CN110182857B - High-activity petal-shaped nickel-cobalt-manganese ternary precursor and preparation method thereof - Google Patents
High-activity petal-shaped nickel-cobalt-manganese ternary precursor and preparation method thereof Download PDFInfo
- Publication number
- CN110182857B CN110182857B CN201910480530.3A CN201910480530A CN110182857B CN 110182857 B CN110182857 B CN 110182857B CN 201910480530 A CN201910480530 A CN 201910480530A CN 110182857 B CN110182857 B CN 110182857B
- Authority
- CN
- China
- Prior art keywords
- cobalt
- nickel
- manganese
- aqueous solution
- petal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- KFDQGLPGKXUTMZ-UHFFFAOYSA-N [Mn].[Co].[Ni] Chemical compound [Mn].[Co].[Ni] KFDQGLPGKXUTMZ-UHFFFAOYSA-N 0.000 title claims abstract description 52
- 239000002243 precursor Substances 0.000 title claims abstract description 44
- 238000002360 preparation method Methods 0.000 title claims abstract description 14
- 230000000694 effects Effects 0.000 title claims abstract description 12
- 239000011572 manganese Substances 0.000 claims abstract description 9
- 238000006243 chemical reaction Methods 0.000 claims description 52
- 239000007864 aqueous solution Substances 0.000 claims description 38
- 239000007788 liquid Substances 0.000 claims description 31
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 23
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 22
- 229910052751 metal Inorganic materials 0.000 claims description 22
- 238000003756 stirring Methods 0.000 claims description 22
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 21
- 230000032683 aging Effects 0.000 claims description 19
- 150000003839 salts Chemical class 0.000 claims description 19
- 239000000243 solution Substances 0.000 claims description 18
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical group [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 17
- 239000003513 alkali Substances 0.000 claims description 14
- 239000000047 product Substances 0.000 claims description 13
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 claims description 12
- 239000002184 metal Substances 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 12
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 11
- 229910021529 ammonia Inorganic materials 0.000 claims description 10
- 150000003863 ammonium salts Chemical class 0.000 claims description 9
- 238000005406 washing Methods 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 8
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 claims description 8
- 229910052921 ammonium sulfate Inorganic materials 0.000 claims description 8
- 235000011130 ammonium sulphate Nutrition 0.000 claims description 8
- 229910052726 zirconium Inorganic materials 0.000 claims description 8
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 6
- 229910052719 titanium Inorganic materials 0.000 claims description 6
- 239000010936 titanium Substances 0.000 claims description 6
- 239000012295 chemical reaction liquid Substances 0.000 claims description 5
- 230000002431 foraging effect Effects 0.000 claims description 5
- 239000011261 inert gas Substances 0.000 claims description 5
- 238000000926 separation method Methods 0.000 claims description 5
- 239000011343 solid material Substances 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 239000008367 deionised water Substances 0.000 claims description 4
- 229910021641 deionized water Inorganic materials 0.000 claims description 4
- 239000002245 particle Substances 0.000 claims description 4
- 239000002244 precipitate Substances 0.000 claims description 4
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 3
- 239000012670 alkaline solution Substances 0.000 claims description 3
- 229910017052 cobalt Inorganic materials 0.000 claims description 3
- 239000010941 cobalt Substances 0.000 claims description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 claims description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 2
- 239000001099 ammonium carbonate Substances 0.000 claims description 2
- 235000012501 ammonium carbonate Nutrition 0.000 claims description 2
- 235000019270 ammonium chloride Nutrition 0.000 claims description 2
- VBIXEXWLHSRNKB-UHFFFAOYSA-N ammonium oxalate Chemical compound [NH4+].[NH4+].[O-]C(=O)C([O-])=O VBIXEXWLHSRNKB-UHFFFAOYSA-N 0.000 claims description 2
- NGPGDYLVALNKEG-UHFFFAOYSA-N azanium;azane;2,3,4-trihydroxy-4-oxobutanoate Chemical compound [NH4+].[NH4+].[O-]C(=O)C(O)C(O)C([O-])=O NGPGDYLVALNKEG-UHFFFAOYSA-N 0.000 claims description 2
- 229910052791 calcium Inorganic materials 0.000 claims description 2
- 239000011575 calcium Substances 0.000 claims description 2
- 150000001868 cobalt Chemical class 0.000 claims description 2
- 229910052738 indium Inorganic materials 0.000 claims description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 2
- 229910052746 lanthanum Inorganic materials 0.000 claims description 2
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 claims description 2
- 229910052749 magnesium Inorganic materials 0.000 claims description 2
- 239000011777 magnesium Substances 0.000 claims description 2
- 150000002696 manganese Chemical class 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 239000011733 molybdenum Substances 0.000 claims description 2
- 150000002815 nickel Chemical class 0.000 claims description 2
- 229910052758 niobium Inorganic materials 0.000 claims description 2
- 239000010955 niobium Substances 0.000 claims description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 2
- 229910052712 strontium Inorganic materials 0.000 claims description 2
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims description 2
- 229910052715 tantalum Inorganic materials 0.000 claims description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 2
- YWYZEGXAUVWDED-UHFFFAOYSA-N triammonium citrate Chemical compound [NH4+].[NH4+].[NH4+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O YWYZEGXAUVWDED-UHFFFAOYSA-N 0.000 claims description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 2
- 229910052721 tungsten Inorganic materials 0.000 claims description 2
- 239000010937 tungsten Substances 0.000 claims description 2
- 229910052727 yttrium Inorganic materials 0.000 claims description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims description 2
- 239000002585 base Substances 0.000 claims 2
- 238000001035 drying Methods 0.000 claims 1
- 238000007873 sieving Methods 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 6
- 239000000126 substance Substances 0.000 abstract description 3
- 238000011112 process operation Methods 0.000 abstract 1
- 239000010406 cathode material Substances 0.000 description 14
- 238000010438 heat treatment Methods 0.000 description 9
- 239000012266 salt solution Substances 0.000 description 9
- 239000000203 mixture Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- PQVSTLUFSYVLTO-UHFFFAOYSA-N ethyl n-ethoxycarbonylcarbamate Chemical compound CCOC(=O)NC(=O)OCC PQVSTLUFSYVLTO-UHFFFAOYSA-N 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- -1 hydrogen Sodium oxide Chemical class 0.000 description 3
- GLXDVVHUTZTUQK-UHFFFAOYSA-M lithium hydroxide monohydrate Substances [Li+].O.[OH-] GLXDVVHUTZTUQK-UHFFFAOYSA-M 0.000 description 3
- 229940040692 lithium hydroxide monohydrate Drugs 0.000 description 3
- 229910001416 lithium ion Inorganic materials 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 239000011259 mixed solution Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000007774 positive electrode material Substances 0.000 description 3
- 229910001948 sodium oxide Inorganic materials 0.000 description 3
- 238000012876 topography Methods 0.000 description 3
- ZXAUZSQITFJWPS-UHFFFAOYSA-J zirconium(4+);disulfate Chemical compound [Zr+4].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O ZXAUZSQITFJWPS-UHFFFAOYSA-J 0.000 description 3
- 230000007547 defect Effects 0.000 description 2
- QHGJSLXSVXVKHZ-UHFFFAOYSA-N dilithium;dioxido(dioxo)manganese Chemical compound [Li+].[Li+].[O-][Mn]([O-])(=O)=O QHGJSLXSVXVKHZ-UHFFFAOYSA-N 0.000 description 2
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 2
- DCKVFVYPWDKYDN-UHFFFAOYSA-L oxygen(2-);titanium(4+);sulfate Chemical compound [O-2].[Ti+4].[O-]S([O-])(=O)=O DCKVFVYPWDKYDN-UHFFFAOYSA-L 0.000 description 2
- 229910000348 titanium sulfate Inorganic materials 0.000 description 2
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000003834 hydroxide co-precipitation Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000010450 olivine Substances 0.000 description 1
- 229910052609 olivine Inorganic materials 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/80—Compounds containing nickel, with or without oxygen or hydrogen, and containing one or more other elements
- C01G53/82—Compounds containing nickel, with or without oxygen or hydrogen, and containing two or more other elements
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
一种高活性花瓣状镍钴锰三元前驱体及其制备方法,该镍钴锰三元前驱体的化学通式为:NiaCobMnc(OH)2,其中a+b+c=1,并且0.33≤a≤0.9,0.05≤b≤0.33,0.05≤c≤0.33,所述镍钴锰三元前驱体的比表面积为20‑30m2/g,且呈花瓣状;本发明还包括所述高活性花瓣状的镍钴锰三元前驱体的制备方法。本发明高活性花瓣状的三元前驱体呈花瓣状,具备较大比表面积,活性高;工艺操作简便,对生产设备要求不高。
A highly active petal-shaped nickel-cobalt-manganese ternary precursor and a preparation method thereof, wherein the chemical formula of the nickel-cobalt-manganese ternary precursor is: Ni a Co b Mn c (OH)2, wherein a+b+c= 1, and 0.33≤a≤0.9, 0.05≤b≤0.33, 0.05≤c≤0.33, the specific surface area of the nickel-cobalt-manganese ternary precursor is 20-30m 2 /g, and it is petal-shaped; the present invention also includes The preparation method of the highly active petal-shaped nickel-cobalt-manganese ternary precursor. The highly active petal-shaped ternary precursor of the invention is petal-shaped, has a large specific surface area, and has high activity; the process operation is simple and the requirement for production equipment is not high.
Description
技术领域technical field
本发明涉及一种镍钴锰三元前驱体制造技术领域,具体涉及一种高活性花瓣状镍钴锰三元前驱体及其制备方法。The invention relates to the technical field of manufacturing a nickel-cobalt-manganese ternary precursor, in particular to a highly active petal-shaped nickel-cobalt-manganese ternary precursor and a preparation method thereof.
背景技术Background technique
锂离子电池最早由日本实现商业化,其用途也由3C领域扩展到储能、动力等领域。由于人们对动力电池能量密度、安全性能、使用成本、循环性能的要求的不断提高。正极材料是制造锂离子电池的关键材料之一,其决定了电芯的能量密度、安全性能、使用成本、循环性能等。Lithium-ion batteries were first commercialized in Japan, and their uses have also expanded from the 3C field to energy storage, power and other fields. Due to the continuous improvement of people's requirements for power battery energy density, safety performance, cost of use, and cycle performance. The cathode material is one of the key materials in the manufacture of lithium-ion batteries, which determines the energy density, safety performance, cost of use, and cycle performance of the cell.
目前已经产业化成功的锂离子电池正极材料有层状三元正极材料、尖晶石锰酸锂正极材料、橄榄石磷酸铁锂正极材料。由于磷酸铁锂和锰酸锂在能量密度上的缺陷,目前三元正极材料成为市场上的主流。At present, the lithium-ion battery cathode materials that have been successfully industrialized include layered ternary cathode materials, spinel lithium manganate cathode materials, and olivine lithium iron phosphate cathode materials. Due to the defects of lithium iron phosphate and lithium manganate in energy density, ternary cathode materials have become the mainstream in the market.
产业化合成三元材料主要为高温固相法:三元前驱体和碳酸锂或氢氧化锂混合均匀进行烧结,三元前驱体在一定程度上决定了三元正极材料性能的好坏,因此要制备出性能优良的三元材料必须先制备出性能指标优良的三元前驱体;目前工业化普遍采用氢氧化物共沉淀的制备工艺,这种制备工艺操作复杂,对生产设备要求高,制备的球形三元前躯体掺杂不均匀,比表面积较小,活性较低。The industrial synthesis of ternary materials is mainly by high-temperature solid-phase method: the ternary precursor is mixed with lithium carbonate or lithium hydroxide and sintered evenly. The ternary precursor determines the performance of the ternary cathode material to a certain extent. Therefore, it is necessary to To prepare a ternary material with excellent performance, a ternary precursor with excellent performance index must be prepared first; at present, the preparation process of hydroxide co-precipitation is generally used in industrialization. This preparation process is complicated and requires high production equipment. The ternary precursor is not uniformly doped, has a small specific surface area, and has low activity.
发明内容SUMMARY OF THE INVENTION
本发明要解决的技术问题是,克服现有技术存在的上述缺陷,提供一种高活性花瓣状镍钴锰三元前驱体及其制备方法,该三元前驱体颗粒形状呈花瓣状,具备较大比表面积,活性高;制备工艺操作简便,对生产设备要求不高。The technical problem to be solved by the present invention is to overcome the above-mentioned defects in the prior art, and to provide a highly active petal-shaped nickel-cobalt-manganese ternary precursor and a preparation method thereof. Large specific surface area, high activity; the preparation process is simple and easy to operate, and the requirements for production equipment are not high.
本发明解决其技术问题所采用的技术方案是:一种高活性花瓣状镍钴锰三元前驱体,其化学通式为:NiaCobMnc(OH)2,其中a+b+c=1,并且0.33≤a≤0.9,0.05≤b≤0.33,0.05≤c≤0.33,所述镍钴锰三元前驱体的比表面积为20-30m2/g,且颗粒形状呈花瓣状。The technical solution adopted by the present invention to solve the technical problem is: a highly active petal-shaped nickel-cobalt-manganese ternary precursor, and its general chemical formula is: Ni a Co b Mn c (OH) , wherein a+b+c =1, and 0.33≤a≤0.9, 0.05≤b≤0.33, 0.05≤c≤0.33, the specific surface area of the nickel-cobalt-manganese ternary precursor is 20-30 m 2 /g, and the particle shape is petal-like.
本发明高活性花瓣状的镍钴锰三元前驱体的制备方法,包括以下步骤: (1)配制镍钴锰可溶盐水溶液、氨水溶液、碱液和反应底液; (2)向所述镍钴锰可溶盐水溶液中添加金属盐水溶液,得到掺杂水溶液; (3)向反应釜中添加反应底液,再开启搅拌,并通入惰性气体,随后用精密计量泵通入所述掺杂水溶液、氨水溶液和碱液,使其进行反应; (4)持续搅拌,待反应釜内的液位上升至接近反应釜盖时,开启溢流阀,使反应液流入陈化釜中进行陈化; (5)对陈化所得物进行固液分离,对所得固体物料进行洗涤,然后干燥和过筛,即得花瓣状的掺杂有金属元素的镍钴锰三元前驱体。The preparation method of the highly active petal-shaped nickel-cobalt-manganese ternary precursor of the present invention includes the following steps: (1) preparing a nickel-cobalt-manganese soluble salt solution, an ammonia solution, an alkali solution and a reaction bottom solution; (2) adding the Add the metal salt aqueous solution to the nickel-cobalt-manganese soluble salt solution to obtain the doping aqueous solution; (3) add the reaction bottom liquid to the reaction kettle, turn on stirring, and pass in an inert gas, and then use a precision metering pump to feed the doping solution (4) Continue stirring, when the liquid level in the reaction kettle rises to be close to the lid of the reaction kettle, open the overflow valve, and make the reaction liquid flow into the aging kettle for aging (5) solid-liquid separation is carried out on the aged product, the obtained solid material is washed, then dried and sieved to obtain a petal-shaped nickel-cobalt-manganese ternary precursor doped with metal elements.
进一步的,步骤(1)中,所述镍钴锰可溶盐水溶液的浓度为1.0-3.5mol/L,所述氨水溶液的浓度为8-12mol/L,所述碱液的浓度为5-13mol/L,所述反应底液由氨水、可溶性铵盐和碱液制备而成。Further, in step (1), the concentration of the nickel-cobalt-manganese soluble salt solution is 1.0-3.5mol/L, the concentration of the ammonia solution is 8-12mol/L, and the concentration of the alkali solution is 5- 13mol/L, the reaction bottom liquid is prepared from ammonia water, soluble ammonium salt and alkali liquor.
进一步的,步骤(1)中,所述镍钴锰可溶盐水溶液为镍盐、钴盐、锰盐的水溶液,其中镍:钴:锰的摩尔比是1:1:1至9:0.5:0.5。Further, in step (1), the nickel-cobalt-manganese soluble salt aqueous solution is an aqueous solution of nickel salt, cobalt salt, and manganese salt, wherein the molar ratio of nickel: cobalt: manganese is 1:1:1 to 9:0.5: 0.5.
进一步的,步骤(1)中,所述反应底液由可溶性铵盐水溶液、氨水和碱液制备而成,反应底液的氨浓度为0.4mol/L、pH值在11.2-11.5的范围内,其中氨水与可溶性铵盐比例为3:1。Further, in step (1), the reaction bottom liquid is prepared from soluble ammonium salt aqueous solution, ammonia water and alkali liquor, the ammonia concentration of the reaction bottom liquid is 0.4mol/L, and the pH value is in the range of 11.2-11.5, The ratio of ammonia water to soluble ammonium salt is 3:1.
所述反应釜底液配制方法:先配制可溶性铵盐水溶液,再将12mol/L氨水按比例加入已配制好的可溶性铵盐中,最后加入适量的水和碱液使底液氨浓度为0.4mol/L、pH值在11.2-11.5的范围内,其中氨水与可溶性铵盐比例为3:1。)The method for preparing the bottom liquid of the reaction kettle: first prepare a soluble ammonium salt aqueous solution, then add 12 mol/L ammonia water in proportion to the prepared soluble ammonium salt, and finally add an appropriate amount of water and alkali solution to make the ammonia concentration in the bottom liquid 0.4 mol /L, the pH value is in the range of 11.2-11.5, and the ratio of ammonia water to soluble ammonium salt is 3:1. )
进一步的,步骤(1)中,所述可溶性铵盐为硫酸铵、碳酸铵、氯化铵、酒石酸铵、草酸铵、柠檬酸铵中的两种或多种,所述碱液为氢氧化钠水溶液。Further, in step (1), the soluble ammonium salt is two or more of ammonium sulfate, ammonium carbonate, ammonium chloride, ammonium tartrate, ammonium oxalate, and ammonium citrate, and the lye is sodium hydroxide aqueous solution.
进一步的,步骤(2)中,所述金属盐水溶液为铝、镁、锆、钛、钇、钨、钼、钙、铌、镧、铟、锶、钽中的一种或多种硫酸盐水溶液。Further, in step (2), the metal salt aqueous solution is one or more sulfate aqueous solutions of aluminum, magnesium, zirconium, titanium, yttrium, tungsten, molybdenum, calcium, niobium, lanthanum, indium, strontium, and tantalum .
进一步的,步骤(3)中,所述反应底液的加入量为反应釜容积的1/4~3/4,所述金属盐水溶液的用量不超过镍钴锰可溶盐水溶液总量的1%。Further, in step (3), the addition amount of the reaction bottom liquid is 1/4~3/4 of the volume of the reaction kettle, and the consumption of the metal salt aqueous solution does not exceed 1/1 of the total amount of the nickel-cobalt-manganese soluble salt solution. %.
进一步的,步骤(3)中,所述搅拌速度为300-700r/min,反应温度为50-65℃,维持氨浓度为0 .4-1.0mol/L,pH值为10.5-12.5。Further, in step (3), the stirring speed is 300-700r/min, the reaction temperature is 50-65°C, the ammonia concentration is maintained at 0.4-1.0mol/L, and the pH value is 10.5-12.5.
进一步的,步骤(4)中,前20h溢流的所述反应液作为不合格品排掉,所述陈化釜搅拌速度调整到150rpm,保持陈化时间8h-10h。Further, in step (4), the reaction solution that overflowed in the first 20 hours was discharged as unqualified products, and the stirring speed of the aging kettle was adjusted to 150 rpm, and the aging time was maintained for 8h-10h.
进一步的,步骤(5)中,用过滤机将所述陈化所得物进行过滤,先用碱液进行洗涤,再用去离子水不断洗涤,直至最终洗水pH值为7-8,洗涤完毕;洗涤后的沉淀物在150±10℃的温度下进行干燥。Further, in step (5), the aging product is filtered with a filter, firstly washed with alkaline solution, and then continuously washed with deionized water until the pH value of the final washing water is 7-8, and the washing is completed. ; The washed precipitate is dried at a temperature of 150±10°C.
本发明的有益效果是:1)本发明镍钴锰三元前驱体,比表面积较大,活性高,可用其制备大单晶三元正极材料;2)制备方法操作简便,对生产设备要求不高,通过选择性调节共沉淀反应过程中反应底液量、反应底液成分、反应物的添加量、添加速度、反应釜搅拌强度等参数,就可对前驱体一次颗粒排列进行选择性调控;3)通过液相掺杂,可实现掺杂元素的均匀沉淀,提高后期制备三元材料晶格的稳定性和电导率,提高正极材料的循环性能,避免干法掺杂不均匀,导致电性能不佳的情况发生。The beneficial effects of the present invention are: 1) the nickel-cobalt-manganese ternary precursor of the present invention has a large specific surface area and high activity, and can be used to prepare a large single-crystal ternary positive electrode material; 2) the preparation method is easy to operate and requires no production equipment. The primary particle arrangement of the precursor can be selectively regulated by selectively adjusting parameters such as the amount of the reaction bottom liquid, the composition of the reaction bottom liquid, the addition amount of the reactants, the addition speed, and the stirring intensity of the reaction kettle during the co-precipitation reaction; 3) Through liquid-phase doping, the uniform precipitation of doping elements can be achieved, the stability and conductivity of the lattice of the ternary material prepared in the later stage can be improved, the cycle performance of the cathode material can be improved, and the uneven dry doping can be avoided, resulting in electrical properties. Bad things happen.
附图说明Description of drawings
图1为本发明实施例1的镍钴锰三元前驱体在5000倍电镜下的形貌图;Fig. 1 is the topography of the nickel-cobalt-manganese ternary precursor of the embodiment of the present invention 1 under 5000 times electron microscope;
图2为本发明实施例1的镍钴锰三元前驱体在10000倍电镜下的形貌图;Fig. 2 is the topography of the nickel-cobalt-manganese ternary precursor of Example 1 of the present invention under a 10,000-fold electron microscope;
图3为用本发明实施例1镍钴锰三元前驱体制得的镍钴锰三元正极材料的电镜形貌图;Fig. 3 is the electron microscope topography of the nickel-cobalt-manganese ternary positive electrode material obtained with the nickel-cobalt-manganese ternary precursor of Example 1 of the present invention;
图4为用本发明实施例1镍钴锰三元前驱体制得之镍钴锰三元正极材料的电性能图。FIG. 4 is a diagram showing the electrical properties of the nickel-cobalt-manganese ternary positive electrode material obtained by using the nickel-cobalt-manganese ternary precursor in Example 1 of the present invention.
具体实施方式Detailed ways
下面结合实施例对本发明的具体实施方式作进一步详细说明:Below in conjunction with embodiment, the specific embodiment of the present invention is described in further detail:
本发明实施例1高活性花瓣状镍钴锰三元前驱体,其化学通式为:NiaCobMnc(OH)2,其中a+b+c=1,并且0.33≤a≤0.9,0.05≤b≤0.33,0.05≤c≤0.33,所述三元前驱体的比表面积为20-30m2/g;其颗粒形貌如图1和图2所示,颗粒形状呈花瓣状。Embodiment 1 of the present invention is a highly active petal-shaped nickel-cobalt-manganese ternary precursor, and its general chemical formula is: Ni a Co b Mn c (OH) 2, wherein a+b+c=1, and 0.33≤a≤0.9, 0.05≤b≤0.33, 0.05≤c≤0.33, the specific surface area of the ternary precursor is 20-30 m 2 /g; its particle morphology is shown in Figures 1 and 2, and the particle shape is petal-shaped.
本发明高活性花瓣状的三元前驱体的制备方法实施例1,包括以下步骤:Embodiment 1 of the preparation method of the highly active petaloid ternary precursor of the present invention comprises the following steps:
(1)按摩尔比Ni:Co:Mn=6:2:2配制2mol/L配制镍钴锰可溶盐水溶液,配制11mol/L的氢氧化钠溶液,配制12mol/L的氨水溶液,将氢氧化钠、氨水和硫酸铵配制成pH值为11.2、氨的浓度为0.4mol/L的反应底液,其中底液中氨水和硫酸铵的用量为3:1;(1) Prepare 2 mol/L nickel-cobalt-manganese soluble salt solution in molar ratio of Ni:Co:Mn=6:2:2, prepare 11mol/L sodium hydroxide solution, prepare 12mol/L ammonia solution, mix hydrogen Sodium oxide, ammonia water and ammonium sulfate are prepared into a reaction bottom liquid with a pH value of 11.2 and an ammonia concentration of 0.4 mol/L, wherein the consumption of ammonia water and ammonium sulfate in the bottom liquid is 3:1;
(2)向所述镍钴锰可溶盐水溶液中添加金属盐水溶液,得到掺杂水溶液,金属盐水溶液为浓度为0.8g/L的硫酸锆和硫酸钛混合溶液;(2) adding a metal salt aqueous solution to the nickel-cobalt-manganese soluble salt solution to obtain a doping aqueous solution, and the metal salt aqueous solution is a mixed solution of zirconium sulfate and titanium sulfate with a concentration of 0.8 g/L;
(3)向反应釜中添加为反应釜体积的1/4的反应底液,然后开启搅拌,搅拌速度为700rpm,保持温度为55℃,再通入惰性气体,随后用精密计量泵通入所述掺杂水溶液、氨水溶液和碱液,使其进行反应,反应期间保持反应釜体系温度为54±2℃,pH值为11.1±0.1、氨浓度为0.5±0.1mol/L;(3) Add the reaction bottom liquid that is 1/4 of the volume of the reaction kettle in the reaction kettle, then start stirring, the stirring speed is 700rpm, the temperature is kept at 55 ° C, and then the inert gas is introduced, and then the precision metering pump is used to enter the The doping aqueous solution, the aqueous ammonia solution and the alkali solution are described, and the reaction is carried out, and the temperature of the reaction kettle system is kept at 54 ± 2 ° C, the pH value is 11.1 ± 0.1, and the ammonia concentration is 0.5 ± 0.1 mol/L during the reaction;
(4)持续搅拌,待反应釜内的液位上升至接近反应釜盖时,开启溢流阀,使反应液流入陈化釜中进行陈化,陈化过程搅拌速度调整到150rpm,保持陈化时间8h;(4) Continue stirring. When the liquid level in the reaction kettle rises to near the lid of the reaction kettle, open the overflow valve to make the reaction liquid flow into the aging kettle for aging. During the aging process, the stirring speed is adjusted to 150rpm to keep the aging process. time 8h;
(5)对陈化所得物进行固液分离,对所得固体物料进行洗涤,然后干燥和过筛,即得比表面积20-25m2/g的花瓣状的掺杂有锆、钛的镍钴锰三元前驱体,形貌如图1和图2所示。(5) Carry out solid-liquid separation on the aged product, wash the obtained solid material, then dry and sieve to obtain petal-shaped nickel-cobalt-manganese doped with zirconium and titanium with a specific surface area of 20-25 m 2 /g The ternary precursor, the morphology is shown in Figure 1 and Figure 2.
称取5g所述镍钴锰三元前驱体、2.3g单水氢氧化锂放入球磨机中进行混合,球磨机球磨20h,使二者充分混合均匀,混均匀后放入管式炉中进行烧结,;然后在管式炉中,先于450℃热处理3h,然后700℃热处理5h,最后900-930℃热处理12h,全程保持氧气气氛,所得到得产物进行解离,筛分,最终得到锆、钛共掺杂的三元正极材料,形貌如图3所示,测得的电性能如图4所示:在3.0-4.3V的电压范围内,所得到的的三元正极材料1C放电容量高达163.2mAh/g,并且经过50圈循环后,容量保持率高达97.3%。Weigh 5g of the nickel-cobalt-manganese ternary precursor and 2.3g of lithium hydroxide monohydrate, put them into a ball mill for mixing, and mill them in a ball mill for 20 hours to fully mix them evenly. ; Then in a tube furnace, heat treatment at 450 °C for 3 hours, then heat treatment at 700 °C for 5 hours, and finally heat treatment at 900-930 °C for 12 hours, maintaining an oxygen atmosphere throughout the whole process, the obtained products are dissociated and sieved, and finally zirconium and titanium are obtained. The morphology of the co-doped ternary cathode material is shown in Figure 3, and the measured electrical properties are shown in Figure 4: In the voltage range of 3.0-4.3V, the obtained ternary cathode material has a 1C discharge capacity as high as 163.2mAh/g, and after 50 cycles, the capacity retention rate is as high as 97.3%.
本发明高活性花瓣状镍钴锰三元前驱体的制备方法实施例2,包括以下步骤:Embodiment 2 of the preparation method of the highly active petaloid nickel-cobalt-manganese ternary precursor of the present invention comprises the following steps:
(1)按摩尔比Ni:Co:Mn=65:15:20配制2mol/L配制镍钴锰可溶盐水溶液,配制11mol/L的氢氧化钠溶液,配制12mol/L的氨水溶液,将氢氧化钠、氨水和硫酸铵配制成pH值为11.2、氨的浓度为0.4mol/L的反应底液,其中底液中氨水和硫酸铵的用量为3:1;(1) Prepare 2 mol/L nickel-cobalt-manganese soluble salt solution in molar ratio Ni: Co: Mn=65:15:20, prepare 11 mol/L sodium hydroxide solution, prepare 12 mol/L ammonia solution, mix hydrogen Sodium oxide, ammonia water and ammonium sulfate are prepared into a reaction bottom liquid with a pH value of 11.2 and an ammonia concentration of 0.4 mol/L, wherein the consumption of ammonia water and ammonium sulfate in the bottom liquid is 3:1;
(2)向所述镍钴锰可溶盐水溶液中添加金属盐水溶液,得到掺杂水溶液,金属盐水溶液为浓度为0.8g/L的硫酸锆和硫酸铝混合溶液;(2) adding a metal salt aqueous solution to the nickel-cobalt-manganese soluble salt aqueous solution to obtain a doping aqueous solution, and the metal salt aqueous solution is a mixed solution of zirconium sulfate and aluminum sulfate with a concentration of 0.8 g/L;
(3)向反应釜中添加为反应釜体积的1/2的反应底液,然后开启搅拌,搅拌速度为600rpm,保持温度为60℃,再通入惰性气体,随后用精密计量泵通入所述掺杂水溶液、氨水溶液和碱液,使其进行反应,反应期间保持反应釜体系温度为57-63℃,pH值为11.1-11.5、氨浓度为0.4-0.6mol/L;(3) Add the reaction bottom liquid which is 1/2 of the volume of the reaction kettle in the reaction kettle, then start stirring, the stirring speed is 600rpm, the temperature is kept at 60°C, and then the inert gas is introduced, and then the precision metering pump is used to enter the The doping aqueous solution, the aqueous ammonia solution and the alkali solution are reacted, and the temperature of the reaction kettle system is kept at 57-63° C., the pH value is 11.1-11.5, and the ammonia concentration is 0.4-0.6 mol/L during the reaction;
(4)持续搅拌,待反应釜内的液位上升至接近反应釜盖时,开启溢流阀,使反应液流入陈化釜中进行陈化,陈化过程搅拌速度调整到150rpm,保持陈化时间8h;(4) Continue stirring. When the liquid level in the reaction kettle rises to near the lid of the reaction kettle, open the overflow valve to make the reaction liquid flow into the aging kettle for aging. During the aging process, the stirring speed is adjusted to 150rpm to keep the aging process. time 8h;
(5)对陈化所得物行固液分离,对所得固体物料进行洗涤,然后干燥和过筛,即得比表面积20-25m2/g的花瓣状的掺杂有锆、铝的镍钴锰三元前驱体。(5) Perform solid-liquid separation on the aged material, wash the obtained solid material, then dry and sieve to obtain petal-shaped nickel-cobalt-manganese doped with zirconium and aluminum with a specific surface area of 20-25 m 2 /g Ternary precursors.
称取5g所述镍钴锰三元前驱体、2.3g单水氢氧化锂放入球磨机中进行混合,球磨机球磨20h,使二者充分混合均匀,混均匀后放入管式炉中进行烧结,;然后在管式炉中,先于450℃热处理3h,然后700℃热处理5h,最后900-930℃热处理12h,全程保持氧气气氛,所得到得产物进行解离,筛分,最终得到锆、铝共掺杂的三元正极材料。测得其电性能如下:在3.0-4.3V的电压范围内,所得到的的三元正极材料1C放电容量高达 168.5mAh/g,并且经过50圈循环后,容量保持率高达97.25%。Weigh 5g of the nickel-cobalt-manganese ternary precursor and 2.3g of lithium hydroxide monohydrate, put them into a ball mill for mixing, and mill them in a ball mill for 20 hours to fully mix them evenly. ; Then in a tube furnace, heat treatment at 450 °C for 3 hours, then heat treatment at 700 °C for 5 hours, and finally heat treatment at 900-930 °C for 12 hours, maintaining an oxygen atmosphere throughout the whole process, the obtained products are dissociated and sieved, and finally zirconium and aluminum are obtained. Co-doped ternary cathode material. The electrical properties were measured as follows: in the voltage range of 3.0-4.3V, the 1C discharge capacity of the obtained ternary cathode material was as high as 168.5mAh/g, and after 50 cycles, the capacity retention rate was as high as 97.25%.
本发明高活性花瓣状的三元前驱体的制备方法实施例3,包括以下步骤:Embodiment 3 of the preparation method of the highly active petal-shaped ternary precursor of the present invention comprises the following steps:
(1)按摩尔比Ni:Co:Mn=83:11:6配制2mol/L配制镍钴锰可溶盐水溶液,配制11mol/L的氢氧化钠溶液,配制12mol/L的氨水溶液,将氢氧化钠、氨水和硫酸铵配制成pH值为11.5、氨的浓度为0.4mol/L的反应底液,其中底液中氨水和硫酸铵的用量为3:1;(1) Prepare 2 mol/L nickel-cobalt-manganese soluble salt solution in molar ratio Ni:Co:Mn=83:11:6, prepare 11mol/L sodium hydroxide solution, prepare 12mol/L ammonia solution, mix hydrogen Sodium oxide, ammonia water and ammonium sulfate are prepared into a reaction bottom liquid with a pH value of 11.5 and an ammonia concentration of 0.4 mol/L, wherein the consumption of ammonia water and ammonium sulfate in the bottom liquid is 3:1;
(2)向所述镍钴锰可溶盐水溶液中添加金属盐水溶液,得到掺杂水溶液,金属盐水溶液为浓度为0.8g/L的硫酸锆和硫酸钛混合溶液;(2) adding a metal salt aqueous solution to the nickel-cobalt-manganese soluble salt solution to obtain a doping aqueous solution, and the metal salt aqueous solution is a mixed solution of zirconium sulfate and titanium sulfate with a concentration of 0.8 g/L;
(3)向反应釜中添加为反应釜体积的1/4的反应底液,然后开启搅拌,搅拌速度为500rpm,保持温度为60℃,再通入惰性气体,随后用精密计量泵通入所述掺杂水溶液、氨水溶液和碱液,使其进行反应,反应期间保持反应釜体系温度为60±2℃,pH值为12±0.3、氨浓度为0.8±0.1mol/L;(3) Add the reaction bottom liquid that is 1/4 of the volume of the reaction kettle in the reaction kettle, then start stirring, the stirring speed is 500rpm, the temperature is maintained at 60 ° C, and then the inert gas is introduced, and then the precision metering pump is used to enter the Describe the doping aqueous solution, ammonia solution and alkali solution, make it react, during the reaction, keep the temperature of the reactor system at 60±2℃, the pH value is 12±0.3, and the ammonia concentration is 0.8±0.1mol/L;
(4)持续搅拌,待反应釜内的液位上升至接近反应釜盖时,开启溢流阀,使反应液流入陈化釜中进行陈化,陈化过程搅拌速度调整到150rpm,保持陈化时间8h;(4) Continue stirring. When the liquid level in the reaction kettle rises to near the lid of the reaction kettle, open the overflow valve to make the reaction liquid flow into the aging kettle for aging. During the aging process, the stirring speed is adjusted to 150rpm to keep the aging process. time 8h;
(5)对陈化所得物行固液分离,对所得固体物料进行洗涤,然后干燥和过筛,即得比表面积20-30m2/g的花瓣状的掺杂有锆、钛的镍钴锰三元前驱体。(5) Perform solid-liquid separation on the aged material, wash the obtained solid material, then dry and sieve to obtain petal-shaped nickel-cobalt-manganese doped with zirconium and titanium with a specific surface area of 20-30 m 2 /g Ternary precursors.
称取5g所述镍钴锰三元前驱体、2.3g单水氢氧化锂放入球磨机中进行混合,球磨机球磨20h,使二者充分混合均匀,混均匀后放入管式炉中进行烧结,;然后在管式炉中,先于450℃热处理3h,然后700℃热处理5h,最后900-930℃热处理12h,全程保持氧气气氛,所得到得产物进行解离,筛分,最终得到锆、钛共掺杂的镍钴锰三元正极材料。测得其电性能如下:在3.0-4.3V的电压范围内,所得到的的三元正极材料1C放电容量高达 178.51mAh/g,并且经过50圈循环后,容量保持率高达96.56%。Weigh 5g of the nickel-cobalt-manganese ternary precursor and 2.3g of lithium hydroxide monohydrate, put them into a ball mill for mixing, and mill them in a ball mill for 20 hours to fully mix them evenly. ; Then in a tube furnace, heat treatment at 450 °C for 3 hours, then heat treatment at 700 °C for 5 hours, and finally heat treatment at 900-930 °C for 12 hours, maintaining an oxygen atmosphere throughout the whole process, the obtained products are dissociated and sieved, and finally zirconium and titanium are obtained. Co-doped nickel-cobalt-manganese ternary cathode material. The electrical properties were measured as follows: in the voltage range of 3.0-4.3V, the 1C discharge capacity of the obtained ternary cathode material was as high as 178.51mAh/g, and after 50 cycles, the capacity retention rate was as high as 96.56%.
以上所述仅是本发明的优选实施方式,应当指出,对于本领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应当视为在本发明的保护范围之内。The above are only the preferred embodiments of the present invention. It should be pointed out that for those of ordinary skill in the art, without departing from the technical principles of the present invention, several improvements and modifications can also be made. It should be regarded as being within the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910480530.3A CN110182857B (en) | 2019-06-04 | 2019-06-04 | High-activity petal-shaped nickel-cobalt-manganese ternary precursor and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910480530.3A CN110182857B (en) | 2019-06-04 | 2019-06-04 | High-activity petal-shaped nickel-cobalt-manganese ternary precursor and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110182857A CN110182857A (en) | 2019-08-30 |
CN110182857B true CN110182857B (en) | 2020-08-07 |
Family
ID=67720153
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910480530.3A Active CN110182857B (en) | 2019-06-04 | 2019-06-04 | High-activity petal-shaped nickel-cobalt-manganese ternary precursor and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110182857B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113258054B (en) * | 2021-04-25 | 2022-07-01 | 浙江帕瓦新能源股份有限公司 | Modified ternary positive electrode material precursor of lithium ion battery and preparation method of modified ternary positive electrode material precursor |
CN116031399A (en) * | 2023-02-09 | 2023-04-28 | 荆门市格林美新材料有限公司 | Petal-shaped nickel-iron-manganese-sodium ion battery precursor and preparation method and application thereof |
CN119160954A (en) * | 2024-11-15 | 2024-12-20 | 天力锂能集团股份有限公司 | Positive electrode active material and preparation method thereof and lithium ion battery |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106784686A (en) * | 2016-12-21 | 2017-05-31 | 烟台卓能电池材料股份有限公司 | A kind of doped lithium ion battery class monocrystalline multicomponent material and preparation method thereof |
CN107565125B (en) * | 2017-08-25 | 2019-10-29 | 湖南杉杉能源科技股份有限公司 | A kind of high voltage precursor of nickel-cobalt-lithium-manganese-oxide and preparation method thereof and high voltage nickel-cobalt lithium manganate cathode material |
-
2019
- 2019-06-04 CN CN201910480530.3A patent/CN110182857B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN110182857A (en) | 2019-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6395951B2 (en) | Nickel cobalt aluminum precursor material having aluminum element gradient distribution and method for producing positive electrode material | |
WO2020134048A1 (en) | Cobalt-free, lithium-rich ternary positive electrode material nma and preparation method thereof | |
CN111634958A (en) | Precursor for lithium battery, positive electrode material for lithium battery and preparation method thereof | |
CN106505193A (en) | Monocrystalline nickel-cobalt lithium manganate cathode material and preparation method thereof and lithium ion battery | |
CN111180724B (en) | Preparation method of ternary monocrystal anode material | |
CN107910531A (en) | A kind of preparation method of high nickel base ternary cathode material | |
CN106207138A (en) | A kind of method for preparing anode material of lithium-ion battery and application thereof | |
CN101304090A (en) | Method for synthesizing lithium ion battery anode material LiNixCoyMn(1-x-y)O2 | |
CN110817976B (en) | Positive electrode material precursor and preparation method and application thereof | |
CN106315694A (en) | Preparation method of doped lithium nickel cobalt oxide precursor | |
CN110182857B (en) | High-activity petal-shaped nickel-cobalt-manganese ternary precursor and preparation method thereof | |
CN110085845A (en) | A kind of nickel-base anode material and preparation method thereof with core-shell structure | |
CN107611384A (en) | A kind of high-performance concentration gradient high-nickel material, its preparation method and the purposes in lithium ion battery | |
WO2024239456A1 (en) | Lithium-rich manganese-based positive electrode precursor, preparation method therefor and use thereof | |
CN111732131A (en) | A kind of preparation method of core-shell structure ternary positive electrode material | |
CN114715957A (en) | Niobium-coated nickel-cobalt-manganese ternary precursor and preparation method and application | |
CN104466165B (en) | A kind of modified lithium manganate cathode material and preparation method | |
CN114620777A (en) | Ultrahigh nickel ternary precursor and preparation method thereof | |
CN107732232A (en) | A kind of preparation method of Hydrothermal Synthesiss nickel-cobalt lithium manganate cathode material | |
CN112164783A (en) | Lithium battery positive electrode material and preparation method thereof | |
WO2023216453A1 (en) | Core-shell gradient ternary precursor, and preparation method therefor and use thereof | |
CN107546385A (en) | A kind of method for preparing LiNixMn1-xO2 binary cathode material | |
CN111933914A (en) | Vanadium pentoxide and rGO co-coated gradient ternary cathode material and preparation method | |
CN113387401B (en) | Preparation method of scandium-tungsten doped anode material precursor | |
CN114195204B (en) | A high sphericity manganese-rich carbonate precursor and its preparation method and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |