CN110208741B - A method of over-the-horizon single target direct positioning based on multi-array phase measurement - Google Patents
A method of over-the-horizon single target direct positioning based on multi-array phase measurement Download PDFInfo
- Publication number
- CN110208741B CN110208741B CN201910576373.6A CN201910576373A CN110208741B CN 110208741 B CN110208741 B CN 110208741B CN 201910576373 A CN201910576373 A CN 201910576373A CN 110208741 B CN110208741 B CN 110208741B
- Authority
- CN
- China
- Prior art keywords
- array
- circular array
- target
- latitude
- longitude
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 18
- 238000005259 measurement Methods 0.000 title claims abstract description 8
- 239000011159 matrix material Substances 0.000 claims description 6
- 230000005855 radiation Effects 0.000 claims description 6
- 238000003491 array Methods 0.000 claims description 4
- 238000005314 correlation function Methods 0.000 claims description 4
- 238000005070 sampling Methods 0.000 claims description 4
- 230000000295 complement effect Effects 0.000 claims description 2
- 238000001228 spectrum Methods 0.000 claims description 2
- 101100221616 Halobacterium salinarum (strain ATCC 29341 / DSM 671 / R1) cosB gene Proteins 0.000 claims 2
- 230000000694 effects Effects 0.000 abstract description 4
- 230000000007 visual effect Effects 0.000 abstract description 3
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/02—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
- G01S5/04—Position of source determined by a plurality of spaced direction-finders
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
本发明属于电子对抗技术领域,具体的说是一种基于多圆阵测相的超视距单目标直接定位方法。本发明通过求同一圆阵的不同阵元接收信号之间的相位差,可以提取到阵列流型中有关目标位置的全部信息,并且建立起相位差与俯仰角和方位角的关系,从而可以在整个观测区域中搜索满足这种关系的位置点。在搜索的过程中为了降低搜索的维度,可以先把搜索点相对观测站的方位角带入上述关系式中,采用最小二乘法求得最优俯仰角,然后将方位角和求得的最优俯仰角带入上述关系式中计算是否符合实际的接收信号。本发明的有益效果为,本发明可以对超视距单目标进行精准定位,方法简单,效果良好。
The invention belongs to the technical field of electronic countermeasures, and specifically relates to a method for direct positioning of a single target beyond the visual range based on multi-circular array phase measurement. The present invention can extract all the information about the target position in the array flow pattern by calculating the phase difference between the received signals of different array elements of the same circular array, and establish the relationship between the phase difference and the pitch angle and azimuth angle, so that the The location points satisfying this relationship are searched in the entire observation area. In order to reduce the search dimension during the search process, the azimuth angle of the search point relative to the observation station can be brought into the above relational formula, and the optimal pitch angle can be obtained by the least square method, and then the azimuth angle and the obtained optimal pitch angle can be obtained. Put the pitch angle into the above relationship to calculate whether it conforms to the actual received signal. The beneficial effect of the present invention is that the present invention can accurately locate a single target beyond the visual distance, the method is simple, and the effect is good.
Description
技术领域technical field
本发明属于电子对抗技术领域,是在地理坐标系空间中通过多个圆形阵列的不同阵元的相位差信息对单目标进行定位的方法。The invention belongs to the technical field of electronic countermeasures, and is a method for locating a single target through the phase difference information of different array elements of a plurality of circular arrays in a geographical coordinate system space.
背景技术Background technique
在电子侦察过程中,准确估计目标辐射源位置有助于获取辐射源信息,是做好高层次上的态势估计和威胁估计的关键和主要依据,也是对目标实现精准打击的重要保证。定位就是把某一观测区域近似为平面,然后利用平面几何的方法进行定位,解算出目标位置。当目标与天线所在观测区域相对地球曲率不大时,这种方法行之有效。但是随着技术的不断发展,各种海陆空设备的活动范围不断扩大,地球曲率对定位结果的影响就越来越大,此时就不能再将观测区域近似为平面进行求解。In the process of electronic reconnaissance, accurately estimating the position of the target radiation source is helpful to obtain the information of the radiation source. It is the key and main basis for high-level situation estimation and threat estimation, and it is also an important guarantee for achieving precise strikes on the target. Positioning is to approximate a certain observation area as a plane, and then use the method of plane geometry to locate and calculate the target position. This method is effective when the target and the observation area where the antenna is located are not very large relative to the curvature of the earth. However, with the continuous development of technology and the continuous expansion of the range of activities of various sea, land and air equipment, the impact of the curvature of the earth on the positioning results is increasing. At this time, the observation area can no longer be approximated as a plane for solution.
基于地球圆球模型的定位算法大多在圆球切面或截面上进行方位线的交叉定位,求解目标的位置,然后再将目标的平面位置转换到目标的地理位置。但是通过微波、红外辐射得到目标的俯仰角精度太差从而无法在直角坐标系内进行两站测方位角和俯仰角实现交叉定位。Most of the positioning algorithms based on the spherical model of the earth carry out the cross positioning of the azimuth lines on the spherical section or section to solve the position of the target, and then convert the plane position of the target to the geographic location of the target. However, the accuracy of the pitch angle of the target obtained through microwave and infrared radiation is so poor that it is impossible to measure the azimuth and pitch angle at two stations in the Cartesian coordinate system to achieve cross positioning.
发明内容Contents of the invention
针对上述问题,本发明提出了一种地理坐标系空间中基于多圆阵测相的单目标直接定位的方案。In view of the above problems, the present invention proposes a single-target direct positioning scheme based on multi-circular array phase measurement in the geographic coordinate system space.
本发明采用的技术方案是:The technical scheme adopted in the present invention is:
对于静止目标,其位置信息转化为了目标相对观测站的俯仰角和方位角,而俯仰角和方位角信息完全包含在阵列接收信号的阵列流型中。通过求同一圆阵的不同阵元接收信号之间的相位差,可以提取到阵列流型中有关目标位置的全部信息,并且建立起相位差与俯仰角和方位角的关系,从而可以在整个观测区域中搜索满足这种关系的位置点。在搜索的过程中为了降低搜索的维度,可以先把搜索点相对观测站的方位角带入上述关系式中,采用最小二乘法求得最优俯仰角,然后将方位角和求得的最优俯仰角带入上述关系式中计算是否符合实际的接收信号。为了消除位置模糊和提高定位精度,需要采用至少2个天线阵列。地理坐标系空间中基于多站的单目标定位模型如图1所示。For a stationary target, its position information is transformed into the pitch angle and azimuth angle of the target relative to the observation station, and the pitch angle and azimuth angle information are completely contained in the array flow pattern of the array receiving signal. By calculating the phase difference between the received signals of different elements of the same circular array, all the information about the target position in the array flow pattern can be extracted, and the relationship between the phase difference and the elevation angle and azimuth angle can be established, so that the entire observation The location points satisfying this relationship are searched in the area. In order to reduce the search dimension during the search process, the azimuth angle of the search point relative to the observation station can be brought into the above relational formula, and the optimal pitch angle can be obtained by the least square method, and then the azimuth angle and the obtained optimal pitch angle can be obtained. Put the pitch angle into the above relationship to calculate whether it conforms to the actual received signal. In order to eliminate position ambiguity and improve positioning accuracy, at least two antenna arrays are required. The multi-station based single target positioning model in the geographic coordinate system space is shown in Fig. 1.
假设地球上的观测站共有P个,第p个观测站的经纬度为:(Lp,Bp),辐射源的经纬度为(L,B)。目标相对第p个观测站的方位角为θp,俯仰角为φp。如图2所示的信号模型可以表示为:Suppose there are P observation stations on the earth, the latitude and longitude of the pth observation station is: (L p , B p ), and the latitude and longitude of the radiation source is (L, B). The azimuth angle of the target relative to the pth observation station is θ p , and the elevation angle is φ p . The signal model shown in Figure 2 can be expressed as:
表示第p个圆阵中第m个阵元接收到的第t时刻的信号,M为每个圆阵包含的阵元数;sp(t)表示第p个圆阵接受到信号的包络;表示第p个圆阵中第m个阵元相对第1个阵元因为位置不同产生的相位差,R是均匀圆阵的半径,λ是接收信号的波长;表示高斯白噪声。 Indicates the signal at time t received by the mth element in the pth circular array, M is the number of array elements contained in each circular array; sp (t) represents the envelope of the signal received by the pth circular array ; Indicates the phase difference between the m-th array element and the first array element in the p-th circular array due to different positions, R is the radius of the uniform circular array, and λ is the wavelength of the received signal; represents white Gaussian noise.
假定噪声满足:Assume that the noise satisfies:
其中,为噪声方差,δ(t)为冲激函数,t与t1代表时刻,T为总的采样时间。in, is the noise variance, δ(t) is the impulse function, t and t1 represent the time, and T is the total sampling time.
求圆阵p中两个阵元通道k和l接收信号的相关函数 Find the correlation function of the received signals of the two array element channels k and l in the circular array p
对于k≠l而言,相关函数rkl(t)在时间统计意义下的相角为:For k≠l, the phase angle of the correlation function r kl (t) in the sense of time statistics is:
将上式整理成矩阵形式为:Putting the above formula into matrix form is:
其中,in,
将观测站测量区域划分为Q×N个网格,每个网格点代表目标经纬度平面中的一个位置坐标(xq,yn),q=1,2,…,Q,n=1,2,…,N。设这个位置对应的经纬度为(Lq,Bn),1≤q≤Q,1≤n≤N,第p个圆阵阵列中心的经纬度为(Lp,Bp),1≤p≤P(P是圆阵的总数)。Divide the measurement area of the observatory station into Q×N grids, each grid point represents a position coordinate (x q , y n ) in the latitude-longitude plane of the target, q=1,2,...,Q, n=1, 2,...,N. Let the latitude and longitude corresponding to this position be (L q , B n ), 1≤q≤Q, 1≤n≤N, and the latitude and longitude of the center of the pth circular array is (L p , B p ), 1≤p≤P (P is the total number of circular arrays).
利用以下公式,计算搜索点位置(Lq,Bn)相对第p个圆形阵列中心(Lp,Bp)的方位角 Use the following formula to calculate the azimuth of the search point position (L q ,B n ) relative to the center of the p-th circular array (L p ,B p )
bp,q,n=sin Bpsin Bn+cos Bpcos Bncos(Lp-Lq) (10)b p,q,n = sin B p sin B n +cos B p cos B n cos(L p -L q ) (10)
将带入(6)式,用最小二乘法求搜索点位置(Lq,Bn)的俯仰角的最优解:Will Putting it into formula (6), use the least square method to find the optimal solution of the pitch angle of the search point position (L q , B n ):
将(13)式带入(6)式得到搜索点相对第p个观测站的误差:Put (13) into (6) to get the error of the search point relative to the pth observation station:
这里为的投影正交补矩阵,其为幂等矩阵,即并满足 here for The projection orthogonal complement matrix of is an idempotent matrix, namely and meet
同理可得搜索点相对所有观测站的误差,计算总体误差:In the same way, the error of the search point relative to all observation stations can be obtained, and the overall error can be calculated:
取误差的倒数作为搜索点的代价函数:Take the inverse of the error as the cost function for the search point:
最终目标的经纬度为:The latitude and longitude of the final destination are:
本发明的有益效果为,本发明可以对超视距单目标进行精准定位,方法简单,效果良好。The beneficial effect of the present invention is that the present invention can accurately locate a single target beyond the visual distance, the method is simple, and the effect is good.
附图说明Description of drawings
图1为圆球模型中多圆阵直接定位模型图;Fig. 1 is the direct positioning model diagram of multi-circle array in the spherical model;
图2为接收信号模型;Fig. 2 is a receiving signal model;
图3为基于多圆阵测相的超视距单目标直接定位算法流程图;Fig. 3 is the flow chart of the over-the-horizon single target direct positioning algorithm based on multi-circle array phase measurement;
图4为粗略搜索产生的单目标伪谱图;Figure 4 is a single-target pseudo-spectrogram generated by a rough search;
图5为精细搜索产生的单目标伪谱图。Figure 5 is the single-target pseudo-spectrogram generated by the fine search.
图6为不同信噪比下的定位误差。Figure 6 shows the positioning error under different signal-to-noise ratios.
具体实施方式Detailed ways
下面结合实施例对本发明进行详细的描述:The present invention is described in detail below in conjunction with embodiment:
实施例Example
本例利用matlab对上述多圆阵测相的超视距单目标直接定位算法方案进行验证,为简化起见,对算法模型作如下假设:In this example, matlab is used to verify the above-mentioned over-the-horizon single target direct positioning algorithm scheme of multi-array phase measurement. For the sake of simplicity, the following assumptions are made on the algorithm model:
1.所有观测站和目标都在地球表面;1. All observatories and targets are on the Earth's surface;
2.所有观测站接收到的信号具有相同的信噪比;2. The signals received by all observation stations have the same signal-to-noise ratio;
3.所有的工程误差都叠加到等效噪声中;3. All engineering errors are added to the equivalent noise;
4.假设目标静止或运动速度极低;4. Assume that the target is stationary or moving at a very low speed;
步骤1.设目标所在区域:经度从90度到110度,纬度从20度到40度,目标经纬度为(101.667,31.667),单位为度。使用3个固定观测站对上述目标进行定位,所有观测站也分布在这个区域,经纬度分别为:(95,25),(105,25),(100,35),单位为度。假设观测站的噪声服从均值为零的高斯分布,且每个观测站的不同阵元之间的噪声相互独立;
步骤2.对各个观测站的M通道阵列天线接收系统做时间同步,根据奈奎斯特采样定理采集目标辐射的无线电信号数据,获得阵列信号数据;
步骤3.对同一观测站不同通道间的接收信号做互相关处理,求得不同通道间信号的相位差k,l=1,2,…,M,(k≠l)p=1,…,P;Step 3. Perform cross-correlation processing on the received signals between different channels of the same observation station to obtain the phase difference of signals between different channels k,l=1,2,...,M,(k≠l)p=1,...,P;
步骤4.将观测区域划分为Q×N(本次仿真取20×20)的格子,并计算格子所处顶点位置相对各个观测站的方位角q,n表示当前搜索的格子的位置,p表示第p个观测站;Step 4. Divide the observation area into Q×N (20×20 for this simulation) grid, and calculate the azimuth of the vertex position of the grid relative to each observation station q, n represent the position of the currently searched grid, and p represents the pth observation station;
步骤5.将带入(13)式中求得有关俯仰角的最优解
步骤6.根据(14)式计算搜索点相对第p个观测站的误差 Step 6. Calculate the error of the search point relative to the pth observation station according to formula (14)
步骤7.累计搜索点相对所有观测站的误差,得Cq,n;Step 7. Accumulate the errors of the search point relative to all observation stations to obtain C q,n ;
步骤8.求Cq,n的倒数Qq,n,利用Qq,n画出单目标的伪谱图,峰值点即为粗搜的定位结果,即目标的经纬度(L',B');
步骤9.继续采用步骤4到步骤8的方法,对以(L',B')为中心,经纬度各相差2度的范围内进行搜索,就可得到目标的精确定位结果。Step 9. Continue to use the method from step 4 to step 8 to search within the range with (L', B') as the center and a difference of 2 degrees in latitude and longitude, and then the precise positioning result of the target can be obtained.
基于均匀圆阵阵列的超视距目标直接定位效果:Direct positioning effect of over-the-horizon target based on uniform circular array array:
如图4所示,对观测区域进行粗略地划分,从图中可以看出观测区域中出现目标的伪谱峰图,谱峰所在位置即为目标的初步定位结果。由粗搜结果,可以判定目标大致位置,从而可以缩小搜索范围,对这一范围进行更加细致的搜索。从图5可以看出目标精确的定位结果。图6显示定位误差随信噪比的变化趋势。As shown in Figure 4, the observation area is roughly divided. From the figure, it can be seen that the pseudo peak map of the target appears in the observation area, and the position of the peak is the preliminary positioning result of the target. From the rough search results, the approximate location of the target can be determined, so that the search range can be narrowed down, and a more detailed search can be performed on this range. It can be seen from Figure 5 that the precise positioning result of the target is obtained. Figure 6 shows the variation trend of positioning error with signal-to-noise ratio.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910576373.6A CN110208741B (en) | 2019-06-28 | 2019-06-28 | A method of over-the-horizon single target direct positioning based on multi-array phase measurement |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910576373.6A CN110208741B (en) | 2019-06-28 | 2019-06-28 | A method of over-the-horizon single target direct positioning based on multi-array phase measurement |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110208741A CN110208741A (en) | 2019-09-06 |
CN110208741B true CN110208741B (en) | 2022-12-02 |
Family
ID=67795313
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910576373.6A Active CN110208741B (en) | 2019-06-28 | 2019-06-28 | A method of over-the-horizon single target direct positioning based on multi-array phase measurement |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110208741B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111368256B (en) * | 2020-03-23 | 2023-03-03 | 电子科技大学 | A Single-Shot Direction Finding Method Based on Uniform Circular Array |
CN113390406B (en) * | 2021-06-16 | 2022-05-24 | 电子科技大学 | Multi-target data association and localization method based on passive multi-sensor system |
CN115184914B (en) * | 2022-07-06 | 2025-01-24 | 中国电子科技集团公司第五十四研究所 | A fast positioning method for ultra-sparse distributed arrays |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07146352A (en) * | 1993-11-25 | 1995-06-06 | Tokyo Electric Power Co Inc:The | Method and device for orienting radio wave source |
CN105676171A (en) * | 2016-01-04 | 2016-06-15 | 国家无线电监测中心 | Single channel dual base station ultra-short wave signal spatial positioning method |
CN106597364A (en) * | 2016-11-18 | 2017-04-26 | 烟台职业学院 | Target radiation source initial position estimation method for single-antenna single-station passive positioning |
CN107167784A (en) * | 2017-07-05 | 2017-09-15 | 电子科技大学 | A kind of many human body target positioning and tracing methods based on multichannel phase comparison positioning |
CN108717177A (en) * | 2018-06-21 | 2018-10-30 | 电子科技大学 | A kind of dual station TDOA-AOA two-step methods passive location method |
CN108802674A (en) * | 2018-07-19 | 2018-11-13 | 中国人民解放军战略支援部队信息工程大学 | It is a kind of for the combined method for searching and device that directly position |
CN109031197A (en) * | 2018-06-19 | 2018-12-18 | 哈尔滨工业大学 | A kind of direct localization method of radiation source based on over-the-horizon propagation model |
CN109164408A (en) * | 2018-07-17 | 2019-01-08 | 中国电子科技集团公司第二十九研究所 | A kind of frequency-dependent signal two dimension direction-finding method and equipment using two sensors |
CN109298388A (en) * | 2018-08-21 | 2019-02-01 | 中国人民解放军战略支援部队信息工程大学 | Direct estimation method of over-the-horizon target geographic coordinates based on azimuth information |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6784840B2 (en) * | 2002-12-23 | 2004-08-31 | Itt Manufacturing Enterprises, Inc. | Method for determining azimuth and elevation angles using a single axis direction finding system |
-
2019
- 2019-06-28 CN CN201910576373.6A patent/CN110208741B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07146352A (en) * | 1993-11-25 | 1995-06-06 | Tokyo Electric Power Co Inc:The | Method and device for orienting radio wave source |
CN105676171A (en) * | 2016-01-04 | 2016-06-15 | 国家无线电监测中心 | Single channel dual base station ultra-short wave signal spatial positioning method |
CN106597364A (en) * | 2016-11-18 | 2017-04-26 | 烟台职业学院 | Target radiation source initial position estimation method for single-antenna single-station passive positioning |
CN107167784A (en) * | 2017-07-05 | 2017-09-15 | 电子科技大学 | A kind of many human body target positioning and tracing methods based on multichannel phase comparison positioning |
CN109031197A (en) * | 2018-06-19 | 2018-12-18 | 哈尔滨工业大学 | A kind of direct localization method of radiation source based on over-the-horizon propagation model |
CN108717177A (en) * | 2018-06-21 | 2018-10-30 | 电子科技大学 | A kind of dual station TDOA-AOA two-step methods passive location method |
CN109164408A (en) * | 2018-07-17 | 2019-01-08 | 中国电子科技集团公司第二十九研究所 | A kind of frequency-dependent signal two dimension direction-finding method and equipment using two sensors |
CN108802674A (en) * | 2018-07-19 | 2018-11-13 | 中国人民解放军战略支援部队信息工程大学 | It is a kind of for the combined method for searching and device that directly position |
CN109298388A (en) * | 2018-08-21 | 2019-02-01 | 中国人民解放军战略支援部队信息工程大学 | Direct estimation method of over-the-horizon target geographic coordinates based on azimuth information |
Non-Patent Citations (4)
Title |
---|
Notice of Retraction: The study of passive location system based on the change of phase;Zhisong Hou 等;《2011 International Conference on Consumer Electronics, Communications and Networks (CECNet)》;20110516;第892-895页 * |
基于相关干涉的测向技术研究;张清清;《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑》;20140115(第01(2014)期);第C042-827页 * |
无源测向定位系统的建模与仿真;杨云龙;《中国优秀硕士学位论文全文数据库 信息科技辑》;20180415(第04(2018)期);第I136-2447页 * |
运动多站无源定位关键技术研究;贾兴江;《中国博士学位论文全文数据库 信息科技辑》;20120715(第07(2012)期);第I136-137页 * |
Also Published As
Publication number | Publication date |
---|---|
CN110208741A (en) | 2019-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107613559B (en) | A DOA fingerprint database positioning method based on 5G signal | |
CN110208741B (en) | A method of over-the-horizon single target direct positioning based on multi-array phase measurement | |
CN110687500B (en) | Method and system for identifying and locating the angle of arrival of wireless signals acquired by smart antennas | |
CN108089148A (en) | A kind of passive track-corelation direction cross positioning method based on time difference information | |
CN110954865A (en) | Short wave time difference positioning method based on ionosphere information | |
CN104569625B (en) | A large-scale antenna pattern measurement method based on a rotatable auxiliary antenna | |
CN110531315B (en) | Satellite interference source direct positioning method and positioning device based on signal intensity change rate | |
CN110045327B (en) | Single-star interference source positioning method based on multiple same-frequency multiplexing beams | |
CN104038901A (en) | Indoor positioning method for reducing fingerprint data acquisition workload | |
CN109856605A (en) | A kind of while formation of the digital multiple beam quadratic fit curve is directed toward modification method | |
CN105044667A (en) | Double-satellite tracking method, device and system for moving target | |
CN105974362B (en) | A kind of high-precision Passive Location of Combined estimator signal parameter and position | |
Nemati et al. | Performance of TDOA and AOA localization techniques for different base-stations topologies | |
CN110888108A (en) | Positioning method based on RFID and phase calibration | |
Zeng et al. | Radio frequency based direction sensing using massive MIMO | |
CN117687056B (en) | Communication and electronic signal satellite-ground joint positioning method based on differential time difference | |
CN115826004B (en) | Three-star cooperative direct positioning method based on two-dimensional angle and time difference combination | |
Jiexin et al. | Combination of land-based and satellite-based OTH geolocations using differentiable exact penalty method | |
CN113534130B (en) | Multi-station radar multi-target data association method based on sight angle | |
CN107144815A (en) | A kind of 3-D positioning method based on one-dimensional direction finding | |
Khalafalla et al. | Two-dimensional target localization approach via a closed-form solution using range difference measurements based on pentagram array | |
CN109884583A (en) | Convex Optimization Method for Determining 3D Coordinates of Target Using 1D Direction Finding | |
Chitambira et al. | Direct localisation using ray-tracing and least-squares support vector machines | |
CN112415469B (en) | Rapid interference direction finding method for two-dimensional digital array radar | |
Lowrance et al. | Direction of arrival estimation for robots using radio signal strength and mobility |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |