CN110208355B - Method for measuring interaction efficiency of quinone substances and carboxymethyl lysine in solution - Google Patents
Method for measuring interaction efficiency of quinone substances and carboxymethyl lysine in solution Download PDFInfo
- Publication number
- CN110208355B CN110208355B CN201910406744.6A CN201910406744A CN110208355B CN 110208355 B CN110208355 B CN 110208355B CN 201910406744 A CN201910406744 A CN 201910406744A CN 110208355 B CN110208355 B CN 110208355B
- Authority
- CN
- China
- Prior art keywords
- solution
- cml
- quinones
- interaction efficiency
- buffer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- RRUYWEMUWIRRNB-LURJTMIESA-N (2s)-6-amino-2-[carboxy(methyl)amino]hexanoic acid Chemical compound OC(=O)N(C)[C@H](C(O)=O)CCCCN RRUYWEMUWIRRNB-LURJTMIESA-N 0.000 title claims abstract description 106
- 230000003993 interaction Effects 0.000 title claims abstract description 68
- 238000000034 method Methods 0.000 title claims abstract description 42
- 239000000126 substance Substances 0.000 title claims abstract description 21
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 title abstract description 29
- 150000004053 quinones Chemical class 0.000 claims abstract description 48
- 238000002484 cyclic voltammetry Methods 0.000 claims abstract description 32
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims abstract description 25
- 230000009467 reduction Effects 0.000 claims abstract description 23
- 235000013824 polyphenols Nutrition 0.000 claims abstract description 21
- 150000005206 1,2-dihydroxybenzenes Chemical class 0.000 claims abstract description 18
- 239000000243 solution Substances 0.000 claims description 88
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 claims description 31
- YQUVCSBJEUQKSH-UHFFFAOYSA-N 3,4-dihydroxybenzoic acid Chemical compound OC(=O)C1=CC=C(O)C(O)=C1 YQUVCSBJEUQKSH-UHFFFAOYSA-N 0.000 claims description 29
- 238000012360 testing method Methods 0.000 claims description 22
- MWDZOUNAPSSOEL-UHFFFAOYSA-N kaempferol Natural products OC1=C(C(=O)c2cc(O)cc(O)c2O1)c3ccc(O)cc3 MWDZOUNAPSSOEL-UHFFFAOYSA-N 0.000 claims description 17
- REFJWTPEDVJJIY-UHFFFAOYSA-N Quercetin Chemical compound C=1C(O)=CC(O)=C(C(C=2O)=O)C=1OC=2C1=CC=C(O)C(O)=C1 REFJWTPEDVJJIY-UHFFFAOYSA-N 0.000 claims description 16
- DOUMFZQKYFQNTF-WUTVXBCWSA-N (R)-rosmarinic acid Chemical compound C([C@H](C(=O)O)OC(=O)\C=C\C=1C=C(O)C(O)=CC=1)C1=CC=C(O)C(O)=C1 DOUMFZQKYFQNTF-WUTVXBCWSA-N 0.000 claims description 12
- 239000000872 buffer Substances 0.000 claims description 12
- 239000008363 phosphate buffer Substances 0.000 claims description 12
- QAIPRVGONGVQAS-DUXPYHPUSA-N trans-caffeic acid Chemical compound OC(=O)\C=C\C1=CC=C(O)C(O)=C1 QAIPRVGONGVQAS-DUXPYHPUSA-N 0.000 claims description 12
- KBPUBCVJHFXPOC-UHFFFAOYSA-N ethyl 3,4-dihydroxybenzoate Chemical compound CCOC(=O)C1=CC=C(O)C(O)=C1 KBPUBCVJHFXPOC-UHFFFAOYSA-N 0.000 claims description 11
- PFTAWBLQPZVEMU-DZGCQCFKSA-N (+)-catechin Chemical compound C1([C@H]2OC3=CC(O)=CC(O)=C3C[C@@H]2O)=CC=C(O)C(O)=C1 PFTAWBLQPZVEMU-DZGCQCFKSA-N 0.000 claims description 9
- 229910021397 glassy carbon Inorganic materials 0.000 claims description 9
- IQPNAANSBPBGFQ-UHFFFAOYSA-N luteolin Chemical compound C=1C(O)=CC(O)=C(C(C=2)=O)C=1OC=2C1=CC=C(O)C(O)=C1 IQPNAANSBPBGFQ-UHFFFAOYSA-N 0.000 claims description 9
- LRDGATPGVJTWLJ-UHFFFAOYSA-N luteolin Natural products OC1=CC(O)=CC(C=2OC3=CC(O)=CC(O)=C3C(=O)C=2)=C1 LRDGATPGVJTWLJ-UHFFFAOYSA-N 0.000 claims description 9
- 235000009498 luteolin Nutrition 0.000 claims description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 8
- ZVOLCUVKHLEPEV-UHFFFAOYSA-N Quercetagetin Natural products C1=C(O)C(O)=CC=C1C1=C(O)C(=O)C2=C(O)C(O)=C(O)C=C2O1 ZVOLCUVKHLEPEV-UHFFFAOYSA-N 0.000 claims description 8
- HWTZYBCRDDUBJY-UHFFFAOYSA-N Rhynchosin Natural products C1=C(O)C(O)=CC=C1C1=C(O)C(=O)C2=CC(O)=C(O)C=C2O1 HWTZYBCRDDUBJY-UHFFFAOYSA-N 0.000 claims description 8
- 235000005875 quercetin Nutrition 0.000 claims description 8
- 229960001285 quercetin Drugs 0.000 claims description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 7
- 230000035945 sensitivity Effects 0.000 claims description 7
- ACEAELOMUCBPJP-UHFFFAOYSA-N (E)-3,4,5-trihydroxycinnamic acid Natural products OC(=O)C=CC1=CC(O)=C(O)C(O)=C1 ACEAELOMUCBPJP-UHFFFAOYSA-N 0.000 claims description 6
- CWVRJTMFETXNAD-FWCWNIRPSA-N 3-O-Caffeoylquinic acid Natural products O[C@H]1[C@@H](O)C[C@@](O)(C(O)=O)C[C@H]1OC(=O)\C=C\C1=CC=C(O)C(O)=C1 CWVRJTMFETXNAD-FWCWNIRPSA-N 0.000 claims description 6
- JMGZEFIQIZZSBH-UHFFFAOYSA-N Bioquercetin Natural products CC1OC(OCC(O)C2OC(OC3=C(Oc4cc(O)cc(O)c4C3=O)c5ccc(O)c(O)c5)C(O)C2O)C(O)C(O)C1O JMGZEFIQIZZSBH-UHFFFAOYSA-N 0.000 claims description 6
- PZIRUHCJZBGLDY-UHFFFAOYSA-N Caffeoylquinic acid Natural products CC(CCC(=O)C(C)C1C(=O)CC2C3CC(O)C4CC(O)CCC4(C)C3CCC12C)C(=O)O PZIRUHCJZBGLDY-UHFFFAOYSA-N 0.000 claims description 6
- CWVRJTMFETXNAD-KLZCAUPSSA-N Neochlorogenin-saeure Natural products O[C@H]1C[C@@](O)(C[C@@H](OC(=O)C=Cc2ccc(O)c(O)c2)[C@@H]1O)C(=O)O CWVRJTMFETXNAD-KLZCAUPSSA-N 0.000 claims description 6
- ZZAFFYPNLYCDEP-HNNXBMFYSA-N Rosmarinsaeure Natural products OC(=O)[C@H](Cc1cccc(O)c1O)OC(=O)C=Cc2ccc(O)c(O)c2 ZZAFFYPNLYCDEP-HNNXBMFYSA-N 0.000 claims description 6
- 235000004883 caffeic acid Nutrition 0.000 claims description 6
- 229940074360 caffeic acid Drugs 0.000 claims description 6
- CWVRJTMFETXNAD-JUHZACGLSA-N chlorogenic acid Chemical compound O[C@@H]1[C@H](O)C[C@@](O)(C(O)=O)C[C@H]1OC(=O)\C=C\C1=CC=C(O)C(O)=C1 CWVRJTMFETXNAD-JUHZACGLSA-N 0.000 claims description 6
- 235000001368 chlorogenic acid Nutrition 0.000 claims description 6
- 229940074393 chlorogenic acid Drugs 0.000 claims description 6
- FFQSDFBBSXGVKF-KHSQJDLVSA-N chlorogenic acid Natural products O[C@@H]1C[C@](O)(C[C@@H](CC(=O)C=Cc2ccc(O)c(O)c2)[C@@H]1O)C(=O)O FFQSDFBBSXGVKF-KHSQJDLVSA-N 0.000 claims description 6
- BMRSEYFENKXDIS-KLZCAUPSSA-N cis-3-O-p-coumaroylquinic acid Natural products O[C@H]1C[C@@](O)(C[C@@H](OC(=O)C=Cc2ccc(O)cc2)[C@@H]1O)C(=O)O BMRSEYFENKXDIS-KLZCAUPSSA-N 0.000 claims description 6
- QAIPRVGONGVQAS-UHFFFAOYSA-N cis-caffeic acid Natural products OC(=O)C=CC1=CC=C(O)C(O)=C1 QAIPRVGONGVQAS-UHFFFAOYSA-N 0.000 claims description 6
- IVTMALDHFAHOGL-UHFFFAOYSA-N eriodictyol 7-O-rutinoside Natural products OC1C(O)C(O)C(C)OC1OCC1C(O)C(O)C(O)C(OC=2C=C3C(C(C(O)=C(O3)C=3C=C(O)C(O)=CC=3)=O)=C(O)C=2)O1 IVTMALDHFAHOGL-UHFFFAOYSA-N 0.000 claims description 6
- FDRQPMVGJOQVTL-UHFFFAOYSA-N quercetin rutinoside Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC=2C(C3=C(O)C=C(O)C=C3OC=2C=2C=C(O)C(O)=CC=2)=O)O1 FDRQPMVGJOQVTL-UHFFFAOYSA-N 0.000 claims description 6
- DOUMFZQKYFQNTF-MRXNPFEDSA-N rosemarinic acid Natural products C([C@H](C(=O)O)OC(=O)C=CC=1C=C(O)C(O)=CC=1)C1=CC=C(O)C(O)=C1 DOUMFZQKYFQNTF-MRXNPFEDSA-N 0.000 claims description 6
- TVHVQJFBWRLYOD-UHFFFAOYSA-N rosmarinic acid Natural products OC(=O)C(Cc1ccc(O)c(O)c1)OC(=Cc2ccc(O)c(O)c2)C=O TVHVQJFBWRLYOD-UHFFFAOYSA-N 0.000 claims description 6
- 235000005493 rutin Nutrition 0.000 claims description 6
- IKGXIBQEEMLURG-BKUODXTLSA-N rutin Chemical compound O[C@H]1[C@H](O)[C@@H](O)[C@H](C)O[C@@H]1OC[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](OC=2C(C3=C(O)C=C(O)C=C3OC=2C=2C=C(O)C(O)=CC=2)=O)O1 IKGXIBQEEMLURG-BKUODXTLSA-N 0.000 claims description 6
- ALABRVAAKCSLSC-UHFFFAOYSA-N rutin Natural products CC1OC(OCC2OC(O)C(O)C(O)C2O)C(O)C(O)C1OC3=C(Oc4cc(O)cc(O)c4C3=O)c5ccc(O)c(O)c5 ALABRVAAKCSLSC-UHFFFAOYSA-N 0.000 claims description 6
- 229960004555 rutoside Drugs 0.000 claims description 6
- 229930013915 (+)-catechin Natural products 0.000 claims description 5
- 235000007219 (+)-catechin Nutrition 0.000 claims description 5
- PFTAWBLQPZVEMU-UKRRQHHQSA-N (-)-epicatechin Chemical compound C1([C@H]2OC3=CC(O)=CC(O)=C3C[C@H]2O)=CC=C(O)C(O)=C1 PFTAWBLQPZVEMU-UKRRQHHQSA-N 0.000 claims description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 5
- 239000007853 buffer solution Substances 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 5
- 239000001301 oxygen Substances 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- 229910019142 PO4 Inorganic materials 0.000 claims description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 4
- 239000010452 phosphate Substances 0.000 claims description 4
- 241001481789 Rupicapra Species 0.000 claims description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 3
- 229910001873 dinitrogen Inorganic materials 0.000 claims description 3
- 239000012153 distilled water Substances 0.000 claims description 3
- 239000002245 particle Substances 0.000 claims description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 3
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical class [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 claims description 3
- 239000000725 suspension Substances 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- 239000002904 solvent Substances 0.000 claims description 2
- PFTAWBLQPZVEMU-ZFWWWQNUSA-N (+)-epicatechin Natural products C1([C@@H]2OC3=CC(O)=CC(O)=C3C[C@@H]2O)=CC=C(O)C(O)=C1 PFTAWBLQPZVEMU-ZFWWWQNUSA-N 0.000 claims 1
- LPTRNLNOHUVQMS-UHFFFAOYSA-N epicatechin Natural products Cc1cc(O)cc2OC(C(O)Cc12)c1ccc(O)c(O)c1 LPTRNLNOHUVQMS-UHFFFAOYSA-N 0.000 claims 1
- 235000012734 epicatechin Nutrition 0.000 claims 1
- 238000005259 measurement Methods 0.000 claims 1
- 239000011259 mixed solution Substances 0.000 claims 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-L phthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-L 0.000 claims 1
- 238000001514 detection method Methods 0.000 abstract description 21
- 230000003647 oxidation Effects 0.000 abstract description 17
- 238000007254 oxidation reaction Methods 0.000 abstract description 17
- 150000008442 polyphenolic compounds Chemical class 0.000 abstract description 12
- 238000007086 side reaction Methods 0.000 abstract description 6
- 238000004458 analytical method Methods 0.000 abstract description 2
- 238000003556 assay Methods 0.000 abstract 1
- 230000008569 process Effects 0.000 description 14
- ZBCATMYQYDCTIZ-UHFFFAOYSA-N 4-methylcatechol Chemical compound CC1=CC=C(O)C(O)=C1 ZBCATMYQYDCTIZ-UHFFFAOYSA-N 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 7
- 229930013783 (-)-epicatechin Natural products 0.000 description 4
- 235000007355 (-)-epicatechin Nutrition 0.000 description 4
- 229930003935 flavonoid Natural products 0.000 description 4
- 150000002215 flavonoids Chemical class 0.000 description 4
- 235000017173 flavonoids Nutrition 0.000 description 4
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 4
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 238000005868 electrolysis reaction Methods 0.000 description 3
- 238000007350 electrophilic reaction Methods 0.000 description 3
- 235000013305 food Nutrition 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000004611 spectroscopical analysis Methods 0.000 description 3
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 230000032050 esterification Effects 0.000 description 2
- 238000005886 esterification reaction Methods 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 150000007965 phenolic acids Chemical class 0.000 description 2
- 235000009048 phenolic acids Nutrition 0.000 description 2
- 150000002989 phenols Chemical class 0.000 description 2
- 239000008055 phosphate buffer solution Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- IGRSQEOIAAGSGS-UHFFFAOYSA-N 2-ethylcyclohexa-2,5-diene-1,4-dione Chemical compound CCC1=CC(=O)C=CC1=O IGRSQEOIAAGSGS-UHFFFAOYSA-N 0.000 description 1
- ITENTBHADJNDDH-DUXPYHPUSA-N 3-[(e)-3-(3,4-dioxocyclohexa-1,5-dien-1-yl)prop-2-enoyl]oxy-1,4,5-trihydroxycyclohexane-1-carboxylic acid Chemical compound OC1C(O)CC(O)(C(O)=O)CC1OC(=O)\C=C\C1=CC(=O)C(=O)C=C1 ITENTBHADJNDDH-DUXPYHPUSA-N 0.000 description 1
- 108010005094 Advanced Glycation End Products Proteins 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 238000006845 Michael addition reaction Methods 0.000 description 1
- JUGSICOHSXBSSM-UHFFFAOYSA-N OC1=C(O)C(=O)C(=O)C=C1 Chemical class OC1=C(O)C(=O)C(=O)C=C1 JUGSICOHSXBSSM-UHFFFAOYSA-N 0.000 description 1
- 241001529742 Rosmarinus Species 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- QPYQKHOKNCVKGE-DUXPYHPUSA-N caffeic acid quinone Chemical compound OC(=O)\C=C\C1=CC(=O)C(=O)C=C1 QPYQKHOKNCVKGE-DUXPYHPUSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- ADRVNXBAWSRFAJ-UHFFFAOYSA-N catechin Natural products OC1Cc2cc(O)cc(O)c2OC1c3ccc(O)c(O)c3 ADRVNXBAWSRFAJ-UHFFFAOYSA-N 0.000 description 1
- 150000001765 catechin Chemical class 0.000 description 1
- 235000005487 catechin Nutrition 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 102000009854 cortexin Human genes 0.000 description 1
- 108010034906 cortexin Proteins 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 239000012039 electrophile Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/48—Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
本发明公开了一种测定溶液中醌类物质与羧甲基赖氨酸(CML)互作效率的方法。所述方法通过测定CML添加前后邻苯二酚类物质溶液的循环伏安曲线,分别记录CML添加前后邻苯二酚类物质溶液的峰值电流和电压特征值,然后通过计算还原峰电流的减少率,即可得到溶液中醌类物质与CML的互作效率。本发明所述方法中,酚类物质氧化形成醌类物质后,能够迅速与体系中的CML相互作用,减少醌类物质的副反应;物质在电极表面的附着量少,检测准确性高;减少现有技术中多酚及其氧化产物在工作电极附着、醌类物质相关副反应等因素对醌类物质与CML相互作用的干扰;同时本发明测定方法简单,分析时间短,具有良好的重复性和便捷性,使用成本较低,应用广。
The invention discloses a method for measuring the interaction efficiency of quinone substances and carboxymethyl lysine (CML) in solution. The method measures the cyclic voltammetry curves of the catechols solution before and after the addition of CML, records the peak current and voltage characteristic values of the catechols solution before and after the addition of CML, and then calculates the reduction rate of the reduction peak current by calculating , the interaction efficiency between quinones in solution and CML can be obtained. In the method of the invention, after the phenolic substances are oxidized to form quinones, they can quickly interact with the CML in the system to reduce the side reactions of the quinones; the amount of substances attached to the electrode surface is small, and the detection accuracy is high; In the prior art, the adhesion of polyphenols and their oxidation products to the working electrode, the related side reactions of quinones and other factors interfere with the interaction between quinones and CML; at the same time, the assay method of the invention is simple, the analysis time is short, and the reproducibility is good. and convenience, low cost of use, and wide application.
Description
技术领域technical field
本发明涉及食品安全检测和分析化学技术领域,更具体地,涉及一种测定溶液中醌类物质与羧甲基赖氨酸(CML)互作效率的方法。The invention relates to the technical field of food safety detection and analytical chemistry, and more particularly, to a method for determining the interaction efficiency of quinones and carboxymethyl lysine (CML) in solution.
背景技术Background technique
CML(羧甲基赖氨酸)是目前研究最为广泛的一种典型晚期糖化终末产物(AGEs),其在各类食品中广泛存在。CML经消化吸收后可在组织中蓄积,现有研究已证明其对人体健康存在潜在危害。因此研究降低CML含量的手段,可有效降低其对人体健康的潜在危害。CML (carboxymethyl lysine) is a typical advanced glycation end product (AGEs) that is most widely studied at present, and it exists widely in various foods. CML can accumulate in tissues after being digested and absorbed, and existing studies have proved its potential harm to human health. Therefore, research on the means to reduce the content of CML can effectively reduce its potential harm to human health.
邻苯二酚类物质在发挥抗氧化作用的同时自身会被氧化形成相应的邻苯二醌类物质,邻苯二醌类物质作为强亲电体易于与CML上的氨基发生Michael加成反应,从而达到消除体系CML的目的。目前,测定邻苯二醌类物质与CML之间互作效率的方法主要为,利用控制电位电解库伦法将溶液中的邻苯二酚类物质氧化得到相应的邻苯二醌类物质,而后利用停流光谱测定邻苯二醌类物质与CML之间的互作动力学。控制电位电解库伦法制备邻苯二醌类物质要求所选邻苯二酚类物质在工作电极上的循环伏安行为可逆,且不具有明显吸附性。目前仅成功利用4-甲基邻苯二酚制备得到相应的醌类物质(4-甲基邻苯二醌),并利用停流光谱详细测定了4-甲基邻苯二醌与CML的相互作用情况。While catechols play an antioxidant role, they will be oxidized to form corresponding o-phthaloquinones. As strong electrophiles, o-phthaloquinones are prone to Michael addition reaction with amino groups on CML. So as to achieve the purpose of eliminating the system CML. At present, the main method for determining the interaction efficiency between o-phthaloquinones and CML is to use the controlled potential electrolysis Coulomb method to oxidize the catechols in the solution to obtain the corresponding o-phthaloquinones, and then use Interaction kinetics between o-phthaloquinones and CML were determined by stopped-flow spectroscopy. The preparation of o-phthaloquinones by controlled-potential electrolytic coulomb method requires that the cyclic voltammetric behavior of the selected catechols on the working electrode is reversible and does not have obvious adsorption. At present, only the corresponding quinones (4-methyl phthaloquinone) have been successfully prepared from 4-methyl catechol. effect.
大部分含有邻苯二酚结构的多酚类物质,例如:儿茶素类物质、芦丁、槲皮素等,易于在工作电极表面吸附,且其氧化形成的醌类物质易于发生聚合、重排等副反应,因而不具备利用控制电位电解库仑法制备相应醌类物质的可能性。因此,无法利用现有手段测定溶液中上述多酚类物质氧化所得醌类物质与CML相互作用的情况。Most of the polyphenols containing catechol structure, such as catechins, rutin, quercetin, etc., are easy to be adsorbed on the surface of the working electrode, and the quinones formed by oxidation are prone to polymerization and heavy weight. Therefore, there is no possibility to prepare the corresponding quinones by the controlled potential electrolysis Coulomb method. Therefore, it is impossible to measure the interaction of the quinones obtained by the oxidation of the above-mentioned polyphenols in the solution with CML by the conventional means.
因此,针对上述检测方法的缺点,有必要提供一种使用范围更广的检测方法。Therefore, in view of the shortcomings of the above detection methods, it is necessary to provide a detection method with a wider range of use.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于针对现有技术,利用控制电位电解库伦-停流光谱联用法检测醌类物质与CML相互作用效率的过程中,可适用的邻苯二酚类物质的种类较少,其应用范围受限的不足,提供一种测定溶液中醌类物质与CML互作效率的方法。本发明所述方法利用邻苯二酚类物质的电化学活性,通过循环伏安法测定添加CML前后邻苯二酚类物质的还原峰电流,计算还原峰电流减少率,从而得到溶液中醌类物质与CML的互作效率;本发明所述方法适用于大多数邻苯二酚类物质,且测定方法简单、便捷、检测结果准确、可靠,具有稳定性和重复性,在食品中醌类物质与CML的互作效率的检测及评价方面具有广阔的应用前景。The object of the present invention is to, in view of the prior art, in the process of detecting the interaction efficiency between quinones and CML by using controlled potential electrolysis coulomb-stopped-flow spectroscopy, there are fewer types of applicable catechols, and its application Due to the limited scope, a method for determining the interaction efficiency of quinones in solution with CML is provided. The method of the invention utilizes the electrochemical activity of catechols, measures the reduction peak current of catechols before and after adding CML by cyclic voltammetry, calculates the reduction rate of the reduction peak current, and obtains the quinones in the solution The interaction efficiency between the substance and CML; the method of the present invention is suitable for most catechol substances, and the determination method is simple, convenient, accurate and reliable in detection results, and has stability and repeatability. The detection and evaluation of the interaction efficiency with CML has broad application prospects.
本发明的上述目的是通过以下方案予以实现的:Above-mentioned purpose of the present invention is achieved through the following scheme:
一种测定溶液中羧甲基赖氨酸(CML)含量的方法,包括如下步骤:A method for measuring carboxymethyl lysine (CML) content in a solution, comprising the steps:
S1.将邻苯二酚类物质溶于缓冲液得到溶液A;将CML溶于缓冲液得到溶液B;将邻苯二酚类物质和CML溶于缓冲液得溶液C;S1. Dissolving catechols in buffer to obtain solution A; dissolving CML in buffer to obtain solution B; dissolving catechols and CML in buffer to obtain solution C;
S2.以玻璃碳电极为工作电极,铂丝为对电极,银/饱和氯化银为参比电极,各电极与电化学工作站相连,构建三电极体系,利用循环伏安法分别对溶液A、溶液B和溶液C进行检测,得到每份溶液的循环伏安曲线,并分别记录每份溶液的峰值电流和电压特征值;S2. Use glassy carbon electrode as working electrode, platinum wire as counter electrode, silver/saturated silver chloride as reference electrode, each electrode is connected with electrochemical workstation, build a three-electrode system, use cyclic voltammetry to measure solution A, Solution B and solution C are detected, the cyclic voltammetry curve of each solution is obtained, and the peak current and voltage characteristic values of each solution are recorded respectively;
S3.根据步骤S2测得的峰值电流和电压特征值,按照如下公式进行计算,即可测得溶液中醌类物质与CML的互作效率:S3. According to the peak current and voltage characteristic values measured in step S2, calculate according to the following formula, and then the interaction efficiency of quinones in the solution and CML can be measured:
互作效率(还原峰电流减少率,%)=(IpC1(酚)-IpC1(酚+CML))/IpC1(酚);Interaction efficiency (reduction peak current reduction rate, %)=(I pC1(phenol) -I pC1(phenol+CML) )/I pC1(phenol) ;
其中所述IpC1(酚)为所述溶液A的还原峰峰值电流;所述IpC1(酚+CML)为所述溶液C的还原峰峰值电流。The I pC1 (phenol) is the reduction peak-to-peak current of the solution A; the I pC1 (phenol+CML) is the reduction peak-to-peak current of the solution C.
由于邻苯二酚类物质的结构具有电化学活性,其在循环伏安扫描中,当电压正向扫描时,邻苯二酚类物质在电极表面氧化形成相应的醌类物质,在随后的负向扫描过程中,醌类物质在电极表面还原为原先的酚类物质,形成一对氧化还原峰;当溶液体系中的CML与醌类物质反应,造成醌类物质的消耗,则在负向扫描过程中,溶液C的还原峰值电流较溶液A显著下降,通过测定添加CML前后酚类物质循环伏安曲线中还原峰电流减少率,即可计算得到醌类物质与CML的互作效率。Since the structure of catechols is electrochemically active, in cyclic voltammetry scanning, when the voltage is scanned in a positive direction, catechols are oxidized on the electrode surface to form corresponding quinones, and in the subsequent negative During the forward scanning process, the quinones are reduced to the original phenols on the electrode surface, forming a pair of redox peaks; when the CML in the solution system reacts with the quinones, resulting in the consumption of the quinones, the negative scanning During the process, the reduction peak current of solution C was significantly lower than that of solution A. By measuring the reduction rate of reduction peak current in the cyclic voltammetry curves of phenols before and after adding CML, the interaction efficiency of quinones and CML can be calculated.
原有的控制电位电解库伦法进行检测时,通过施加一定电压,使体系里面的酚经过一段时间(大概需要40分钟)全部氧化形成醌,而后醌再与CML反应,测定其互作效率;由于酚类物质氧化成为醌类物质需要的时间较长,这就要求生成的醌类物质要非常稳定,否则当醌类物质发生系列副反应,或者附着在电极上阻碍后续的制备过程时,即会影响检测结果的准确性,而且当醌类物质长久附着在电极上,会造成网状玻璃碳电极的不可逆的损害。而本发明采用的循环伏安法整个扫描过程不超过3分钟,酚类物质在电极上一旦氧化形成醌类物质,醌类物质就能和体系共存的CML反应,发生副反应的可能性就降低了,也不会长时间的附着在电极表面,降低了对电极的损害。When the original controlled potential electrolytic Coulomb method is used for detection, by applying a certain voltage, the phenol in the system is completely oxidized to form quinone after a period of time (about 40 minutes), and then the quinone reacts with CML to determine its interaction efficiency; The oxidation of phenolic substances to quinones takes a long time, which requires the generated quinones to be very stable. Otherwise, when the quinones undergo a series of side reactions or adhere to the electrode to hinder the subsequent preparation process, they will It affects the accuracy of the test results, and when the quinones adhere to the electrode for a long time, it will cause irreversible damage to the mesh glass carbon electrode. However, the whole scanning process of the cyclic voltammetry adopted in the present invention does not exceed 3 minutes. Once the phenolic substances are oxidized on the electrodes to form quinone substances, the quinone substances can react with the CML coexisting in the system, and the possibility of side reactions is reduced. It will not adhere to the surface of the electrode for a long time, which reduces the damage to the electrode.
优选地,所述邻苯二酚类物质为邻苯二酚、4-甲基邻苯二酚、原儿茶酸、原儿茶酸乙酯、咖啡酸、绿原酸、迷迭香酸、芦丁、(+)-儿茶素、(-)-表儿茶素、木犀草素或槲皮素中的一种或多种。本发明所述检测方法可适用于多种邻苯二酚类物质,应用范围广。Preferably, the catechol substances are catechol, 4-methyl catechol, protocatechuic acid, ethyl protocatechuate, caffeic acid, chlorogenic acid, rosmarinic acid, One or more of rutin, (+)-catechin, (-)-epicatechin, luteolin or quercetin. The detection method of the invention can be applied to a variety of catechol substances and has a wide application range.
优选地,循环伏安法测试过程中,电化学工作站的扫描电位范围为-0.8~1.2V;扫描速率为0.01~0.10V/s;灵敏度为10-5A/V;初始扫描方向为正向;扫描段数为2;温度为25±1℃。Preferably, during the cyclic voltammetry test, the scanning potential range of the electrochemical workstation is -0.8-1.2V; the scanning rate is 0.01-0.10V/s; the sensitivity is 10 -5 A/V; the initial scanning direction is forward ; The number of scanning segments is 2; the temperature is 25±1℃.
优选地,所述溶液A、溶液B和溶液C进行检测前,需先除去溶液中的氧气。Preferably, before the solution A, the solution B and the solution C are detected, the oxygen in the solution needs to be removed first.
更优选地,所述溶液A、溶液B和溶液C进行检测前,分别向每份溶液中通入氮气以去除氧气。More preferably, before the solution A, solution B and solution C are detected, nitrogen gas is respectively introduced into each solution to remove oxygen.
更优选地,所述氮气的通入时间为5~10min。More preferably, the introduction time of the nitrogen gas is 5-10 min.
优选地,所述玻璃碳工作电极直径为3mm;所述玻璃碳工作电极每次扫描前需在滴加粒径为0.05μm的氧化铝悬浊液的麂皮上打磨,而后用蒸馏水清洗。在测试前,对玻璃碳电极的打磨能够有效去除电极表面的附着物,保证电极表面在测试前是洁净的,提高检测准确性。Preferably, the diameter of the glassy carbon working electrode is 3 mm; before each scan, the glassy carbon working electrode needs to be polished on the chamois to which the alumina suspension with a particle size of 0.05 μm is dropped, and then washed with distilled water. Before the test, grinding the glassy carbon electrode can effectively remove the attachments on the electrode surface, ensure that the electrode surface is clean before the test, and improve the detection accuracy.
优选地,所述缓冲液采用磷酸盐配制而成。Preferably, the buffer is formulated with phosphate.
优选地,所述缓冲液的pH为5.0~8.0,其中磷酸盐的浓度为0.2M。Preferably, the pH of the buffer solution is 5.0-8.0, and the concentration of phosphate is 0.2M.
优选地,当溶液A中的溶质为木犀草素或槲皮素时,溶剂为0.2M磷酸盐缓冲液与乙醇的混合液,体积比为4:1。Preferably, when the solute in solution A is luteolin or quercetin, the solvent is a mixture of 0.2M phosphate buffer and ethanol, and the volume ratio is 4:1.
优选地,所述溶液A和C中,邻苯二酚类物质的浓度为0.5mM.Preferably, in the solutions A and C, the concentration of catechols is 0.5mM.
优选地,所述溶液溶液B和C中,CML的浓度为0.5~7.5mM。Preferably, in the solutions B and C, the concentration of CML is 0.5-7.5 mM.
与现有技术相比,本发明具有以下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
(1)本发明利用循环伏安法,使得酚类物质氧化形成醌类物质后,能够迅速与体系中的CML相互作用,减少醌类物质的副反应;通过每次测试前对玻璃碳电极的打磨能够有效去除电极表面的附着物,提高检测准确性;减少现有技术中多酚及其氧化产物在工作电极附着、醌类物质相关副反应等因素对醌类物质与CML相互作用的干扰。(1) The present invention utilizes cyclic voltammetry, so that after phenolic substances are oxidized to form quinone substances, they can quickly interact with CML in the system to reduce side reactions of quinone substances; Grinding can effectively remove the attachments on the electrode surface, improve the detection accuracy, and reduce the interference of polyphenols and their oxidation products on the working electrode, the side reactions related to quinones in the prior art, and other factors on the interaction between quinones and CML.
(2)本发明的方法简单,分析时间短,具有良好的重复性和便捷性,使用成本较低,在醌类物质与CML互作研究领域具有较好的应用前景,弥补了现有技术手段仅能测定4-甲基邻苯二醌与CML相互作用的弱点。(2) the method of the present invention is simple, the analysis time is short, the repeatability and convenience are good, the cost of use is low, and the method has a good application prospect in the field of interaction research between quinones and CML, and makes up for the existing technical means Only the weak point of the interaction of 4-methylophthaloquinone with CML could be determined.
附图说明Description of drawings
图1为邻苯二酚与CML相互作用的循环伏安图(pH 7.0,扫描速率0.01V/s)。Figure 1 is a cyclic voltammogram of the interaction of catechol with CML (pH 7.0, scan rate 0.01 V/s).
图2为4-甲基邻苯二酚与CML相互作用的循环伏安图(pH 7.0,扫描速率0.01V/s)。Figure 2 is a cyclic voltammogram of the interaction of 4-methylcatechol with CML (pH 7.0, scan rate 0.01 V/s).
图3为原儿茶酸与CML相互作用的循环伏安图(pH 7.0,扫描速率0.01V/s)。Figure 3 is a cyclic voltammogram of the interaction of protocatechuic acid with CML (pH 7.0, scan rate 0.01 V/s).
图4为原儿茶酸与CML相互作用的循环伏安图(pH 7.0,扫描速率0.05V/s)。Figure 4 is a cyclic voltammogram of the interaction of protocatechuic acid with CML (pH 7.0, scan rate 0.05 V/s).
图5为原儿茶酸乙酯与CML相互作用的循环伏安图(pH 7.0,扫描速率0.05V/s)。Figure 5 is a cyclic voltammogram of the interaction of ethyl protocatechuate with CML (pH 7.0, scan rate 0.05 V/s).
图6为咖啡酸与CML相互作用的循环伏安图(pH 7.0,扫描速率0.01V/s)。Figure 6 is a cyclic voltammogram of the interaction of caffeic acid with CML (pH 7.0, scan rate 0.01 V/s).
图7为绿原酸与CML相互作用的循环伏安图(pH 7.0,扫描速率0.01V/s)。Figure 7 is a cyclic voltammogram of the interaction of chlorogenic acid with CML (pH 7.0, scan rate 0.01 V/s).
图8为迷迭香酸与CML相互作用的循环伏安图(pH 7.0,扫描速率0.01V/s)。Figure 8 is a cyclic voltammogram of the interaction of rosmarinic acid with CML (pH 7.0, scan rate 0.01 V/s).
图9为芦丁与CML相互作用的循环伏安图(pH 7.0,扫描速率0.05V/s)。Figure 9 is a cyclic voltammogram of the interaction of rutin with CML (pH 7.0, scan rate 0.05 V/s).
图10为(+)-儿茶素与CML相互作用的循环伏安图(pH 7.0,扫描速率0.05V/s)。Figure 10 is a cyclic voltammogram of (+)-catechin interaction with CML (pH 7.0, scan rate 0.05 V/s).
图11为(-)-表儿茶素与CML相互作用的循环伏安图(pH 7.0,扫描速率0.05V/s)。Figure 11 is a cyclic voltammogram of the interaction of (-)-epicatechin with CML (pH 7.0, scan rate 0.05 V/s).
图12为木犀草素与CML相互作用的循环伏安图(pH 7.0,扫描速率0.05V/s)。Figure 12 is a cyclic voltammogram of the interaction of luteolin with CML (pH 7.0, scan rate 0.05 V/s).
图13为槲皮素与CML相互作用的循环伏安图(pH 7.0,扫描速率0.05V/s)。Figure 13 is a cyclic voltammogram of the interaction of quercetin with CML (pH 7.0, scan rate 0.05 V/s).
具体实施方式Detailed ways
下面结合具体实施例对本发明做出进一步地详细阐述,所述实施例只用于解释本发明,并非用于限定本发明的范围。下述实施例中所使用的试验方法如无特殊说明,均为常规方法;所使用的材料、试剂等,如无特殊说明,为可从商业途径得到的试剂和材料。The present invention will be further elaborated below with reference to specific embodiments, which are only used to explain the present invention, but not to limit the scope of the present invention. The test methods used in the following examples are conventional methods unless otherwise specified; the materials, reagents, etc. used are commercially available reagents and materials unless otherwise specified.
实施例1Example 1
一种测定溶液中醌类物质与CML互作效率的方法,按照以下步骤进行测试:A method for determining the interaction efficiency of quinones in solution and CML is tested according to the following steps:
S1.将邻苯二酚类物质溶于缓冲液得到溶液A;将CML溶于缓冲液得到溶液B;将邻苯二酚类物质和CML溶于缓冲液得溶液C;S1. Dissolving catechols in buffer to obtain solution A; dissolving CML in buffer to obtain solution B; dissolving catechols and CML in buffer to obtain solution C;
S2.以玻璃碳电极(直径为3mm)为工作电极,铂丝为对电极,银/饱和氯化银为参比电极,各电极与电化学工作站相连,构建三电极体系,利用循环伏安法分别对溶液A、溶液B和溶液C进行检测,得到每份溶液的循环伏安曲线,并分别记录每份溶液的峰值电流和电压特征值;在测试前,每份待测溶液均通入5~10min高纯氮气以去除氧气;玻璃碳工作电极每次扫描前需在滴加粒径为0.05μm的氧化铝悬浊液的麂皮上打磨,而后用蒸馏水清洗;电化学工作站的扫描电位范围为-0.8~1.2V;扫描速率为0.01~0.10V/s;灵敏度为10-5A/V;初始扫描方向为正向;扫描段数为2;温度为25±1℃;S2. Using glassy carbon electrode (diameter 3mm) as working electrode, platinum wire as counter electrode, silver/saturated silver chloride as reference electrode, each electrode is connected to electrochemical workstation to construct a three-electrode system, using cyclic voltammetry Detect solution A, solution B and solution C respectively, obtain the cyclic voltammetry curve of each solution, and record the peak current and voltage characteristic values of each solution respectively; ~10min high-purity nitrogen to remove oxygen; glassy carbon working electrode needs to be polished on the chamois to which the alumina suspension with a particle size of 0.05 μm is added dropwise before each scan, and then washed with distilled water; the scanning potential range of the electrochemical workstation -0.8~1.2V; scan rate: 0.01~0.10V/s; sensitivity: 10 -5 A/V; initial scan direction is forward; number of scan segments is 2; temperature is 25±1℃;
S3.根据步骤S2测得的峰值电流和电压特征值,按照如下公式进行计算,即可测得醌类物质与CML的互作效率为:S3. According to the peak current and voltage characteristic values measured in step S2, calculate according to the following formula, and the interaction efficiency between quinones and CML can be measured as:
互作效率=(还原峰电流减少率,%)=(IpC1(酚)-IpC1(酚+CML))/IpC1(酚);Interaction efficiency=(reduction peak current reduction rate, %)=(I pC1(phenol) -I pC1(phenol+CML) )/I pC1(phenol) ;
其中所述IpC1(酚)为所述溶液A的还原峰峰值电流;所述IpC1(酚+CML)为所述溶液C的还原峰峰值电流。The I pC1 (phenol) is the reduction peak-to-peak current of the solution A; the I pC1 (phenol+CML) is the reduction peak-to-peak current of the solution C.
1、探究缓冲液的pH值、扫描速率以及CML浓度对于检测结果的影响1. Investigate the effect of buffer pH, scan rate and CML concentration on the detection results
按照上述步骤S1的过程,采用NaH2PO4、Na2HPO4,分别配制pH值为5.0、7.0、8.0的0.2M磷酸缓冲液,然后溶解一定量的邻苯二酚或4-甲基邻苯二酚,配置得到溶液A,其中邻苯二酚或4-甲基邻苯二酚的浓度为0.5mM;According to the process of the above step S1, use NaH 2 PO 4 and Na 2 HPO 4 to prepare 0.2M phosphate buffer solution with pH values of 5.0, 7.0 and 8.0 respectively, and then dissolve a certain amount of catechol or 4-methyl ortho- Hydroquinone, configured to obtain solution A, wherein the concentration of catechol or 4-methyl catechol is 0.5mM;
取一定量的CML溶于0.2M磷酸缓冲溶液中配制得到溶液B,其中CML的浓度为0.5~7.5mM;Dissolve a certain amount of CML in 0.2M phosphate buffer solution to prepare solution B, wherein the concentration of CML is 0.5-7.5mM;
将一定量的邻苯二酚(或4-甲基邻苯二酚)和CML溶于缓冲液,磁力搅拌混匀配制得到溶液C,保证溶液C中邻苯二酚(或4-甲基邻苯二酚)的浓度为0.5mM,CML的浓度为0.5~7.5mM。Dissolve a certain amount of catechol (or 4-methyl catechol) and CML in the buffer, stir and mix with magnetic force to prepare solution C, ensure that catechol (or 4-methyl catechol (or 4-methyl catechol) in solution C Hydroquinone) at a concentration of 0.5 mM, and CML at a concentration of 0.5 to 7.5 mM.
按照上述步骤S2中的检测过程,变换不同的扫描速率(0.01、0.05和0.10V/s)进行检测,测得结果如表1和表2所示,其中表1为不同条件下邻苯二醌与CML(5.0mM)互作效率的检测结果,表2为不同条件下4-甲基邻苯二醌与CML(5.0mM)互作效率的检测结果,表3为4-甲基邻苯二醌与不同浓度CML(0.5-7.5mM)在pH 7.0扫描速率0.01V/s下互作效率的检测结果。其中还原电流减少率越大表明反应程度越大,即醌类物质与CML反应的效率越高。According to the detection process in the above-mentioned step S2, different scanning rates (0.01, 0.05 and 0.10V/s) were changed for detection, and the measured results were shown in Table 1 and Table 2, wherein Table 1 is the o-phthaloquinone under different conditions. The detection results of the interaction efficiency with CML (5.0mM), Table 2 is the detection results of the interaction efficiency between 4-methyl phthaloquinone and CML (5.0mM) under different conditions, and Table 3 is 4-methyl phthaloquinone The detection results of the interaction efficiency of quinone with different concentrations of CML (0.5-7.5mM) at pH 7.0 at a scan rate of 0.01V/s. The greater the reduction rate of reduction current, the greater the degree of reaction, that is, the higher the efficiency of the reaction between quinones and CML.
表1不同条件下邻苯二醌与CML的互作效率Table 1 Interaction efficiencies of o-phthaloquinone and CML under different conditions
表2不同条件下4-甲基邻苯二醌与CML的互作效率Table 2 The interaction efficiency of 4-methylophthaloquinone with CML under different conditions
从表1和表2中可知,本发明所述方法在pH 7.0和8.0条件下稳定性较好,RSD值在0.00至9.22之间,稳定性较好;在pH 5.0时,由于醌类物质与CML之间互作效率较低导致方法稳定性较差,RSD值偏高。因此本方法更适用于pH 7.0和8.0溶液体系中醌类物质与CML互作效率的检测。It can be seen from Table 1 and Table 2 that the method of the present invention has better stability under the conditions of pH 7.0 and 8.0, the RSD value is between 0.00 and 9.22, and the stability is better; at pH 5.0, due to quinone substances and The low interaction efficiency between CML resulted in poor method stability and high RSD value. Therefore, this method is more suitable for the detection of the interaction efficiency between quinones and CML in pH 7.0 and 8.0 solution systems.
本发明通过测定添加CML前后酚类物质循环伏安曲线中还原峰电流减少率来判断CML与醌类物质的相互作用,减少率越大互作效率越高。邻苯二醌或4-甲基邻苯二醌在不同pH、相同扫描速率条件下与CML互作效率高低顺序为:pH8.0>pH 7.0>pH 5.0;与现有利用控制电位电解库伦法制备4-甲基邻苯二醌,而后利用停流光谱测定4-甲基邻苯二醌物质与CML在不同pH条件下相互作用效率结果一致(Food Chemistry,2018,244:25-28),即pH 8.0>pH 7.0>pH 5.0,所以本发明涉及的一种测定溶液中醌类物质与CML互作效率的方法准确性较高。The invention judges the interaction between CML and quinones by measuring the reduction rate of the reduction peak current in the cyclic voltammetry curve of phenolic substances before and after adding CML, and the greater the reduction rate, the higher the interaction efficiency. The order of the interaction efficiency of o-phthaloquinone or 4-methylo-phthaloquinone with CML under the conditions of different pH and the same scan rate is: pH 8.0>pH 7.0>pH 5.0; Preparation of 4-methyl phthaloquinone, and then using stopped-flow spectroscopy to determine the interaction efficiency between 4-methyl phthaloquinone and CML under different pH conditions, the results are consistent (Food Chemistry, 2018, 244:25-28), That is, pH 8.0>pH 7.0>pH 5.0, so the method for determining the interaction efficiency of quinones in solution and CML involved in the present invention is more accurate.
表3 pH 7.0、扫描速率0.01V/s下4-甲基邻苯二醌与不同浓度CML的互作效率Table 3 Interaction efficiencies of 4-methylo-phthaloquinone with different concentrations of CML at pH 7.0 and scan rate 0.01 V/s
由表3可知,pH 7.0、扫描速率0.01V/s下,利用本方法测定4-甲基邻苯二醌与不同浓度CML互作效率的稳定性较好,RSD值范围为0.35-5.62。随着体系CML含量的增加,4-甲基邻苯二醌与CML的互作效率显著增加,符合理论预期。It can be seen from Table 3 that at pH 7.0 and scan rate 0.01V/s, the method used to determine the interaction efficiency of 4-methylo-phthaloquinone with different concentrations of CML has good stability, and the RSD value ranges from 0.35 to 5.62. With the increase of CML content in the system, the interaction efficiency of 4-methyl phthaloquinone with CML increased significantly, which was in line with the theoretical expectation.
2、探究苯环上不同取代基对醌类物质与CML互作效率的影响2. To explore the effect of different substituents on the benzene ring on the interaction efficiency of quinones and CML
测试过程参照实施例1中的测试过程,不同之处在于,溶液A分别为邻苯二酚、4-甲基邻苯二酚或原儿茶酸溶于磷酸盐缓冲液(0.2M,pH7.0)配制得到,多酚类物质的浓度为0.5mM;溶液C分别为邻苯二酚、4-甲基邻苯二酚或原儿茶酸与CML溶于磷酸盐缓冲液(0.2M,pH7.0)配制得到,其中多酚类物质浓度为0.5mM,CML的浓度为5.0mM。测试过程中,电化学工作站的操作参数为:扫描电位范围,-0.8-1.2V;扫描速率,0.01V/s;灵敏度,10-5A/V;初始扫描方向,正向;扫描段数,2。得到每份溶液的循环伏安曲线,并分别记录每份溶液的峰值电流和电压特征值,并按照实施例1中的公式进行计算。计算结果如表4所示。The test process refers to the test process in Example 1, the difference is that solution A is respectively catechol, 4-methylcatechol or protocatechuic acid dissolved in phosphate buffer (0.2M, pH7. 0) Prepared, the concentration of polyphenols is 0.5mM; solution C is respectively catechol, 4-methylcatechol or protocatechuic acid and CML dissolved in phosphate buffer (0.2M, pH7 .0), wherein the concentration of polyphenols is 0.5 mM, and the concentration of CML is 5.0 mM. During the test, the operating parameters of the electrochemical workstation are: scan potential range, -0.8-1.2V; scan rate, 0.01V/s; sensitivity, 10 -5 A/V; initial scan direction, forward; number of scan segments, 2 . The cyclic voltammetry curve of each solution was obtained, and the peak current and voltage characteristic values of each solution were recorded respectively, and calculated according to the formula in Example 1. The calculation results are shown in Table 4.
表4不同醌类物质与CML的互作效率Table 4. Interaction efficiencies of different quinones and CML
从表4中可知,相同条件下,CML与由原儿茶酸氧化形成的原儿茶酸醌的互作效率最高,与由邻苯二酚氧化形成的邻苯二醌互作效率居中,与由4-甲基邻苯二酚氧化形成的4-甲基邻苯二醌互作效率最低。苯环上的甲基基团具有给电子效应增加了醌类物质的电子云密度,因此降低了其亲电反应的活性;苯环上的羧基基团具有拉电子效应降低了醌类物质的电子云密度,因此增强了其亲电反应的活性。综上,本发明测试结果符合理论预期,且具有较高的稳定性(RSD值范围为0.00-9.22)。It can be seen from Table 4 that under the same conditions, CML has the highest interaction efficiency with quinone protocatechuic acid formed by oxidation of protocatechuic acid, and the interaction efficiency with quinone formed by oxidation of catechol is in the middle. The 4-methyl phthaloquinone formed by the oxidation of 4-methyl catechol had the lowest interaction efficiency. The methyl group on the benzene ring has an electron-donating effect, which increases the electron cloud density of quinones, thus reducing the activity of its electrophilic reaction; the carboxyl group on the benzene ring has an electron-withdrawing effect, which reduces the electrons of quinones. cloud density, thus enhancing the activity of its electrophilic reaction. In conclusion, the test results of the present invention are in line with theoretical expectations, and have high stability (RSD value range is 0.00-9.22).
3、原儿茶酸、原儿茶酸羧基乙酯化氧化成对应醌类物质与CML的反应程度3. The degree of reaction between protocatechuic acid and protocatechuic acid carboxyethyl esterification to corresponding quinones and CML
测试过程参照实施例1中的测试过程,不同之处在于,溶液A分别为原儿茶酸或原儿茶酸乙酯溶于磷酸盐缓冲液(0.2M,pH7.0)配制得到,多酚类物质的浓度均为0.5mM;溶液C分别为原儿茶酸或原儿茶酸乙酯与CML溶于磷酸盐缓冲液(0.2M,pH7.0)配制得到,其中多酚类物质浓度为0.5mM,CML的浓度为5.0mM。测试过程中,电化学工作站的操作参数为:扫描电位范围,-0.8-1.2V;扫描速率,0.05V/s;灵敏度,10-5A/V;初始扫描方向,正向;扫描段数,2。得到每份溶液的循环伏安曲线,并分别记录每份溶液的峰值电流和电压特征值,并按照实施例1中的公式进行计算。计算结果如表5所示。The test process refers to the test process in Example 1, the difference is that solution A is prepared by dissolving protocatechuic acid or ethyl protocatechuate in phosphate buffer (0.2M, pH7.0), respectively, and the polyphenol The concentrations of these substances are all 0.5mM; solution C is prepared by dissolving protocatechuic acid or ethyl protocatechuate and CML in phosphate buffer (0.2M, pH7.0) respectively, and the concentration of polyphenols is 0.5 mM, the concentration of CML was 5.0 mM. During the test, the operating parameters of the electrochemical workstation are: scan potential range, -0.8-1.2V; scan rate, 0.05V/s; sensitivity, 10 -5 A/V; initial scan direction, forward; number of scan segments, 2 . The cyclic voltammetry curve of each solution was obtained, and the peak current and voltage characteristic values of each solution were recorded respectively, and calculated according to the formula in Example 1. The calculation results are shown in Table 5.
表5不同邻苯二酚醌类物质与CML的互作效率Table 5 Interaction efficiencies of different catechol quinones and CML
从表5中可知,相同条件下,CML与由原儿茶酸氧化形成的原儿茶酸醌的互作效率比与由原儿茶酸乙酯氧化形成的原儿茶酸乙酯醌的互作效率高,羧基的乙酯化作用削弱了羧基的拉电子效应,因而其亲电反应能力下降,本发明测试结果符合理论预期,且具有较高的稳定性(RSD值范围为0.39-6.22)。As can be seen from Table 5, under the same conditions, the interaction efficiency ratio between CML and protocatechuic acid quinone formed by oxidation of protocatechuic acid and the interaction efficiency of protocatechuic acid ethyl quinone formed by oxidation of protocatechuic acid ethyl ester The working efficiency is high, and the ethyl esterification of the carboxyl group weakens the electron-pulling effect of the carboxyl group, so its electrophilic reaction ability declines. The test result of the present invention meets the theoretical expectation and has high stability (the RSD value range is 0.39-6.22) .
4、不同酚酸类物质氧化形成的醌类物质与CML的反应程度4. The degree of reaction between quinones formed by oxidation of different phenolic acids and CML
测试过程参照实施例1中的测试过程,不同之处在于,溶液A分别为咖啡酸、绿原酸或迷迭香酸溶于磷酸盐缓冲液(0.2M,pH7.0)配制得到,多酚类物质的浓度均为0.5mM;溶液C分别为咖啡酸、绿原酸或迷迭香酸与CML溶于磷酸盐缓冲液(0.2M,pH7.0)配制得到,其中多酚类物质浓度为0.5mM,CML的浓度为5.0mM。测试过程中,电化学工作站的操作参数为:扫描电位范围,-0.8-1.2V;扫描速率,0.01V/s;灵敏度,10-5A/V;初始扫描方向,正向;扫描段数,2。得到每份溶液的循环伏安曲线,并分别记录每份溶液的峰值电流和电压特征值,并按照实施例1中的公式进行计算。计算结果如表6所示。The test process refers to the test process in Example 1, the difference is that the solution A is prepared by dissolving caffeic acid, chlorogenic acid or rosmarinic acid in phosphate buffer (0.2M, pH7.0), respectively, and the polyphenol The concentrations of these substances are all 0.5mM; solution C is prepared by dissolving caffeic acid, chlorogenic acid or rosmarinic acid and CML in phosphate buffer (0.2M, pH 7.0) respectively, wherein the concentration of polyphenols is 0.5 mM, the concentration of CML was 5.0 mM. During the test, the operating parameters of the electrochemical workstation are: scan potential range, -0.8-1.2V; scan rate, 0.01V/s; sensitivity, 10 -5 A/V; initial scan direction, forward; number of scan segments, 2 . The cyclic voltammetry curve of each solution was obtained, and the peak current and voltage characteristic values of each solution were recorded respectively, and calculated according to the formula in Example 1. The calculation results are shown in Table 6.
表6不同酚酸类物质氧化形成的醌类物质与CML的反应程度Table 6 Reaction degree of quinones formed by oxidation of different phenolic acids and CML
从表6中可知,相同条件下,CML与由咖啡酸氧化形成的咖啡酸醌互作效率高于和由绿原酸或迷迭香酸氧化的醌类物质,绿原酸醌和迷迭香酸醌苯环上大型取代基带来的空间位阻效应削弱了其与CML的互作效率,本发明测试结果符合理论预期,且具有较高的稳定性(RSD值范围为2.80-7.27)。It can be seen from Table 6 that under the same conditions, the interaction efficiency of CML with caffeic acid quinone formed by oxidation of caffeic acid is higher than that of quinones oxidized by chlorogenic acid or rosmarinic acid, chlorogenic acid quinone and rosemary The steric hindrance effect brought by the large substituent on the acid quinone benzene ring weakens its interaction efficiency with CML. The test results of the present invention are in line with theoretical expectations and have high stability (RSD value range is 2.80-7.27).
5、黄酮类物质氧化形成的醌类物质与CML的反应程度5. The degree of reaction between quinones formed by oxidation of flavonoids and CML
测试过程参照实施例1中的测试过程,不同之处在于,溶液A分别为取芦丁、(+)-儿茶素或(-)-表儿茶素溶于磷酸盐缓冲液(0.2M,pH7.0)配制得到,或者取木犀草素或槲皮素溶于0.2M磷酸盐缓冲液与乙醇的混合液(体积比:4:1,pH 7.0),多酚类物质浓度均为0.5mM;溶液C分别为芦丁、(+)-儿茶素或(-)-表儿茶素与CML溶于磷酸盐缓冲液(0.2M,pH7.0)配制得到,或者为木犀草素或槲皮素与CML溶于0.2M磷酸盐缓冲液与乙醇的混合液(体积比:4:1,pH 7.0)配制得到,其中多酚类物质浓度为0.5mM,CML的浓度为5.0mM。测试过程中,电化学工作站的操作参数为:扫描电位范围,-0.8-1.2V;扫描速率,0.05V/s;灵敏度,10-5A/V;初始扫描方向,正向;扫描段数,2。得到每份溶液的循环伏安曲线,并分别记录每份溶液的峰值电流和电压特征值,并按照实施例1中的公式进行计算。计算结果如表7所示。The test process refers to the test process in Example 1, the difference is that solution A is obtained by dissolving rutin, (+)-catechin or (-)-epicatechin in phosphate buffer (0.2M, pH7.0), or take luteolin or quercetin and dissolve it in a mixture of 0.2M phosphate buffer and ethanol (volume ratio: 4:1, pH 7.0), and the concentration of polyphenols is 0.5mM ; Solution C is respectively prepared by rutin, (+)-catechin or (-)-epicatechin and CML dissolved in phosphate buffer (0.2M, pH7.0), or luteolin or quercetin Cortexin and CML were prepared by dissolving in a mixture of 0.2M phosphate buffer and ethanol (volume ratio: 4:1, pH 7.0), wherein the concentration of polyphenols was 0.5 mM, and the concentration of CML was 5.0 mM. During the test, the operating parameters of the electrochemical workstation are: scan potential range, -0.8-1.2V; scan rate, 0.05V/s; sensitivity, 10 -5 A/V; initial scan direction, forward; number of scan segments, 2 . The cyclic voltammetry curve of each solution was obtained, and the peak current and voltage characteristic values of each solution were recorded respectively, and calculated according to the formula in Example 1. The calculation results are shown in Table 7.
表7黄酮类物质氧化形成的醌类物质与CML的互作效率Table 7. Interaction efficiency of quinones formed by oxidation of flavonoids and CML
从表7中可知,相同条件下,CML与由木犀草素氧化形成的木犀草素醌互作效率是所选黄酮中最高的,这与其苯环电子云密度较低有关,本发明测试结果符合理论预期,RSD值范围为5.48-42.73,部分黄酮类物质测试稳定性不佳。As can be seen from Table 7, under the same conditions, the interaction efficiency between CML and the luteolin quinone formed by the oxidation of luteolin is the highest among the selected flavonoids, which is related to the lower electron cloud density of its benzene ring, and the test results of the present invention are consistent with The theoretical expectation is that the RSD value ranges from 5.48 to 42.73, and some flavonoids have poor stability in the test.
综上,本发明适用于检测CML与多种不同酚类物质氧化形成的醌类物质的反应效率,符合理论预期,表明检测结果准确,同时检测结果的RSD值较小,表明检测方法和检测结果具有稳定性。To sum up, the present invention is suitable for detecting the reaction efficiency of quinones formed by oxidation of CML and a variety of different phenolic substances, which is in line with theoretical expectations, indicating that the detection results are accurate, and the RSD value of the detection results is small, indicating that the detection method and the detection results. Has stability.
最后所应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,对于本领域的普通技术人员来说,在上述说明及思路的基础上还可以做出其它不同形式的变化或变动,这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention and not to limit the protection scope of the present invention. For those of ordinary skill in the art, on the basis of the above descriptions and ideas, the Variations or changes in other different forms are not required and cannot be exhaustive of all implementations here. Any modifications, equivalent replacements and improvements made within the spirit and principle of the present invention shall be included within the protection scope of the claims of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910406744.6A CN110208355B (en) | 2019-05-16 | 2019-05-16 | Method for measuring interaction efficiency of quinone substances and carboxymethyl lysine in solution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910406744.6A CN110208355B (en) | 2019-05-16 | 2019-05-16 | Method for measuring interaction efficiency of quinone substances and carboxymethyl lysine in solution |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110208355A CN110208355A (en) | 2019-09-06 |
CN110208355B true CN110208355B (en) | 2022-07-05 |
Family
ID=67787472
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910406744.6A Active CN110208355B (en) | 2019-05-16 | 2019-05-16 | Method for measuring interaction efficiency of quinone substances and carboxymethyl lysine in solution |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110208355B (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101349673B (en) * | 2008-09-04 | 2012-12-19 | 南京大学 | Electrochemical method for non-eletricity enriching and measuring trace amount tervalence inorganic arsenic in water system |
CN102288669B (en) * | 2011-05-04 | 2013-06-26 | 青岛大学 | An electrochemical method for the simultaneous determination of rutin and quercetin based on a graphene-modified electrode |
CN102809592B (en) * | 2012-07-13 | 2014-03-12 | 江苏大学 | Electro-polymerization preparation method of electrochemical sensor for quickly detecting EGCG (Epigallocatechin-3-Gallate) |
CN105918772B (en) * | 2016-05-30 | 2020-01-14 | 华南理工大学 | Carboxymethyl lysine eliminating agent and application thereof |
-
2019
- 2019-05-16 CN CN201910406744.6A patent/CN110208355B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN110208355A (en) | 2019-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ma et al. | Electrochemical detection of dopamine in the presence of epinephrine, uric acid and ascorbic acid using a graphene-modified electrode | |
Huang et al. | Electrochemical behavior and voltammetric determination of tryptophan based on 4-aminobenzoic acid polymer film modified glassy carbon electrode | |
Gholivand et al. | Electrooxidation behavior of warfarin in Fe3O4 nanoparticles modified carbon paste electrode and its determination in real samples | |
Hua et al. | Electrochemical behavior of 5-fluorouracil on a glassy carbon electrode modified with bromothymol blue and multi-walled carbon nanotubes | |
Yang | Voltammetric determination of tinidazole using a glassy carbon electrode modified with single-wall carbon nanotubes | |
Sun et al. | A novel sensing platform based on a core–shell Fe@ Fe 3 C–C nanocomposite for ultrasensitive determination of vanillin | |
Huang et al. | Sensitive determination of anticancer drug methotrexate using graphite oxide-nafion modified glassy carbon electrode | |
Chao | Electrochemical determination of Sudan I at a silver nanoparticles/poly (aminosulfonic acid) modified glassy carbon electrode | |
CN102128867A (en) | Method for detecting paracetanol with para aminobenzoic acid/nanometer gold modified carbon electrode | |
CN102141538A (en) | Method for determining concentration of phosphite by cyclic voltammetry | |
CN103063728A (en) | Electrochemical method for simultaneous determination of tetrachlorocatechol and tetrachlorohydroquinone based on graphene/chitosan-modified electrode | |
Titretir Duran et al. | Voltammetric determination of α-lipoic acid using poly (vanillin) modified platinum electrode | |
Baezzat et al. | Sensitive voltammetric detection of indomethacin using TiO2 nanoparticle modified carbon ionic liquid electrode | |
CN109975382A (en) | A tyrosinase biosensor with phosphorus-doped MXene modified electrode and its preparation method and application | |
Ojani et al. | Electrochemical behavior of chloranil chemically modified carbon paste electrode. Application to the electrocatalytic determination of ascorbic acid | |
CN110208355B (en) | Method for measuring interaction efficiency of quinone substances and carboxymethyl lysine in solution | |
CN109164150A (en) | A kind of preparation of gold nanometer cage modified electrode and the method for detecting rutin content | |
Tang et al. | Electrochemical determination of luteolin in Chrysanthemum using multi-walled carbon nanotubes–ionic liquid composite electrode | |
CN114674888B (en) | Controllable polymer film modified electrode, preparation method thereof and detection method of luteolin | |
Yang et al. | Sensitive and rapid determination of nifedipine using polyvinylpyrrolidone-modified carbon paste electrode | |
Liu et al. | A highly sensitive sensor for synephrine detection based on multi-walled carbon nanotubes modified glass carbon electrodes | |
Chitravathi et al. | Determination of salbutamol sulfate by Alcian blue modified carbon paste electrode: A cyclic voltammetric study | |
Liu et al. | Adsorptive voltammetric behaviors of resveratrol at graphite electrode and its determination in tablet dosage form | |
Niu et al. | Electrochemical behavior of uric acid at a penicillamine self-assembled gold electrode | |
Leng et al. | Facile Synthesis of Pd nanoparticles-graphene oxide hybrid and its application to the electrochemical determination of rutin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |