CN110208504A - 一种化学优化的纤维混凝土环式约束开裂装置 - Google Patents

一种化学优化的纤维混凝土环式约束开裂装置 Download PDF

Info

Publication number
CN110208504A
CN110208504A CN201910472679.7A CN201910472679A CN110208504A CN 110208504 A CN110208504 A CN 110208504A CN 201910472679 A CN201910472679 A CN 201910472679A CN 110208504 A CN110208504 A CN 110208504A
Authority
CN
China
Prior art keywords
ring type
ing device
crack
type constrained
fiber concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910472679.7A
Other languages
English (en)
Other versions
CN110208504B (zh
Inventor
冯伟浩
李静
吕宏鑫
马建峰
韦欣怡
魏金沂
涂鉴
陈万昕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201910472679.7A priority Critical patent/CN110208504B/zh
Publication of CN110208504A publication Critical patent/CN110208504A/zh
Application granted granted Critical
Publication of CN110208504B publication Critical patent/CN110208504B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/38Concrete; Lime; Mortar; Gypsum; Bricks; Ceramics; Glass
    • G01N33/383Concrete or cement

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

本发明公开了一种化学优化的纤维混凝土环式约束开裂装置,包括环式约束开裂装置,OH半透膜,养护容器,环式约束开裂装置由两同心圆环构成,下垫钢制底板,两同心圆环外环为两个半圆塑料模板通过两个螺栓连接成一个整体,内环为钢环,内环内侧四等分贴有应变片,OH半透膜套在外环外侧,紧密包裹外环表面,养护容器中装有0.08mol/L的NaOH溶液。本发明还共公开了本发明装置的制作方法。本发明能通过化学削弱诱导高强度的纤维混凝土在约束下开裂,缩短抗裂性能测试实验的时间,并通过应变片精确测定开裂时间,解决传统混凝土开裂抗裂测试装置时间长、开裂难监测的问题,对混凝土抗裂测试装置进行充分优化,从而提高抗裂测试装置的效率和适用性。

Description

一种化学优化的纤维混凝土环式约束开裂装置
技术领域
本发明涉及混凝土的抗裂性能测定领域,具体涉及一种优化的用于测定抗裂性的混凝土环式约束开裂装置。
背景技术
当前混凝土材料是建筑工程中应用最多最广泛的工程复合材料,混凝土服役过程中不可避免会产生裂缝,并为有害离子和物质进入混凝土提供通道,进而腐蚀钢筋,削弱混凝土结构的承载能力和耐久性,因此正确地检测与评价混凝土的抗裂性能是减少或避免混凝土结构开裂的前提。目前,采用环式约束开裂装置的约束圆环法目前被国内外认定为评估混凝土抗裂性能的标准方法。然而约束圆环法存在一定的局限性,如测试周期长,开裂不均匀不明显等等。
同时,纤维素纤维是新一代高新技术材料,在混凝土中掺入乱向分布的纤维素纤维,能有效提高混凝土结构的强度和抗裂性,延长结构的使用寿命,减少混凝土收缩开裂的概率,纤维增强混凝土因此具有良好发展前景。然而利用普通环式约束开裂装置测定纤维增强混凝土抗裂性能时,由于其抗裂性能很强难以收缩开裂,导致抗裂试验测试周期长,随机性和偶然性大,无法正确评估其抗裂性。因此有必要对现有环式约束开裂装置进行改进。
发明内容
有鉴于此,本发明的目的是提供一种化学优化的混凝土环式约束开裂装置,其能通过养护容器中的0.08mol/L的NaOH溶液提供低浓度稳定的OH-环境,OH-通过OH-半透膜进入混凝土中并及时补充,与混凝土发生少量碱-骨料反应,降低其强度和抗裂性,达到化学削弱诱导开裂的效果。
本发明采用以下方案实现:
一种化学优化的纤维混凝土环式约束开裂装置,包括环式约束开裂装置,钢制底板,养护容器,环式约束开裂装置放置在下方的钢制底板上,同时环式约束开裂装置和钢制底板一同放置于养护容器中。所述环式约束开裂装置包括外环以及内钢环、应变片以及OH-半透膜。内钢环放置在外环内,同时在内钢环内侧四等分贴有应变片,在外环外侧紧密包裹OH-半透膜。
进一步地,所述外环由两个半圆塑料模板通过两个螺栓连接成一个整体,外环内半径为200mm,外半径为275mm,壁厚为75mm,高度为102mm。
进一步地,所述内钢环为钢制圆环,内半径为150mm,外半径为162mm,壁厚为12mm,高度为152mm。
进一步地,所述钢制底板为550mm×550mm的正方形,高度为150mm。
进一步地,所述养护容器中装有0.08mol/L的NaOH溶液,溶液深度为100mm左右,液面不得高于外环。
进一步地,所述应变片为箔式电阻应变片,用应变测量设备连接后通过电脑观测应变数值,得到应变片的示数-日期图,应变片的示数出现突然地回滞时标志着混凝土开裂。
进一步地,所述OH-半透膜具有弹性,可紧密包裹外环,并且只允许OH-通过,作为溶液中OH-进入混凝土的通道。
与现有技术相比,该发明具有以下有益效果:
环式约束开裂装置被置于0.08mol/L的浓度稳定的NaOH溶液中,OH-可通过半透膜进入混凝土并及时补充,与混凝土发生少量碱-骨料反应,降低其强度和抗裂性,达到化学削弱诱导开裂的效果,并且OH-均匀分布,能均匀有效地对混凝土强度进行削弱,可有效针对传统圆环约束下纤维增强混凝土开裂周期长,开裂不均匀不明显的缺点。并且,在内钢环内侧均匀分布的应变片可即时监测裂缝的出现,当应变片的示数出现突然地回滞时标志着混凝土开裂,解决了开裂难监测的问题。因此,对混凝土抗裂测试装置进行了充分优化,从而提高其效率和适用性。
附图说明
图1是本发明实施例的构造示意图。
图2是内钢环的放大示意图。
图3是外环的放大示意图。
图4为对比例一中应变片的示数-日期图。
图5为实施例一中应变片的示数-日期图。
图1中,外环1、内钢环2、螺栓3、应变片4、OH-半透膜5、开裂装置6、钢制底板7、养护容器8、0.08mol/L的浓度稳定的NaOH溶液9;R11为内环内半径、R12为内环外半径、t1为内环壁厚、h1为内环高度,R21为外环内半径、R22为外环外半径、t2为外环壁厚、h2为外环高度。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚明白,以下将通过具体实施例和相关附图,对本发明作进一步详细说明。
实施例一
如图1所示,一种化学优化的纤维混凝土环式约束开裂装置,包括环式约束开裂装置6,OH-半透膜5,养护容器8,环式约束开裂装置放置在下方的钢制底板7上,同时环式约束开裂装置和钢制底板一同放置于养护容器中。所述环式约束开裂装置6包括外环1以及内钢环2、应变片4以及OH-半透膜5。内钢环放置在外环内,同时在内钢环2内侧四等分贴有应变片4,在外环1外侧紧密包裹OH-半透膜5。
本实施例中,采用掺入纤维素纤维的纤维增强混凝土作为开裂试件,采用PO42.5水泥,纤维素纤维掺量为总体积2%-4%,搅拌成标准C40混凝土。
本实施例中,所述外环1由两个半圆塑料模板通过两个螺栓3连接成一个整体,外环1内半径R11为200mm,外半径R12为275mm,壁厚t1为75mm,高度h1为102mm。
本实施例中,所述内钢环2为钢制圆环,内半径R21为150mm,外半径R22为162mm,壁厚t2为12mm,高度h2为152mm。
本实施例中,所述钢制底板7为550mm×550mm的正方形,高度为150mm。
本实施例中,所述养护容器8中装有0.08mol/L的NaOH溶液9,溶液深度为100mm左右,液面不得高于外环1。
本实施例中,所述应变片4为箔式电阻应变片,用应变测定设备连接后通过电脑观测应变数值,得到应变片的示数-日期图,应变片的示数出现突然地回滞时标志着混凝土开裂。
本实施例中,所述OH-半透膜5具有弹性,可紧密包裹外环1,并且只允许OH-通过,作为溶液中OH-进入混凝土的通道。
本实施例的环式约束开裂装置6被置于养护温度19.3℃~22.7℃,相对湿度46%~54%的实验室环境中,从而给试件提供与外界环境相近的养护环境,使装置的测试结果具有普遍性和适用性,同时置于0.08mol/L的浓度稳定的NaOH溶液9中,OH-可通过半透膜进入混凝土并及时补充,与混凝土发生少量碱-骨料反应,降低其强度和抗裂性,达到化学削弱诱导开裂的效果,可有效缩短抗裂测试时间。
对比例一
本对比例与实施例一的区别在于:所述环式约束开裂装置6中的外环1外不包裹OH-半透膜5,不放置于养护容器8内,其余养护环境相同。经过试验比较得知,上述实验例一和对比例一中的纤维增强混凝土出现裂缝时间相差很大,实施例一中的环式约束开裂装置6在7d左右可观测到应变片的示数出现突然回滞(见图5),即裂缝出现,而后裂缝逐渐开展并分布均匀,对比例一中的环式约束装置约28d左右才可观测到应变片的示数的突然回滞(见图4),且裂缝少量而不均匀地开展。可见实施例一中的化学优化的纤维混凝土环式约束开裂装置可通过化学削弱诱导高强度的纤维混凝土在约束下开裂,缩短抗裂性能测试实验的时间,可有效针对传统圆环约束下纤维增强混凝土开裂周期长,开裂不均匀不明显的缺点,并通过应变片解决了开裂难监测的问题。因此,对混凝土抗裂测试装置进行了充分优化,从而提高其效率和适用性,可适用于更多高性能的混凝土抗裂性测试实验中,如纤维增强混凝土、渗透结晶增强混凝土。
在本实施例中,对本发明的目的、技术方案和有点进行了进一步地详细说明,所应说明的是,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡发明的精神和原则之内,所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围内。

Claims (8)

1.一种化学优化的纤维混凝土环式约束开裂装置,其特征在于:包括环式约束开裂装置(6)、钢制底板(7)以及养护容器(8);
所述环式约束开裂装置放置在下方的钢制底板上;
所述环式约束开裂装置和钢制底板一同放置于养护容器中。
2.根据权利要求1所述的一种化学优化的纤维混凝土环式约束开裂装置,其特征在于:所述环式约束开裂装置(6)包括外环(1)、内钢环(2)、应变片(4)以及OH-半透膜(5);所述内钢环放置在外环内;所述内钢环(2)内侧四等分贴有应变片(4);所述OH-半透膜(5)紧密包裹在外环(1)外。
3.根据权利要求2所述的一种化学优化的纤维混凝土环式约束开裂装置,其特征在于:所述外环(1)由两个半圆塑料模板通过两个螺栓(3)连接成一个整体,外环内半径为200mm,外半径为275mm,壁厚为75mm,高度为102mm。
4.根据权利要求2所述的一种化学优化的纤维混凝土环式约束开裂装置,其特征在于:所述内钢环(2)为钢制圆环,内半径为150mm,外径为162mm,壁厚为12mm,高度为152mm。
5.根据权利要求1所述的一种化学优化的纤维混凝土环式约束开裂装置,其特征在于:所述钢制底板(7)为550mm×550mm的正方形,高度为150mm。
6.根据权利要求1所述的一种化学优化的纤维混凝土环式约束开裂装置,其特征在于:所述养护容器(8)中装有0.08mol/L的NaOH溶液(9),溶液深度为100mm,液面不得高于外环(1)。
7.根据权利要求2所述的一种化学优化的纤维混凝土环式约束开裂装置,其特征在于:所述应变片(4)为箔式电阻应变片,用应变测量设备连接后通过电脑观测应变数值,得到应变片的示数-日期图,应变片(4)的示数出现突然地回滞时标志着混凝土开裂,即应变曲线在某时刻不再连续,出现突变增大。
8.根据权利要求2所述的一种化学优化的纤维混凝土环式约束开裂装置,其特征在于:所述OH-半透膜(5)具有弹性,能紧密包裹外环(1)。
CN201910472679.7A 2019-05-31 2019-05-31 一种化学优化的纤维混凝土环式约束开裂装置 Expired - Fee Related CN110208504B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910472679.7A CN110208504B (zh) 2019-05-31 2019-05-31 一种化学优化的纤维混凝土环式约束开裂装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910472679.7A CN110208504B (zh) 2019-05-31 2019-05-31 一种化学优化的纤维混凝土环式约束开裂装置

Publications (2)

Publication Number Publication Date
CN110208504A true CN110208504A (zh) 2019-09-06
CN110208504B CN110208504B (zh) 2021-10-26

Family

ID=67790262

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910472679.7A Expired - Fee Related CN110208504B (zh) 2019-05-31 2019-05-31 一种化学优化的纤维混凝土环式约束开裂装置

Country Status (1)

Country Link
CN (1) CN110208504B (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2583673Y (zh) * 2002-11-05 2003-10-29 武汉大学 一种椭圆形环约束开裂自动监测试验装置
CN1645138A (zh) * 2005-01-12 2005-07-27 武汉理工大学 一种水泥基材料开裂及收缩性能的测试装置和方法
CN101769916A (zh) * 2010-01-25 2010-07-07 江苏博特新材料有限公司 水泥基材料膨胀/收缩应力测试方法
CN102565311A (zh) * 2011-12-27 2012-07-11 水利部交通运输部国家能源局南京水利科学研究院 评价水工混凝土碱骨料反应实际风险的试验方法
KR20130058629A (ko) * 2011-11-25 2013-06-04 한국건설생활환경시험연구원 콘크리트의 온도균열저항 측정장치 및 온도균열저항 측정방법
CN203053970U (zh) * 2013-01-29 2013-07-10 长安大学 一种圆环式诱导加速混凝土开裂试验装置
CN204255950U (zh) * 2014-12-04 2015-04-08 河海大学 一种混凝土抗裂性能测试装置
CN105738603A (zh) * 2016-02-26 2016-07-06 大连理工大学 一种新的测定早龄期混凝土抗裂性试验方法
US20160209372A1 (en) * 2014-11-21 2016-07-21 University Of South Carolina Non-Intrusive Methods for the Detection and Classification of Alkali-Silica Reaction in Concrete Structures
CN108414732A (zh) * 2018-05-28 2018-08-17 华南理工大学 一种外圆内方的水泥基材料抗裂性能快速测试装置
CN108535459A (zh) * 2018-05-03 2018-09-14 华南理工大学 一种水泥基材料抗裂性能快速测试装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2583673Y (zh) * 2002-11-05 2003-10-29 武汉大学 一种椭圆形环约束开裂自动监测试验装置
CN1645138A (zh) * 2005-01-12 2005-07-27 武汉理工大学 一种水泥基材料开裂及收缩性能的测试装置和方法
CN101769916A (zh) * 2010-01-25 2010-07-07 江苏博特新材料有限公司 水泥基材料膨胀/收缩应力测试方法
KR20130058629A (ko) * 2011-11-25 2013-06-04 한국건설생활환경시험연구원 콘크리트의 온도균열저항 측정장치 및 온도균열저항 측정방법
CN102565311A (zh) * 2011-12-27 2012-07-11 水利部交通运输部国家能源局南京水利科学研究院 评价水工混凝土碱骨料反应实际风险的试验方法
CN203053970U (zh) * 2013-01-29 2013-07-10 长安大学 一种圆环式诱导加速混凝土开裂试验装置
US20160209372A1 (en) * 2014-11-21 2016-07-21 University Of South Carolina Non-Intrusive Methods for the Detection and Classification of Alkali-Silica Reaction in Concrete Structures
CN204255950U (zh) * 2014-12-04 2015-04-08 河海大学 一种混凝土抗裂性能测试装置
CN105738603A (zh) * 2016-02-26 2016-07-06 大连理工大学 一种新的测定早龄期混凝土抗裂性试验方法
CN108535459A (zh) * 2018-05-03 2018-09-14 华南理工大学 一种水泥基材料抗裂性能快速测试装置
CN108414732A (zh) * 2018-05-28 2018-08-17 华南理工大学 一种外圆内方的水泥基材料抗裂性能快速测试装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
YANG KAI ET AL.: "Investigation of effects of Portland cement fineness and alkali content", 《CONSTRUCTION AND BUILDING MATERIALS》 *
何真: "碱对水泥基材料早期收缩性能的影响", 《硅酸盐学报》 *
吴慧娟等: "混凝土裂缝控制技术", 《建筑业10项新技术(2010)应用指南》 *
朱志远等: "基于正交试验的水泥砂浆开裂敏感性研究", 《西安建筑科技大学学报》 *

Also Published As

Publication number Publication date
CN110208504B (zh) 2021-10-26

Similar Documents

Publication Publication Date Title
He et al. Correlating the chloride diffusion coefficient and pore structure of cement-based materials using modified noncontact electrical resistivity measurement
Jia et al. Durability of glass fibre-reinforced polymer (GFRP) bars embedded in concrete under various environments. I: Experiments and analysis
CN105753397B (zh) 一种抗冻融透水混凝土
Paul et al. Corrosion deterioration of steel in cracked SHCC
Appalla et al. Assessing corrosion damage in posttensioned concrete structures using acoustic emission
Yin et al. Experimental analysis of bond between corroded steel bar and concrete confined with textile-reinforced concrete
Castel et al. Influence of pre‐existing oxides layer and interface condition with carbonated concrete on active reinforcing steel corrosion
CN110208504A (zh) 一种化学优化的纤维混凝土环式约束开裂装置
Wang et al. Numerical and experimental investigation on the chloride ion resistance of reinforced concrete piles externally bonded with CFRP sheets under dry-wet cycles
Gong et al. Influence of cementitious material infiltration on piezoresistive effect of carbon fiber bundle
Monazami et al. Effect of curing age on pull-out response of carbon, steel, and synthetic fiber embedded in cementitious mortar matrix
CN205620231U (zh) 混凝土抗裂性能快速测定装置
CN113125551A (zh) 一种双磁路四测点的内置式磁传感器及其测试方法
CN205246449U (zh) 混凝土构件施加轴向拉伸荷载的试验装置
CN114113557B (zh) 一种钢筋套筒连接灌浆饱满度自监测方法
Kang et al. Evaluation of Self‐Healing Performance of PE and PVA Concrete Using Flexural Test
CN208383876U (zh) 一种外圆内方的水泥基材料抗裂性能快速测试装置
CN108387717A (zh) 一种混凝土开裂敏感性的测量系统及其测量方法
Wang et al. Experimental study on the performance of basalt fiber modified pervious concrete based on entropy method
Udaipurwala et al. Corrosion activity in precast concrete elements and cementitious closure pours
Tu et al. Corrosion resistance of concrete strengthened with fibre-reinforced polymer sheets
CN208721675U (zh) 一种水泥基材料抗裂性能快速测试装置
Selvaraj et al. Influence of controlled permeable formwork liner on the service life of reinforced concrete
CN206891624U (zh) 后置式混凝土中钢筋锈胀应力监测装置
Li et al. Damage Evolution of Concrete Piles Mixed with Admixtures in Marine Corrosion and Freeze‐Thaw Environment

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20211026

CF01 Termination of patent right due to non-payment of annual fee