CN110175773A - 基于贝叶斯网络的侦查无人机作战效能评估方法 - Google Patents

基于贝叶斯网络的侦查无人机作战效能评估方法 Download PDF

Info

Publication number
CN110175773A
CN110175773A CN201910438099.6A CN201910438099A CN110175773A CN 110175773 A CN110175773 A CN 110175773A CN 201910438099 A CN201910438099 A CN 201910438099A CN 110175773 A CN110175773 A CN 110175773A
Authority
CN
China
Prior art keywords
bayesian network
ability
drones
surveillance
node
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201910438099.6A
Other languages
English (en)
Inventor
张迎周
陈宏建
傅建清
肖雁冰
黄秋月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Post and Telecommunication University
Original Assignee
Nanjing Post and Telecommunication University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Post and Telecommunication University filed Critical Nanjing Post and Telecommunication University
Priority to CN201910438099.6A priority Critical patent/CN110175773A/zh
Publication of CN110175773A publication Critical patent/CN110175773A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/29Graphical models, e.g. Bayesian networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • G06Q10/06393Score-carding, benchmarking or key performance indicator [KPI] analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/26Government or public services

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Theoretical Computer Science (AREA)
  • Development Economics (AREA)
  • Educational Administration (AREA)
  • Economics (AREA)
  • General Physics & Mathematics (AREA)
  • Strategic Management (AREA)
  • Physics & Mathematics (AREA)
  • Tourism & Hospitality (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Data Mining & Analysis (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Game Theory and Decision Science (AREA)
  • Quality & Reliability (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Operations Research (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明提供了一种基于贝叶斯网络的侦查无人机作战效能评估方法,包括建立效能评估指标体系、建立贝叶斯网络效能评估模型、贝叶斯网络推理三个部分。通过分析作战体系结构和基本作战流程,利用熵权法对效能评估指标集进行筛选,构建侦查无人机作战效能评估的指标体系,使得指标体系更加简单、合理;利用蒙特卡洛算法进行贝叶斯网络的参数学习,从而确定条件概率表,避免了手工输入条件概率表的麻烦,大大提高了效率;利用团树传播算法进行贝叶斯网络的精确推理,节省了推理的时间,提高了推理的准确性。

Description

基于贝叶斯网络的侦查无人机作战效能评估方法
技术领域
本发明涉及一种无人机作战效能评估方法,具体的说是一种基于贝叶斯网络的侦查无人机作战效能评估方法,属于效能评估领域。
背景技术
由于现代战场的维度已扩展至海、陆、空等多个维度,且信息对抗越来越复杂,不仅要求侦查机能够多角度、全天时地获取复杂战场信息,而且对侦查机的生存能力、情报的时效性、准确性都提出了新的需求。仅仅依靠有人机已无法满足现代战争需求,因此,使用侦查无人机来获取情报已是主要的侦查手段。侦查无人机具有不惧伤亡、隐蔽性好、成本低廉等特点,不仅可以和有人机协同作战,还能够完成有人机无法完成的特殊任务。毋庸置疑,无人机将在现代战争中得到越来越广泛的应用。无人机侦查过程是一个极为复杂的过程,且有较高的不确定性,所以我们要对侦查无人机的作战效能进行评估,从而获取有用信息,辅助作战人员进行决策,提高作战效率。
我国对作战效能分析评估研究主要是在20世纪70年代中期以后开始,80年代广泛开展,主要有指数法、层次分析法、ADC法等方法。指数法可以避开大量不确定性因素的影响,但其缺点是效能指数很难获取,评估准确度比较差。层次分析法是按照思维规律将决策过程层次化,通过专家给出的各影响因素进行量化计算,将定量与定性决策结合起来并给出评估结果,该方法容易受主观因素的影响,缺少有效证据。ADC法是通过数学模型来计算效能值,把系统效能Effectiveness定义为可用性Availability、可信性Depend-ability及固有能力C的函数,即E=A*D*C。由于评估要素间的关联性比较复杂,该模型比较难建立,不适合复杂环境下的效能评估。
有鉴于此,确有必要对现有的效能评估方法进行改进,以提高效能评估的效率。
发明内容
本发明的目的在于提供一种基于贝叶斯网络的侦查无人机作战效能评估方法,以提高效能评估的效率。
为实现上述目的,本发明提供了一种基于贝叶斯网络的侦查无人机作战效能评估方法,具体步骤如下:
步骤(1):获得侦查无人机作战效能的备选指标集,利用熵权法对备选指标集进行筛选,以从基本性能、侦查能力、生存能力、指挥控制能力四个方面对侦查无人机作战效能进行评估;
步骤(2):对步骤(1)筛选出的影响侦查无人机作战效能的各评估指标进行量化分析,以确定贝叶斯网络的结构;
步骤(3):设计仿真实验并进行仿真,将采集到的仿真结果用于贝叶斯网络的参数学习;
步骤(4):根据步骤(2)所确定的贝叶斯网络的结构,利用蒙特卡洛算法进行贝叶斯网络的参数学习,确定条件概率表;
步骤(5):将贝叶斯网络转换为团树;
步骤(6):利用团树传播算法对贝叶斯网络进行精确推理。
可选的,步骤(1)具体包括:
步骤(1.1):构建备选指标集;设x个被评估对象、t个指标,指标数据标准化后构成标准化的备选指标集,标准化的备选指标集R为:
步骤(1.2):定义熵和熵权,计算各指标的权重,根据指标权重筛选出评估指标;第j个评估指标的熵hj为:
其中
k=1/ln(x)
式中,f满足0≤f≤1,∑f=1,并且当f=0时,有flnf=0;i为被评估对象,j为评估指标,第j个评估指标的熵权Wj为:
可选的,步骤(1)中的基本性能包括最大爬升率、最大续航时间、最小转弯半径、可维护性;侦查能力包括协同作战能力、发现目标能力、指令传输能力;生存能力包括隐身性、火力攻击能力、侦察机尺寸、抗摧毁能力;指挥控制能力包括指挥决策能力、态势感知能力、数据链能力。
可选的,侦查能力中的发现目标能力包括侦查范围、敌方防御能力、抗干扰能力;指挥控制能力中的态势感知能力包括传感器效能、战场环境状况、数据分析能力。
可选的,步骤(2)中的各评估指标包括基本性能、侦查能力、生存能力、指挥控制能力、可维护性、协同作战能力、发现目标能力、指令传输能力、隐身性、火力攻击能力、抗摧毁能力、态势感知能力、数据链能力、敌方防御能力、抗干扰能力、传感器效能、数据分析能力、最大爬升率、最大续航时间、最小转弯半径、侦查范围、侦察机尺寸、战场环境状况、指挥决策效率,且贝叶斯网络中各评估指标的状态集可表示为:
基本性能,侦查能力,生存能力,指挥控制能力,可维护性,协同作战能力,发现目标能力,指令传输能力,隐身性,火力攻击能力,抗摧毁能力,态势感知能力,数据链能力,敌方防御能力,抗干扰能力,传感器效能,数据分析能力={强,中,差};
最大爬升率={快,较慢,慢};
最大续航时间={长,短};
最小转弯半径,侦查范围={大,较小,小};
侦察机尺寸={大型,中型,小型};
战场环境状况={复杂,简单};
指挥决策效率={高,低}。
可选的,步骤(3)具体包括:
步骤(3.1):选取仿真实验设计方法,并进行仿真实验设计;
步骤(3.2):设计仿真实验数据采集清单,所述仿真实验数据为备选指标集中的指标节点;
步骤(3.3):运行仿真实验,并采集仿真结果,将采集到的仿真结果收集、整理,以用于贝叶斯网络的参数学习。
可选的,步骤(4)具体包括:
步骤(4.1):将仿真结果增加到初始数据中,以得到完整的数据集D;
步骤(4.2):在数据集D中选取一个没有被观测到的数据xij(即变量xi在j中的情况,xi为利用蒙特卡洛算法进行参数学习还未使用到的数据,j为评估指标),然后计算:
式中,x’ij表示已经存在的某种状态,sk为第s个参数的信息,D\xij表示除去xij后D的剩余量,P(x’ij,D\xij\sk)和可以通过似然公式求得;
步骤(4.3):根据概率分布对仿真结果进行修正,直到得到新的完整的数据集D’;
步骤(4.4):返回步骤(4.2),用新的数据集D’对下一轮迭代进行参数估计,每次迭代的参数估计P(θs|D’,sk)均值作为最终的参数估计值,其中θs表示第s个参数的后验概率。
可选的,步骤(5)具体包括:
步骤(5.1):建立贝叶斯网络道德图;将原贝叶斯网络中的所有节点和边保留,若原贝叶斯网络中的某个节点有多于两个的父节点,则在道德图中,将该节点的所有父节点两两相连;
步骤(5.2):三角剖分贝叶斯网络道德图;若道德图中有多于3个节点的环,则加入一条无向边,以连接环中两个非相邻节点,若仍有多于3个节点的环,则继续进行剖分,直至构成三角化图;
步骤(5.3):确定团节点;所述团节点为三角化图中的极大完全子图;
步骤(5.4):生成团树;所述团树中的每个节点对应一个团节点,两个团节点的交集作为分隔节点。
可选的,步骤(6)具体包括:
步骤(6.1):初始化算法参数;对步骤(5.4)中的每个团节点和分隔节点定义σ(x),设σ(x)的初始值为1,对于贝叶斯网络中的每个节点V,若则令
σ(x)=σ(x)*P(V|P(V));
步骤(6.2):吸收消息;设团节点x传递消息至相邻的团节点y,中间经过分隔节点B,则:
步骤(6.3):计算边缘概率;若V是贝叶斯网络中的一个节点,则P(V)可由下式计算:
与现有技术相比,本发明具有以下技术效果:
(1)利用熵权法对备选指标集进行筛选,使得指标体系更加简单、合理。
(2)利用蒙特卡洛算法进行贝叶斯网络的参数学习,从而确定条件概率表,避免了手工输入条件概率表的麻烦,大大提高了效率。
(3)利用团树传播算法进行贝叶斯网络的精确推理,节省了推理的时间,提高了推理的准确性。
附图说明
图1是本发明基于贝叶斯网络的侦查无人机作战效能评估方法的整体流程图。
图2是本发明基于贝叶斯网络的侦查无人机作战效能评估方法的指标体系图。
图3是本发明基于贝叶斯网络的侦查无人机作战效能评估方法的贝叶斯网络的模型图。
图4是本发明基于贝叶斯网络的侦查无人机作战效能评估方法的贝叶斯网络转换后的团树。
具体实施方式
以下结合附图具体说明本发明的技术方案。
本发明提供了一种基于贝叶斯网络的侦查无人机作战效能评估方法,主要用于解决侦查无人机作战效能评估的问题。
本发明采用贝叶斯网络模型对侦查无人机作战效能进行评估。贝叶斯网络模型是一个概率推理的数学模型,它以有向边表示变量之间的因果关系,以条件概率表表示变量之间关系的强弱,具有复杂关联关系表示能力、学习能力以及因果推理能力。近年来贝叶斯网络模型在无人机作战效能评估领域得到了广泛应用。
本发明的基于贝叶斯网络的侦查无人机作战效能评估方法,主要包括:建立效能评估指标体系、建立贝叶斯网络效能评估模型、贝叶斯网络推理三个部分,其中:
建立效能评估指标体系:该阶段的主要任务是分析侦查无人机的作战过程,利用熵权法对影响侦查无人机作战效能的评估指标进行筛选,并对各评估指标进行量化分析,最终确立效能评估指标体系;
建立贝叶斯网络效能评估模型:该阶段的主要任务是确定贝叶斯网络的结构和条件概率表,通过仿真实验生成参数(即贝叶斯网络中各节点的条件概率表)所需要的数据,利用蒙特卡洛算法进行贝叶斯网络的参数学习,以确定贝叶斯网络的结构和条件概率表;
贝叶斯网络推理:该阶段的主要任务是利用团树传播算法对贝叶斯网络进行精确推理,分析作战效能以及影响因素。
如图1所示,本发明的基于贝叶斯网络的侦查无人机作战效能评估方法,具体步骤包括:
步骤(1):获得侦查无人机作战效能的备选指标集,利用熵权法对备选指标集进行筛选,以从基本性能、侦查能力、生存能力、指挥控制能力四个方面对侦查无人机作战效能进行评估;
步骤(2):对步骤(1)筛选出的影响侦查无人机作战效能的各评估指标进行量化分析,以确定贝叶斯网络的结构;
步骤(3):设计仿真实验并进行仿真,将采集到的仿真结果用于贝叶斯网络的参数学习;
步骤(4):根据步骤(2)所确定的贝叶斯网络的结构,利用蒙特卡洛算法进行贝叶斯网络的参数学习,确定条件概率表;
步骤(5):将贝叶斯网络转换为团树;
步骤(6):利用团树传播算法对贝叶斯网络进行精确推理。
以下说明书部分将对上述步骤(1)~步骤(6)进行详细描述。
步骤(1)中的基本性能包括最大爬升率、最大续航时间、最小转弯半径、可维护性。侦查能力主要包括协同作战能力、发现目标能力、指令传输能力;其中,发现目标能力包括侦查范围、敌方防御能力、抗干扰能力。生存能力主要包括隐身性、火力攻击能力、侦察机尺寸、抗摧毁能力。指挥控制能力主要包括指挥决策能力、态势感知能力、数据链能力;其中,态势感知能力包括传感器效能、战场环境状况、数据分析能力。
步骤(1)具体包括:
步骤(1.1):构建备选指标集;设x个被评估对象、t个指标,指标数据标准化后构成标准化的备选指标集,标准化的备选指标集R为:
步骤(1.2):定义熵和熵权,计算各指标的权重,根据指标权重筛选出评估指标,第j个评估指标的熵hj为:
其中
k=1/ln(x)
式中,f满足0≤f≤1,∑f=1,并且当f=0时,有flnf=0;i为被评估对象,j为评估指标,第j个评估指标的熵权Wj为:
如图2和图3所示,为了描述方便,步骤(2)中的各评估指标可用英文首字母缩写来简写;
对于基本性能(BP)、侦查能力(IA)、生存能力(SA)、指挥控制能力(CCC)、可维护性(MA)、协同作战能力(CC)、发现目标能力(TFA)、指令传输能力(CTC)、隐身性(SS)、火力攻击能力(FP)、抗摧毁能力(DR)、态势感知能力(SA)、数据链能力(DLC)、敌方防御能力(LDC)、抗干扰能力(AIC)、传感器效能(SP)、数据分析能力(DAA),可用强、中、差三个等级来表示;
对于最大爬升率(MCR),可用快、较慢、慢来表示;
对于最大续航时间(ME),可用长、短来表示;
对于最小转弯半径(MTR)、侦查范围(SOI),可用大、较小、小来表示;
对于侦察机尺寸(SPS),可用大型、中型、小型来表示;
对于战场环境状况(BE),可用复杂、简单来表示;
对于指挥决策效率(CDE),可用高、低来表示。
从而,可将贝叶斯网络中各评估指标的状态集归纳如下:
BP,IA,SA,CCC,MA,CC,TFA,CTC,SS,FP,DR,SA,DLC,LDC,AIC,SP,DAA={强,中,差};
MCR={快,较慢,慢};
ME={长,短};
MTR,SOI={大,较小,小};
SPS={大型,中型,小型};
BE={复杂,简单};
CDE={高,低}。
步骤(3)具体包括:
步骤(3.1):选取仿真实验设计方法,并进行仿真实验设计;由于实验因子的组合数比较多,这里采用正交设计方法;
步骤(3.2):设计仿真实验数据采集清单,所述仿真实验数据为备选指标集中的指标节点;
步骤(3.3):运行仿真实验,并采集仿真结果,将采集到的仿真结果收集、整理,以用于贝叶斯网络的参数学习。
步骤(4)具体包括:
步骤(4.1):将仿真结果增加到初始数据中,以得到完整的数据集D;该步骤中,初始数据是指在进行仿真实验之前,根据经验收集到的一些实验数据,但是这些实验数据并不全面,有缺失的情况,所以结合仿真结果,可以进行数据的弥补;
步骤(4.2):在数据集D中选取一个没有被观测到的数据xij(即变量xi在j中的情况,xi为利用蒙特卡洛算法进行参数学习还未使用到的数据,j为评估指标),然后计算:
式中:x’ij表示已经存在的某种状态;sk为第s个参数的信息;D\xij表示除去xij后D的剩余量;P(x’ij,D\xij\sk)和可以通过似然公式求得;
步骤(4.3):根据概率分布对仿真结果进行修正,直到得到新的完整数据集D’;
步骤(4.4):返回步骤(4.2),用新的数据集D’对下一轮迭代进行估计,每次迭代的参数估计P(θs|D’,sk)均值作为最终的参数估计值,其中θs表示第s个参数的后验概率。
步骤(5)具体包括:
步骤(5.1):建立贝叶斯网络道德图;将原贝叶斯网络中的所有节点和边保留,若原贝叶斯网络中的某个节点有多于两个的父节点,则在道德图中,将该节点的所有父节点两两相连;
步骤(5.2):三角剖分贝叶斯网络道德图;若道德图中有多于3个节点的环,则加入一条无向边,以连接环中两个非相邻节点,若仍有多于3个节点的环,则继续进行剖分,直至构成三角化图;
步骤(5.3):确定团节点;团节点是三角化图中的极大完全子图,不被其它任何完全子图包含;
步骤(5.4):生成团树;团树中的每个节点对应一个团节点,两个团节点的交集作为分隔节点。
如图4所示,为步骤(5.4)生成的团树,其中,贝叶斯网络中的节点由上到下、由左到右依次编号为A、B、C....Y。
步骤(6)具体包括:
步骤(6.1):初始化算法参数;对步骤(5.4)中的每个团节点和分隔节点,定义σ(x),设σ(x)的初始值为1,对于贝叶斯网络中的每个节点V,若则令
σ(x)=σ(x)*P(V|P(V));
步骤(6.2):吸收消息;设团节点x传递消息至相邻的团节点y,中间经过分隔节点B,则:
步骤(6.3):计算边缘概率;若V是贝叶斯网络中的一个节点,则P(V)可由下式计算:
综上所述,本发明通过分析作战体系结构和基本作战流程,利用熵权法对备选指标集进行筛选,以构建侦查无人机作战的效能评估指标体系,使得指标体系更加简单、合理,大大提高了效率;利用蒙特卡洛算法进行贝叶斯网络的参数学习,从而确定条件概率表,避免了手工输入条件概率表的麻烦,大大提高了效率;利用团树传播算法进行贝叶斯网络的精确推理,节省了推理的时间,提高了推理的准确性。
以上所述,仅为本发明中的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉该技术的人在本发明所揭露的技术范围内,可理解想到的变换或替换,都应涵盖在本发明的包含范围之内,因此,本发明的保护范围应该以权利要求书的保护范围为准。

Claims (9)

1.一种基于贝叶斯网络的侦查无人机作战效能评估方法,其特征在于,包括以下步骤:
步骤(1):获得侦查无人机作战效能的备选指标集,利用熵权法对备选指标集进行筛选,以从基本性能、侦查能力、生存能力、指挥控制能力四个方面对侦查无人机作战效能进行评估;
步骤(2):对步骤(1)筛选出的影响侦查无人机作战效能的各评估指标进行量化分析,以确定贝叶斯网络的结构;
步骤(3):设计仿真实验并进行仿真,将采集到的仿真结果用于贝叶斯网络的参数学习;
步骤(4):根据步骤(2)所确定的贝叶斯网络的结构,利用蒙特卡洛算法进行贝叶斯网络的参数学习,确定条件概率表;
步骤(5):将贝叶斯网络转换为团树;
步骤(6):利用团树传播算法对贝叶斯网络进行精确推理。
2.根据权利要求1所述的基于贝叶斯网络的侦查无人机作战效能评估方法,其特征在于,步骤(1)具体包括:
步骤(1.1):构建备选指标集;设x个被评估对象、t个指标,指标数据标准化后构成标准化的备选指标集,标准化的备选指标集R为:
步骤(1.2):定义熵和熵权,计算各指标的权重,根据指标权重筛选出评估指标;第j个评估指标的熵hj为:
其中
k=1/ln(x)
式中,f满足0≤f≤1,∑f=1,并且当f=0时,有f ln f=0;i为被评估对象,j为评估指标,第j个评估指标的熵权Wj为:
3.根据权利要求1所述的基于贝叶斯网络的侦查无人机作战效能评估方法,其特征在于:步骤(1)中的基本性能包括最大爬升率、最大续航时间、最小转弯半径、可维护性;侦查能力包括协同作战能力、发现目标能力、指令传输能力;生存能力包括隐身性、火力攻击能力、侦察机尺寸、抗摧毁能力;指挥控制能力包括指挥决策能力、态势感知能力、数据链能力。
4.根据权利要求3所述的基于贝叶斯网络的侦查无人机作战效能评估方法,其特征在于:侦查能力中的发现目标能力包括侦查范围、敌方防御能力、抗干扰能力;指挥控制能力中的态势感知能力包括传感器效能、战场环境状况、数据分析能力。
5.根据权利要求4所述的基于贝叶斯网络的侦查无人机作战效能评估方法,其特征在于:步骤(2)中的各评估指标包括基本性能、侦查能力、生存能力、指挥控制能力、可维护性、协同作战能力、发现目标能力、指令传输能力、隐身性、火力攻击能力、抗摧毁能力、态势感知能力、数据链能力、敌方防御能力、抗干扰能力、传感器效能、数据分析能力、最大爬升率、最大续航时间、最小转弯半径、侦查范围、侦察机尺寸、战场环境状况、指挥决策效率,且贝叶斯网络中各评估指标的状态集可表示为:
基本性能,侦查能力,生存能力,指挥控制能力,可维护性,协同作战能力,发现目标能力,指令传输能力,隐身性,火力攻击能力,抗摧毁能力,态势感知能力,数据链能力,敌方防御能力,抗干扰能力,传感器效能,数据分析能力={强,中,差};
最大爬升率={快,较慢,慢};
最大续航时间={长,短};
最小转弯半径,侦查范围={大,较小,小};
侦察机尺寸={大型,中型,小型};
战场环境状况={复杂,简单};
指挥决策效率={高,低}。
6.根据权利要求1所述的基于贝叶斯网络的侦查无人机作战效能评估方法,其特征在于,步骤(3)具体包括:
步骤(3.1):选取仿真实验设计方法,并进行仿真实验设计;
步骤(3.2):设计仿真实验数据采集清单,所述仿真实验数据为备选指标集中的指标节点;
步骤(3.3):运行仿真实验,并采集仿真结果,将采集到的仿真结果收集、整理,以用于贝叶斯网络的参数学习。
7.根据权利要求6所述的基于贝叶斯网络的侦查无人机作战效能评估方法,其特征在于,步骤(4)具体包括:
步骤(4.1):将仿真结果增加到初始数据中,以得到完整的数据集D;
步骤(4.2):在数据集D中选取一个没有被观测到的数据xij(即变量xi在j中的情况,xi为利用蒙特卡洛算法进行参数学习还未使用到的数据,j为评估指标),然后计算:
式中,x’ij表示已经存在的某种状态,sk为第s个参数的信息,D\xij表示除去xij后D的剩余量,P(x’ij,D\xij\sk)和可以通过似然公式求得;
步骤(4.3):根据概率分布对仿真结果进行修正,直到得到新的完整的数据集D’;
步骤(4.4):返回步骤(4.2),用新的数据集D’对下一轮迭代进行参数估计,每次迭代的参数估计P(θs|D’,sk)均值作为最终的参数估计值,其中θs表示第s个参数的后验概率。
8.根据权利要求1所述的基于贝叶斯网络的侦查无人机作战效能评估方法,其特征在于,步骤(5)具体包括:
步骤(5.1):建立贝叶斯网络道德图;将原贝叶斯网络中的所有节点和边保留,若原贝叶斯网络中的某个节点有多于两个的父节点,则在道德图中,将该节点的所有父节点两两相连;
步骤(5.2):三角剖分贝叶斯网络道德图;若道德图中有多于3个节点的环,则加入一条无向边,以连接环中两个非相邻节点,若仍有多于3个节点的环,则继续进行剖分,直至构成三角化图;
步骤(5.3):确定团节点;所述团节点为三角化图中的极大完全子图;
步骤(5.4):生成团树;所述团树中的每个节点对应一个团节点,两个团节点的交集作为分隔节点。
9.根据权利要求8所述的基于贝叶斯网络的侦查无人机作战效能评估方法,其特征在于,步骤(6)具体包括:
步骤(6.1):初始化算法参数;对步骤(5.4)中的每个团节点和分隔节点定义σ(x),设σ(x)的初始值为1,对于贝叶斯网络中的每个节点V,若则令
σ(x)=σ(x)*P(V|P(V));
步骤(6.2):吸收消息;设团节点x传递消息至相邻的团节点y,中间经过分隔节点B,则:
步骤(6.3):计算边缘概率;若V是贝叶斯网络中的一个节点,则P(V)可由下式计算:
CN201910438099.6A 2019-05-24 2019-05-24 基于贝叶斯网络的侦查无人机作战效能评估方法 Withdrawn CN110175773A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910438099.6A CN110175773A (zh) 2019-05-24 2019-05-24 基于贝叶斯网络的侦查无人机作战效能评估方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910438099.6A CN110175773A (zh) 2019-05-24 2019-05-24 基于贝叶斯网络的侦查无人机作战效能评估方法

Publications (1)

Publication Number Publication Date
CN110175773A true CN110175773A (zh) 2019-08-27

Family

ID=67692052

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910438099.6A Withdrawn CN110175773A (zh) 2019-05-24 2019-05-24 基于贝叶斯网络的侦查无人机作战效能评估方法

Country Status (1)

Country Link
CN (1) CN110175773A (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111783355A (zh) * 2020-06-17 2020-10-16 南京航空航天大学 一种多智能体架构下的人机交互风险评估方法
CN112052608A (zh) * 2020-10-16 2020-12-08 中国直升机设计研究所 一种作战推演仿真与效能评估一体化集成方法
CN112381967A (zh) * 2020-11-20 2021-02-19 南京航空航天大学 基于贝叶斯网络的无人车制动系统故障诊断方法
CN112668876A (zh) * 2020-12-25 2021-04-16 中国航空工业集团公司沈阳飞机设计研究所 一种无人机系统方案综合评估方法
CN112749806A (zh) * 2020-12-31 2021-05-04 厦门渊亭信息科技有限公司 一种战场态势评估方法、终端设备及存储介质
CN112819265A (zh) * 2019-11-15 2021-05-18 信云领创(北京)科技有限公司 一种基于潜在权重自适应分配的作战方案评估方法
CN112819264A (zh) * 2019-11-15 2021-05-18 信云领创(北京)科技有限公司 一种用于作战效能评估的加权随机混合语义方法
CN113435780A (zh) * 2021-07-14 2021-09-24 北京信息科技大学 一种基于神经网络的应急通信感知装备体系效能评估方法
CN114444201A (zh) * 2022-01-16 2022-05-06 中国人民解放军空军工程大学 基于贝叶斯网络的对地攻击无人机自主能力评估方法
CN116628449A (zh) * 2023-05-29 2023-08-22 西安航空学院 基于图的邻接点优先的联合树saad-jt算法的态势评估方法
CN116680542A (zh) * 2023-06-27 2023-09-01 北京五木恒润科技有限公司 一种主干分支态势与旁路分支态势生成方法及系统

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112819265A (zh) * 2019-11-15 2021-05-18 信云领创(北京)科技有限公司 一种基于潜在权重自适应分配的作战方案评估方法
CN112819264A (zh) * 2019-11-15 2021-05-18 信云领创(北京)科技有限公司 一种用于作战效能评估的加权随机混合语义方法
CN111783355B (zh) * 2020-06-17 2024-02-20 南京航空航天大学 一种多智能体架构下的人机交互风险评估方法
CN111783355A (zh) * 2020-06-17 2020-10-16 南京航空航天大学 一种多智能体架构下的人机交互风险评估方法
CN112052608A (zh) * 2020-10-16 2020-12-08 中国直升机设计研究所 一种作战推演仿真与效能评估一体化集成方法
CN112052608B (zh) * 2020-10-16 2022-11-18 中国直升机设计研究所 一种作战推演仿真与效能评估一体化集成方法
CN112381967A (zh) * 2020-11-20 2021-02-19 南京航空航天大学 基于贝叶斯网络的无人车制动系统故障诊断方法
CN112668876A (zh) * 2020-12-25 2021-04-16 中国航空工业集团公司沈阳飞机设计研究所 一种无人机系统方案综合评估方法
CN112749806A (zh) * 2020-12-31 2021-05-04 厦门渊亭信息科技有限公司 一种战场态势评估方法、终端设备及存储介质
CN113435780A (zh) * 2021-07-14 2021-09-24 北京信息科技大学 一种基于神经网络的应急通信感知装备体系效能评估方法
CN113435780B (zh) * 2021-07-14 2023-05-12 北京信息科技大学 一种基于神经网络的应急通信感知装备体系效能评估方法
CN114444201A (zh) * 2022-01-16 2022-05-06 中国人民解放军空军工程大学 基于贝叶斯网络的对地攻击无人机自主能力评估方法
CN114444201B (zh) * 2022-01-16 2024-05-14 中国人民解放军空军工程大学 基于贝叶斯网络的对地攻击无人机自主能力评估方法
CN116628449B (zh) * 2023-05-29 2024-02-13 西安航空学院 基于图的邻接点优先的联合树saad-jt算法的态势评估方法
CN116628449A (zh) * 2023-05-29 2023-08-22 西安航空学院 基于图的邻接点优先的联合树saad-jt算法的态势评估方法
CN116680542A (zh) * 2023-06-27 2023-09-01 北京五木恒润科技有限公司 一种主干分支态势与旁路分支态势生成方法及系统
CN116680542B (zh) * 2023-06-27 2024-01-09 北京五木恒润科技有限公司 一种主干分支态势与旁路分支态势生成方法及系统

Similar Documents

Publication Publication Date Title
CN110175773A (zh) 基于贝叶斯网络的侦查无人机作战效能评估方法
Heidari et al. Machine learning applications in internet-of-drones: Systematic review, recent deployments, and open issues
CN110119904A (zh) 一种舰船装备维修保障能力评估方法和系统
CN108647414A (zh) 基于仿真实验的作战计划适应性分析方法及存储介质
CN109960148B (zh) 一种智能无人系统的自主性评估方法及系统
CN110929394A (zh) 基于超网络理论的联合作战体系建模方法以及存储介质
Mikaelian et al. A logical approach to real options identification with application to UAV systems
CN109597839B (zh) 一种基于航电作战态势的数据挖掘方法
Tzoumas et al. Resilient non-submodular maximization over matroid constraints
CN107967487A (zh) 一种基于证据距离和不确定度的冲突数据融合方法
Park et al. A process for human-aided multi-entity bayesian networks learning in predictive situation awareness
Bossé et al. An essay to characterise information fusion systems
CN113408137B (zh) 一种基于任务完成度和损失比的体系作战效能分析方法
McLemore et al. A model for geographically distributed combat interactions of swarming naval and air forces
CN113361887B (zh) 面向作战应用的航空电子系统适用性评估系统
CN115758337A (zh) 基于时序图卷积网络的后门实时监测方法、电子设备、介质
Santos et al. Assessing machine learning techniques for intrusion detection in cyber-physical systems
Shmelova et al. Analysis of human-operator's decision-making in air navigation system
Nour et al. Multi-radar tracking optimization for collaborative combat
Griffith et al. Due Regard Encounter Model Version 1.0
CN117932977B (zh) 一种可计算作战概念模型的构建方法及系统
Andrade et al. Machine learning framework for Hazard Extraction and Analysis of Trends (HEAT) in wildfire response
Suojanen et al. Team 4: Hierarchic technology forecasting model-what can be data farmed?
Wu et al. An Intelligent Evaluation Method of Application Scenario Complexity Level of Unmanned Swarms
CN117540156A (zh) 面向任务的复杂装备体系能力分析方法和模拟对抗系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20190827