456A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112329566A (zh) * 2020-10-26 2021-02-05 易显智能科技有限责任公司 一种精准感知机动车驾驶人员头部动作的视觉感知系统
CN112580632A (zh) * 2020-12-24 2021-03-30 南方电网深圳数字电网研究院有限公司 铭牌识别方法、系统、电子设备及计算机可读存储介质

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150178554A1 (en) * 2013-12-19 2015-06-25 Objectvideo, Inc. System and method for identifying faces in unconstrained media
WO2015188614A1 (zh) * 2014-06-08 2015-12-17 朱金彪 操作虚拟世界里的电脑和手机的方法、装置以及使用其的眼镜
CN106919903A (zh) * 2017-01-19 2017-07-04 中国科学院软件研究所 一种鲁棒的基于深度学习的连续情绪跟踪方法
WO2018035506A1 (en) * 2016-08-19 2018-02-22 Linear Algebra Technologies Limited Dynamic culling of matrix operations
CN107871098A (zh) * 2016-09-23 2018-04-03 北京眼神科技有限公司 人脸特征点的获取方法和装置
CN108171176A (zh) * 2017-12-29 2018-06-15 中车工业研究院有限公司 一种基于深度学习的地铁司机情绪辨识方法及装置
CN108171249A (zh) * 2018-01-29 2018-06-15 北京工业大学 一种基于rgbd数据的局部描述子学习方法
US20180189974A1 (en) * 2017-05-19 2018-07-05 Taylor Clark Machine learning based model localization system
CN108305283A (zh) * 2018-01-22 2018-07-20 清华大学 基于深度相机和基本姿势的人体行为识别方法及装置
CN108875674A (zh) * 2018-06-29 2018-11-23 东南大学 一种基于多列融合卷积神经网络的驾驶员行为识别方法
US20190019014A1 (en) * 2017-07-13 2019-01-17 Robert Bosch Gmbh System and method for pose-invariant face alignment
US20190042867A1 (en) * 2017-12-28 2019-02-07 Yen-Kuang Chen Multi-domain cascade convolutional neural network
CN109409398A (zh) * 2017-08-17 2019-03-01 佳能株式会社 图像处理装置、图像处理方法以及存储介质
CN109875568A (zh) * 2019-03-08 2019-06-14 北京联合大学 一种用于疲劳驾驶检测的头部姿态检测方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150178554A1 (en) * 2013-12-19 2015-06-25 Objectvideo, Inc. System and method for identifying faces in unconstrained media
WO2015188614A1 (zh) * 2014-06-08 2015-12-17 朱金彪 操作虚拟世界里的电脑和手机的方法、装置以及使用其的眼镜
WO2018035506A1 (en) * 2016-08-19 2018-02-22 Linear Algebra Technologies Limited Dynamic culling of matrix operations
CN107871098A (zh) * 2016-09-23 2018-04-03 北京眼神科技有限公司 人脸特征点的获取方法和装置
CN106919903A (zh) * 2017-01-19 2017-07-04 中国科学院软件研究所 一种鲁棒的基于深度学习的连续情绪跟踪方法
US20180189974A1 (en) * 2017-05-19 2018-07-05 Taylor Clark Machine learning based model localization system
US20190019014A1 (en) * 2017-07-13 2019-01-17 Robert Bosch Gmbh System and method for pose-invariant face alignment
CN109409398A (zh) * 2017-08-17 2019-03-01 佳能株式会社 图像处理装置、图像处理方法以及存储介质
US20190042867A1 (en) * 2017-12-28 2019-02-07 Yen-Kuang Chen Multi-domain cascade convolutional neural network
CN108171176A (zh) * 2017-12-29 2018-06-15 中车工业研究院有限公司 一种基于深度学习的地铁司机情绪辨识方法及装置
CN108305283A (zh) * 2018-01-22 2018-07-20 清华大学 基于深度相机和基本姿势的人体行为识别方法及装置
CN108171249A (zh) * 2018-01-29 2018-06-15 北京工业大学 一种基于rgbd数据的局部描述子学习方法
CN108875674A (zh) * 2018-06-29 2018-11-23 东南大学 一种基于多列融合卷积神经网络的驾驶员行为识别方法
CN109875568A (zh) * 2019-03-08 2019-06-14 北京联合大学 一种用于疲劳驾驶检测的头部姿态检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
于明学等: "基于3D卷积双路神经网络的考场行为异常识别", 《北京电子科技学院学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112329566A (zh) * 2020-10-26 2021-02-05 易显智能科技有限责任公司 一种精准感知机动车驾驶人员头部动作的视觉感知系统
CN112580632A (zh) * 2020-12-24 2021-03-30 南方电网深圳数字电网研究院有限公司 铭牌识别方法、系统、电子设备及计算机可读存储介质

Similar Documents

Publication Publication Date Title
CN110348330B (zh) 基于vae-acgan的人脸姿态虚拟视图生成方法
CN110570455B (zh) 一种面向房间vr的全身三维姿态跟踪方法
Rae et al. Recognition of human head orientation based on artificial neural networks
CN108334816A (zh) 基于轮廓对称约束生成式对抗网络的多姿态人脸识别方法
CN110490158B (zh) 一种基于多级模型的鲁棒人脸对齐方法
CN106910222A (zh) 基于双目立体视觉的人脸三维重建方法
CN102999942A (zh) 三维人脸重建方法
Bednarik et al. Learning to reconstruct texture-less deformable surfaces from a single view
CN108280858B (zh) 多视图重建中的一种线性全局相机运动参数估计方法
CN105279769B (zh) 一种联合多特征的层次粒子滤波跟踪方法
CN108875586B (zh) 一种基于深度图像与骨骼数据多特征融合的功能性肢体康复训练检测方法
CN107229920B (zh) 基于整合深度典型时间规整及相关修正的行为识别方法
CN110378997A (zh) 一种基于orb-slam2的动态场景建图与定位方法
CN113421328B (zh) 一种三维人体虚拟化重建方法及装置
CN108614999A (zh) 基于深度学习的眼睛睁闭状态检测方法
CN107341844A (zh) 一种基于多Kinect的实时三维人体绘制方法
CN111062326A (zh) 一种基于几何驱动的自监督人体3d姿态估计网络训练方法
CN110210456A (zh) 一种基于3d卷积神经网络的头部姿态估计方法
CN110197255A (zh) 一种基于深度学习的可变形卷积网络
CN113298047B (zh) 基于时空关联图像的3d形态和姿态估计方法和装置
CN113850231A (zh) 一种红外图像的转换训练方法、装置、设备及存储介质
CN111222459B (zh) 一种视角无关的视频三维人体姿态识别方法
CN106778767A (zh) 基于orb和主动视觉的视觉图像特征提取及匹配方法
Yu et al. 3D facial motion tracking by combining online appearance model and cylinder head model in particle filtering
CN115359513A (zh) 基于关键点监督和分组特征融合的多视图行人检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190906

RJ01 Rejection of invention patent application after publication