CN110175431A - It a kind ofly is admittedly that down space fragment space density determines method - Google Patents
It a kind ofly is admittedly that down space fragment space density determines method Download PDFInfo
- Publication number
- CN110175431A CN110175431A CN201910488123.7A CN201910488123A CN110175431A CN 110175431 A CN110175431 A CN 110175431A CN 201910488123 A CN201910488123 A CN 201910488123A CN 110175431 A CN110175431 A CN 110175431A
- Authority
- CN
- China
- Prior art keywords
- space
- debris
- orbital
- discrete
- space debris
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 20
- 239000012634 fragment Substances 0.000 title claims description 17
- 238000004364 calculation method Methods 0.000 claims abstract description 10
- 239000007787 solid Substances 0.000 claims description 8
- 230000001174 ascending effect Effects 0.000 claims description 7
- 239000006185 dispersion Substances 0.000 claims description 3
- 238000004458 analytical method Methods 0.000 abstract description 2
- 238000005516 engineering process Methods 0.000 abstract description 2
- 230000000694 effects Effects 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012502 risk assessment Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
一种地固系下空间碎片空间密度确定方法,涉及航天技术领域,为解决现有的空间密度算法均基于J2000惯性坐标系,而在J2000惯性坐标系下建立的空间密度算法,无法实现地球同步轨道区域空间碎片环境随地理经度分布进行描述的问题,包括以下步骤:步骤一、地球固连坐标系下同步轨道保护区域空间单元划分:步骤二、空间碎片轨道位置离散:步骤三、轨道离散点位置计算:步骤四、识别各空间碎片轨道离散点对应的空间单元;步骤五、计算各空间单元内碎片停留概率:步骤六、计算空间密度。本发明能够实现不同地理经度位置空间碎片分布情况的差异性分析,可更具针对性的对地球同步轨道区域空间碎片环境进行描述,提高该区域航天器空间碎片环境评估精度。
A method for determining the space density of space debris in a ground-fixed system, which relates to the field of aerospace technology, in order to solve the problem that the existing space density algorithms are based on the J2000 inertial coordinate system, and the space density algorithm established under the J2000 inertial coordinate system cannot achieve geosynchronous The problem of describing the space debris environment in the orbital region according to the distribution of geographical longitude includes the following steps: Step 1, the space unit division of the geosynchronous orbit protection area in the earth-fixed coordinate system: Step 2, the space debris orbit position is discrete: Step 3, the orbit discrete point Position calculation: Step 4, identifying the space unit corresponding to the discrete orbital point of each space debris; Step 5, calculating the probability of debris staying in each space unit; Step 6, calculating the space density. The invention can realize the difference analysis of the distribution of space debris at different geographic longitude positions, can more specifically describe the space debris environment in the geosynchronous orbit area, and improve the assessment accuracy of the spacecraft space debris environment in this area.
Description
技术领域technical field
本发明涉及航天技术领域,具体为一种地固系下空间碎片空间密度确定方法。The invention relates to the field of aerospace technology, in particular to a method for determining the space density of space debris under the ground system.
背景技术Background technique
空间碎片系指轨道上的或重返大气层的无功能人造物体,包括其残块和组件。空间密度是描述空间碎片时空分布规律的基本参数之一,也是航天器防护方案设计的理论基础之一Space debris refers to non-functional man-made objects in orbit or re-entering the atmosphere, including their fragments and components. Space density is one of the basic parameters to describe the space-time distribution of space debris, and it is also one of the theoretical basis for the design of spacecraft protection schemes
地球同步轨道卫星运行周期与地球自转周期一致,因此其对地球的覆盖区域基本稳定,可实现对同一地区的连续工作。地球同步轨道卫星常用于通讯、气象、广播电视、导弹预警、数据中继等方面。与其它轨道区域不同,地球同步轨道区域航天器轨道周期基本一致,且多为轨道倾角接近0°的近圆轨道。地理经度位置是地球同步轨道航天活动的重要轨道参数。The geosynchronous orbit satellite's operation period is consistent with the earth's rotation period, so its coverage area on the earth is basically stable, and it can realize continuous work on the same area. Geosynchronous orbit satellites are often used in communications, weather, radio and television, missile early warning, data relay, etc. Different from other orbital regions, the orbital period of spacecraft in the geosynchronous orbital region is basically the same, and most of them are near-circular orbits with orbital inclinations close to 0°. Geographic longitude position is an important orbital parameter for space activities in geosynchronous orbit.
空间碎片是航天活动的产物,其分布规律受航天活动的直接影响。探测数据表明,受人类航天活动规律及空间物体轨道摄动因素的影响,与其它轨道区域相比,地球同步轨道区域空间碎片分布规律具有显著特征:绝大多数空间物体轨道倾角不超过15°,运行于近圆轨道且轨道周期基本一致(约为地球自转周期)。地球同步轨道区域空间物体轨道周期的集中分布特性,使得该区域碎片环境在地球固连坐标系下较为稳定。Space debris is the product of space activities, and its distribution is directly affected by space activities. The detection data show that, affected by the law of human spaceflight activities and the orbital perturbation factors of space objects, compared with other orbital regions, the distribution of space debris in the geosynchronous orbital region has significant characteristics: the orbital inclination of most space objects does not exceed 15°, It operates in a near-circular orbit and the orbital period is basically the same (approximately the earth's rotation period). The concentrated distribution of the orbital period of space objects in the geosynchronous orbit region makes the debris environment in this region relatively stable in the earth-fixed coordinate system.
空间碎片对航天器在轨安全运行构成不可忽视的威胁。空间碎片环境工程模型可实现空间碎片环境时空分布规律的评估,是航天器防护方案设计的基础。空间密度是空间碎片环境工程模型的输出量,合理可靠的空间密度算法是保证工程模型精度的基本前提,也是航天器风险评估和防护设计的重要基础数据源。Space debris poses a non-negligible threat to the safe operation of spacecraft in orbit. The space debris environmental engineering model can realize the evaluation of space-time distribution of space debris environment, which is the basis for the design of spacecraft protection scheme. Space density is the output of the space debris environmental engineering model. A reasonable and reliable space density algorithm is the basic premise to ensure the accuracy of the engineering model, and it is also an important basic data source for spacecraft risk assessment and protection design.
空间密度用于描述空间碎片的时空分布规律,其定义为某空间位置处单位体积内空间碎片的平均数目。空间碎片的空间密度分布是进行航天器空间碎片环境评估的基础。现有相关领域研究中,对J2000惯性坐标系下空间密度算法较为成熟,可实现空间密度随轨道高度、纬度分布的计算。哈尔滨工业大学董丹、张平平等人提出空间密度随轨道高度、纬度分布情况算法。该算法假设空间碎片的空间密度随经度均匀分布。彭科科提出基于轨道根数离散的空间密度算法,该算法假设空间碎片轨道位置稳定,不受摄动因素影响。但现有算法均建立与J2000惯性坐标系,无法对空间物体在地固坐标系下的经度分布情况进行描述。Space density is used to describe the space-time distribution of space debris, which is defined as the average number of space debris per unit volume at a certain spatial location. The spatial density distribution of space debris is the basis for evaluating the environment of spacecraft space debris. In the existing research in related fields, the spatial density algorithm in the J2000 inertial coordinate system is relatively mature, and the calculation of the spatial density distribution with orbital height and latitude can be realized. Dong Dan and Zhang Pingping of Harbin Institute of Technology proposed an algorithm for the distribution of space density with orbital height and latitude. The algorithm assumes that the spatial density of space debris is uniformly distributed with longitude. Peng Keke proposed a space density algorithm based on discrete orbital elements, which assumes that the orbital position of space debris is stable and is not affected by perturbation factors. However, the existing algorithms are all based on the J2000 inertial coordinate system, which cannot describe the longitude distribution of space objects in the ground-fixed coordinate system.
地球同步轨道是航天活动的重点区域之一。与其他的轨道区域不同,地球同步轨道空间物体轨道周期基本一致,且与地球自转周期较为接近,这导致该区域空间碎片环境对地理经度的分布较为稳定。现有空间密度算法均基于J2000惯性坐标系建立,无法实现地球同步轨道区域空间碎片环境随地理经度分布的描述。Geosynchronous orbit is one of the key areas for space activities. Different from other orbital regions, the orbital period of space objects in geosynchronous orbit is basically the same, and is relatively close to the rotation period of the earth, which leads to a relatively stable distribution of the space debris environment in this region with respect to geographical longitude. The existing spatial density algorithms are all based on the J2000 inertial coordinate system, which cannot describe the distribution of the space debris environment in the geosynchronous orbit region along with the geographical longitude.
发明内容Contents of the invention
本发明的目的是:针对现有的空间密度算法均基于J2000惯性坐标系,而在J2000惯性坐标系下建立的空间密度算法,无法实现地球同步轨道区域空间碎片环境随地理经度分布进行描述的问题。The purpose of the present invention is: all existing spatial density algorithms are based on the J2000 inertial coordinate system, and the spatial density algorithm established under the J2000 inertial coordinate system cannot realize the problem that the space debris environment in the geosynchronous orbit area is described according to the geographical longitude distribution .
本发明采用如下技术方案实现:一种地固系下空间碎片空间密度确定方法,包括以下步骤:The present invention adopts the following technical solutions to realize: a method for determining the spatial density of space debris under the ground solid system, comprising the following steps:
步骤一、地球固连坐标系下同步轨道保护区域空间单元划分:Step 1. Space unit division of the geosynchronous orbit protection area in the earth-fixed coordinate system:
在地球固连坐标系下,按照轨道高度、地理经度、纬度将轨道高度介于35786±200km,纬度介于±15°的轨道空间范围离散为一系列空间单元;In the fixed coordinate system of the earth, according to the orbital height, geographic longitude and latitude, the orbital space range with an orbital height between 35786±200km and a latitude between ±15° is discretized into a series of spatial units;
步骤二、空间碎片轨道位置离散:Step 2. The orbital position of space debris is discretized:
根据空间碎片轨道根数,按照平近点角将空间碎片轨道离散化;Discretize the orbits of space debris according to the mean anomaly angle according to the number of orbital elements of space debris;
步骤三、轨道离散点位置计算:Step 3. Calculation of track discrete point positions:
分别计算每个轨道离散点对应的具体轨道高度、纬度和地理经度;Calculate the specific orbital altitude, latitude and geographic longitude corresponding to each orbital discrete point respectively;
步骤四、识别各空间碎片轨道离散点对应的空间单元;Step 4, identifying the space unit corresponding to the discrete point of each space debris orbit;
步骤五、计算各空间单元内碎片停留概率:Step 5. Calculate the probability of debris staying in each space unit:
根据步骤三和步骤四中的离散轨道位置及空间单元的划分,统计每个空间单元对应的离散轨道位置数目,通过离散轨道位置数目与总离散点之比得到停留概率;According to the division of discrete orbital positions and space units in step 3 and step 4, count the number of discrete orbital positions corresponding to each spatial unit, and obtain the stay probability by the ratio of the number of discrete orbital positions and the total discrete points;
步骤六、计算空间密度:Step 6. Calculate the spatial density:
通过停留概率与空间单元体积之比得到空间密度。The spatial density is obtained by the ratio of the stay probability to the volume of the spatial unit.
进一步的,所述离散时的步长满足kM=10,其中,kM为离散系数。Further, the step size of the discretization satisfies k M =10, where k M is a discretization coefficient.
进一步的,所述步骤二基于碎片地理经度稳定假设对空间碎片平近点角M进行离散,记离散份数为NM,第jM个离散点对应平近点角为:Further, the second step discretizes the average anomaly angle M of the space debris based on the stable assumption of the geographic longitude of the fragments, and records the number of discrete parts as N M , and the average anomaly angle corresponding to the j Mth discrete point is:
进一步的,所述第jM个离散点对应的地心距rjM、纬度φjM和地理经度λjM为:Further, the geocentric distance r jM , latitude φ jM and geographic longitude λ jM corresponding to the j Mth discrete point are:
其中,为偏近点角,为平近点角,a为半长轴、e为偏心率、i为轨道倾角、ω为近地点角距、Ω为升交点赤经,λΩ为轨道升交点对应的地理经度。in, is the near point angle, is the mean anomaly angle, a is the semi-major axis, e is the eccentricity, i is the orbital inclination, ω is the perigee angular distance, Ω is the right ascension of the ascending node, and λ Ω is the geographic longitude corresponding to the orbit’s ascending node.
进一步的,所述偏近点角平近点角可通过下式得出:Further, the apex angle mean anomaly It can be obtained by the following formula:
其中,ωe为地球自转角速度,μ为地心引力常数,μ≈398600km3/s2。Wherein, ω e is the earth's rotation angular velocity, μ is the gravitational constant, μ≈398600km 3 /s 2 .
进一步的,所述离散份数NM基于空间单元划分步长确定。Further, the discrete number N M is determined based on the division step of the space unit.
进一步的,所述离散份数NM的确定步骤如下:将步骤一中轨道高度、纬度及经度区间步长记为Δr、Δφ、Δλ,则NM=max{Nr,Nφ,Nλ}Further, the steps for determining the number of discrete shares N M are as follows: denote the step size of the orbital height, latitude and longitude interval in step 1 as Δr, Δφ, Δλ, then N M = max{N r , N φ , N λ }
其中, in,
式中:π为圆周率,a为半长轴,e为偏心率,i为轨道倾角,μ为地心引力常数,ωe为地球自转周期,kM为离散系数,kM=10,TIF为向上取整函数,max为最大值函数。In the formula: π is the circumference ratio, a is the semi-major axis, e is the eccentricity, i is the orbital inclination, μ is the gravitational constant, ω e is the earth's rotation period, k M is the dispersion coefficient, k M =10, TIF is Round up function, max is the maximum value function.
进一步的,所述步骤五中空间单元内碎片停留概率是基于空间碎片轨道离散份数NM、空间单元轨道划分原则以及空间单元内空间碎片轨道离散点数目确定的。Further, the probability of debris staying in a space unit in the step five is determined based on the discrete number N M of space debris orbits, the principle of space unit orbit division, and the number of space debris orbit discrete points in a space unit.
进一步的,所述空间单元内碎片停留概率的确定步骤如下:记空间物体轨道周期为T,每个离散点对应的空间碎片停留时间为 Further, the determination steps of the debris residence probability in the space unit are as follows: record the space object orbital period as T, and the space debris residence time corresponding to each discrete point is
记空间单元Cellk内空间碎片轨道离散点数目为nk,空间碎片处于该空间单元内的概率为:Note that the number of discrete orbital points of space debris in the space unit Cell k is n k , and the probability of space debris in this space unit is:
进一步的,所述步骤六中计算空间密度的确定步骤如下:某空间碎片在空间单元Cellk([rk,rk+Δr],[φk,φk+Δφ],[λk,λk+Δλ])内停留概率为Pk,则空间单元内碎片个数的数学期望为:Ek=Pk,若有多个空间碎片参与计算,将总碎片数目记为Ndeb,则空间单元Cellk内总碎片个数的数学期望为:Further, the step of determining the space density in the step six is as follows: a certain space debris is in the space unit Cell k ([r k ,r k +Δr],[φ k ,φ k +Δφ],[λ k ,λ k +Δλ]) is P k , then the mathematical expectation of the number of fragments in the space unit is: E k =P k , if there are multiple space fragments involved in the calculation, record the total number of fragments as N deb , then the space The mathematical expectation of the total number of fragments in unit Cell k is:
空间单元Cellk体积为The volume of the space unit Cell k is
空间单元Cellk内碎片空间密度为The space density of debris in the space unit Cell k is
其中,Δr、Δφ、Δλ为轨道高度、纬度及经度区间步长,r为地心距离,Δtone为每个离散点对应的空间碎片停留时间。 Among them, Δr, Δφ, Δλ are the orbital height, latitude and longitude interval step, r is the distance from the center of the earth, and Δt one is the residence time of space debris corresponding to each discrete point.
本发明采用上述技术方案,具有如下有益效果:The present invention adopts above-mentioned technical scheme, has following beneficial effect:
本发明基于地球同步轨道航天活动及空间碎片环境分布特征,在现有空间密度算法基础上,提出一种地固系下空间碎片空间密度确定方法,与传统的空间密度算法相比,本发明提出的一种地固系下空间碎片空间密度确定方法能够实现不同地理经度位置空间碎片分布情况的差异性分析,可更具针对性的对地球同步轨道区域空间碎片环境进行描述,提高该区域航天器空间碎片环境评估精度。Based on the geosynchronous orbit space activities and the distribution characteristics of the space debris environment, the present invention proposes a method for determining the space density of space debris in the ground-fixed system on the basis of the existing space density algorithm. Compared with the traditional space density algorithm, the present invention proposes A method for determining the spatial density of space debris in geostationary systems can realize the difference analysis of the distribution of space debris at different geographic longitudes, and can describe the space debris environment in the geosynchronous orbit area more specifically, and improve the accuracy of spacecraft in this area. Space Debris Environmental Assessment Accuracy.
附图说明Description of drawings
图1为本发明的流程图。Fig. 1 is a flowchart of the present invention.
图2为地固坐标系下轨道空间单元划分示意图。Figure 2 is a schematic diagram of the division of orbital space units in the ground-fixed coordinate system.
图3为实施例中评估结果与原有算法对比。Fig. 3 is a comparison between the evaluation results in the embodiment and the original algorithm.
图4为实施例中对应轨道空间的碎片真实分布情况。Figure 4 shows the real distribution of debris in the corresponding orbital space in the embodiment.
具体实施方式Detailed ways
具体实施方式一:下面结合图1具体说明本实施方式,在本实施方式中,一种地固系下空间碎片空间密度确定方法,包括以下步骤:Specific embodiment one: The present embodiment will be specifically described below in conjunction with FIG. 1. In this embodiment, a method for determining the spatial density of space debris under the ground system includes the following steps:
步骤一、地球固连坐标系下同步轨道保护区域空间单元划分:Step 1. Space unit division of the geosynchronous orbit protection area in the earth-fixed coordinate system:
在地球固连坐标系下,按照轨道高度、地理经度、纬度将轨道高度介于35786±200km,纬度介于±15°的轨道空间范围离散为一系列空间单元;In the fixed coordinate system of the earth, according to the orbital height, geographic longitude and latitude, the orbital space range with an orbital height between 35786±200km and a latitude between ±15° is discretized into a series of spatial units;
步骤二、空间碎片轨道位置离散:Step 2. The orbital position of space debris is discretized:
根据空间碎片轨道根数,按照平近点角将其轨道离散化;Discretize the orbits of space debris according to the mean anomaly angle according to the orbital elements of space debris;
步骤三、轨道离散点位置计算:Step 3. Calculation of track discrete point positions:
分别计算每个轨道离散点对应的具体轨道高度、纬度和地理经度;Calculate the specific orbital altitude, latitude and geographic longitude corresponding to each orbital discrete point respectively;
步骤四、识别各空间碎片轨道离散点对应的空间单元;Step 4, identifying the space unit corresponding to the discrete point of each space debris orbit;
所述的识别此处含义为,已知某点位置,识别它的分区,比如说已知某处经纬度,识别属于哪个省哪个市。The recognition here means that the location of a certain point is known, and its division is identified, for example, the latitude and longitude of a certain point is known, and the province and city it belongs to are identified.
步骤五、计算各空间单元内碎片停留概率:Step 5. Calculate the probability of debris staying in each space unit:
根据步骤三和步骤四中的离散轨道位置及空间单元的划分,统计每个空间单元对应的离散轨道位置数目,离散轨道位置数目与总离散点之比为对应的停留概率;According to the division of discrete orbital positions and space units in step 3 and step 4, the number of discrete orbital positions corresponding to each spatial unit is counted, and the ratio of discrete orbital position numbers and total discrete points is the corresponding stay probability;
步骤六、计算空间密度:Step 6. Calculate the spatial density:
停留概率与空间单元体积之比即为空间密度,由此得到空间密度随轨道高度、纬度、地理经度的分布。步骤六是根据空间碎片停留概率、空间单元的划分确定。The ratio of the stay probability to the volume of the space unit is the space density, and thus the distribution of the space density with the orbital height, latitude, and geographic longitude can be obtained. Step 6 is to determine according to the probability of space debris staying and the division of space units.
实施例:Example:
为使本公开的目的、技术方案和优点更加清楚明白,以下结合实施例,并参照附图2、图3和图4,对本公开进一步详细说明。In order to make the purpose, technical solutions and advantages of the present disclosure clearer, the present disclosure will be further described in detail below in conjunction with the embodiments and with reference to the accompanying drawings 2 , 3 and 4 .
步骤一:对35,786±200km高度区间,±0.5°纬度区间内不同地理经度范围内的空间密度进行了计算。计算过程中Δr=400km,Δφ=1°,Δλ=3°,共划分出了120个空间区域。如图2所示。Step 1: Calculate the spatial density in different geographic longitude ranges in the altitude interval of 35,786±200km and the latitude interval of ±0.5°. In the calculation process, Δr=400km, Δφ=1°, Δλ=3°, and 120 spatial regions are divided in total. as shown in picture 2.
步骤二:碎片轨道位置离散。根据空间碎片轨道根数,按照平近点角将其轨道位置进行等分。本实施例采用的碎片轨道根数信息来自2016年美国空间监测网发布的编目碎片数据。半长轴(记为a)、偏心率(记为e)、轨道倾角(记为a)、近地点角距(记为ω)、升交点地理经度(记为λΩ)的空间碎片离散份数NM为:Step 2: Discrete orbital positions of fragments. According to the number of orbital elements of space debris, its orbital position is equally divided according to the mean anomaly. The debris orbit element information used in this embodiment comes from the cataloged debris data released by the US Space Monitoring Network in 2016. The discrete number of space debris of semi-major axis (denoted as a), eccentricity (denoted as e), orbital inclination (denoted as a), perigee angular distance (denoted as ω), and ascending node geographic longitude (denoted as λ Ω ) N M is:
其中TIF为向上取整函数(函数值为不小于变量值的最小整数),max为最大值函数(函数值为变量值中最大值)。Among them, TIF is the round-up function (the function value is the smallest integer not less than the variable value), and max is the maximum value function (the function value is the maximum value among the variable values).
离散原则为依据平近点角的等距离散。则第jM个离散点对应平近点角MjM:The discretization principle is the equidistant dispersion based on the mean anomaly angle. Then the j Mth discrete point corresponds to the mean anomaly angle M jM :
步骤三:、分别计算每个等分点对应的离散轨道位置(轨道高度、纬度、地理经度)。第jM个离散点对应地心距rjM、纬度φjM地理经度λjM为:Step 3: Calculating the discrete orbital position (orbital altitude, latitude, geographic longitude) corresponding to each bisection point respectively. The j Mth discrete point corresponds to the geocentric distance r jM , latitude φ jM and geographic longitude λ jM as follows:
其中偏近点角为平近点角可通过下式由迭代法得出:where the apex angle is mean anomaly It can be obtained by the iterative method as follows:
步骤四、判断各离散轨道位置对应的空间单元;Step 4, judging the spatial unit corresponding to each discrete orbital position;
步骤五、计算各空间单元内碎片停留概率,根据上文计算出的离散轨道位置及空间单元的划分,统计每个空间单元对应的离散轨道位置数目。离散轨道位置数目与总离散点之比为对应的停留概率。Step 5: Calculate the probability of debris staying in each space unit, and calculate the number of discrete orbit positions corresponding to each space unit according to the above-calculated discrete orbit positions and the division of space units. The ratio of the number of discrete orbital positions to the total discrete points is the corresponding dwell probability.
步骤六、计算空间密度,停留概率与空间单元体积之比即为空间密度。由此得到空间密度随轨道高度、纬度、地理经度的分布。记空间单元Cellk对应的地心距范围为[rk,rk+Δr],纬度[φk,φk+Δφ],地理经度[λk,λk+Δλ]。其体积Vk为:Step 6: Calculating the space density, the ratio of the stay probability to the volume of the space unit is the space density. The distribution of space density with orbital height, latitude, and geographic longitude is thus obtained. Note that the geocentric distance corresponding to the space unit Cell k is [r k , r k +Δr], latitude [φ k ,φ k +Δφ], and geographic longitude [λ k ,λ k +Δλ]. Its volume V k is:
式中rk为轨道高度下限,Δr为轨道高度区间步长,φk为纬度下限,Δφ为纬度区间步长,λk为地理经度区间下限。where r k is the lower limit of the orbit height, Δr is the step size of the orbit height interval, φ k is the lower limit of the latitude, Δφ is the step size of the latitude interval, and λ k is the lower limit of the geographic longitude interval.
本实施例得到的2016年地球同步轨道区域编目碎片随地理经度的分布如图3中实线所示。该图中虚线为原有算法下的评估结果。图4为实测数据给出的编目物体个数随地理经度的分布。由此可知,本专利提供的计算结果与该区域空间物体的真实分布规律相符,可更好的对地球同步轨道区域空间碎片环境进行描述。The distribution of the geosynchronous orbit regional cataloged fragments according to the geographic longitude obtained in this embodiment in 2016 is shown by the solid line in Fig. 3 . The dotted line in the figure is the evaluation result under the original algorithm. Figure 4 shows the distribution of the number of cataloged objects with geographical longitude given by the measured data. It can be seen from this that the calculation results provided by this patent are consistent with the real distribution of space objects in this area, and can better describe the space debris environment in the geosynchronous orbit area.
具体实施方式二:本实施方式是对具体实施方式一的进一步说明,本实施方式与具体实施方式一的区别是所述离散时的步长满足kM=10,其中,kM为离散系数。Embodiment 2: This embodiment is a further description of Embodiment 1. The difference between this embodiment and Embodiment 1 is that the discrete step size satisfies k M =10, where k M is a discrete coefficient.
具体实施方式三:本实施方式是对具体实施方式一的进一步说明,本实施方式与具体实施方式一的区别是所述步骤二基于碎片地理经度稳定假设对空间碎片平近点角M进行离散,记离散份数为NM,第jM个离散点对应平近点角为:Embodiment 3: This embodiment is a further description of Embodiment 1. The difference between this embodiment and Embodiment 1 is that the step 2 discretizes the mean anomaly angle M of space debris based on the stable assumption of the geographic longitude of the fragments. Record the number of discrete copies as N M , and the mean anomaly angle corresponding to the j Mth discrete point is:
具体实施方式四:本实施方式是对具体实施方式三的进一步说明,本实施方式与具体实施方式三的区别是所述第jM个离散点对应的地心距rjM、纬度φjM和地理经度λjM为:Embodiment 4: This embodiment is a further description of Embodiment 3. The difference between this embodiment and Embodiment 3 is the geocentric distance r jM , latitude φ jM and geographic distance corresponding to the j Mth discrete point. The longitude λ jM is:
其中,为偏近点角,为平近点角,a为半长轴、e为偏心率、i为轨道倾角、ω为近地点角距、Ω为升交点赤经,λΩ为轨道升交点对应的地理经度。in, is the near point angle, is the mean anomaly angle, a is the semi-major axis, e is the eccentricity, i is the orbital inclination, ω is the perigee angular distance, Ω is the right ascension of the ascending node, and λ Ω is the geographic longitude corresponding to the orbit’s ascending node.
具体实施方式五:本实施方式是对具体实施方式四的进一步说明,本实施方式与具体实施方式四的区别是所述偏近点角平近点角可通过下式得出:Embodiment 5: This embodiment is a further description of Embodiment 4. The difference between this embodiment and Embodiment 4 is that the near point angle mean anomaly It can be obtained by the following formula:
其中,ωe为地球自转角速度,μ为地心引力常数,μ≈398600km3/s2。ωe=360°每23小时56分4秒。Wherein, ω e is the earth's rotation angular velocity, μ is the gravitational constant, μ≈398600km 3 /s 2 . ω e = 360° every 23 hours, 56 minutes and 4 seconds.
具体实施方式六:本实施方式是对具体实施方式三的进一步说明,本实施方式与具体实施方式三的区别是所述离散份数NM基于空间单元划分步长确定。Embodiment 6: This embodiment is a further description of Embodiment 3. The difference between this embodiment and Embodiment 3 is that the number of discrete shares N M is determined based on the division step of a space unit.
具体实施方式七:本实施方式是对具体实施方式六的进一步说明,本实施方式与具体实施方式六的区别是所述离散份数NM的确定步骤如下:将步骤一中轨道高度、纬度及经度区间步长记为Δr、Δφ、Δλ,为保证任意两个相邻离散点之间轨道高度、纬度、地理经度差值均小于对应空间单元区间步长的离散准,则NM=max{Nr,Nφ,Nλ}Embodiment 7: This embodiment is a further description of Embodiment 6. The difference between this embodiment and Embodiment 6 is that the steps for determining the number of discrete shares N M are as follows: orbital height, latitude and The longitude interval steps are denoted as Δr, Δφ, and Δλ. In order to ensure that the difference in orbital height, latitude, and geographic longitude between any two adjacent discrete points is smaller than the discrete criterion of the corresponding space unit interval step, N M =max{ N r , N φ , N λ }
其中, in,
式中:π为圆周率,a为半长轴,e为偏心率,i为轨道倾角,μ为地心引力常数,ωe为地球自转周期,kM为离散系数,kM=10,其中TIF为向上取整函数(函数值为不小于变量值的最小整数),max为最大值函数(函数值为变量值中最大值)。In the formula: π is the circumference ratio, a is the semi-major axis, e is the eccentricity, i is the orbital inclination, μ is the gravitational constant, ω e is the earth's rotation period, k M is the discrete coefficient, k M =10, where TIF It is the rounding up function (the function value is the smallest integer not less than the variable value), and max is the maximum value function (the function value is the maximum value among the variable values).
具体实施方式八:本实施方式是对具体实施方式一的进一步说明,本实施方式与具体实施方式一的区别是所述步骤五中空间单元内碎片停留概率是基于空间碎片轨道离散份数NM、空间单元轨道划分原则(轨道高度、纬度及经度区间步长记为Δr、Δφ、Δλ)以及空间单元内空间碎片轨道离散点数目确定的。Embodiment 8: This embodiment is a further description of Embodiment 1. The difference between this embodiment and Embodiment 1 is that the probability of debris staying in a space unit in the step 5 is based on the discrete number of space debris orbits N M 1. Space unit orbit division principle (orbital height, latitude and longitude interval steps are denoted as Δr, Δφ, Δλ) and the number of space debris orbit discrete points within a space unit.
具体实施方式九:本实施方式是对具体实施方式八的进一步说明,本实施方式与具体实施方式八的区别是所述空间单元内碎片停留概率的确定步骤如下:由轨道力学可知,空间碎片平近点角随时间均匀变化。记空间物体轨道周期为T,则平近点角等分原则下,每个离散点对应的空间碎片停留时间为 Embodiment 9: This embodiment is a further description of Embodiment 8. The difference between this embodiment and Embodiment 8 is that the steps for determining the probability of debris staying in the space unit are as follows: From orbital mechanics, the average space debris The anomaly varies uniformly with time. Note that the orbital period of a space object is T, then under the principle of equally dividing the mean anomaly angle, the residence time of space debris corresponding to each discrete point is
记空间单元Cellk内空间碎片轨道离散点数目为nk,评估时段内任意时刻,空间碎片处于该空间单元内的概率为其在空间单元内停留时间与轨道周期之比:Note that the number of discrete orbital points of space debris in the space unit Cell k is n k , and at any time during the evaluation period, the probability of space debris in this space unit is the ratio of the residence time in the space unit to the orbital period:
具体实施方式十:本实施方式是对具体实施方式一的进一步说明,本实施方式与具体实施方式一的区别是所述步骤六中计算空间密度的确定步骤如下:某空间碎片在空间单元Cellk([rk,rk+Δr],[φk,φk+Δφ],[λk,λk+Δλ])内停留概率为Pk,由于任意时刻内空间碎片是否出现在空间单元内服从伯努利分布(0-1分布),则空间单元内碎片个数的数学期望为:Ek=Pk,若有多个空间碎片参与计算,将总碎片数目记为Ndeb,则空间单元Cellk内总碎片个数的数学期望为单个碎片停留数学期望的累加Embodiment 10: This embodiment is a further description of Embodiment 1. The difference between this embodiment and Embodiment 1 is that the determination steps for calculating the spatial density in the step 6 are as follows: a certain space debris is in the space unit Cell k ([r k ,r k +Δr],[φ k ,φ k +Δφ],[λ k ,λ k +Δλ]) has a probability of staying in P k , because whether space debris appears in a space unit at any time Obey the Bernoulli distribution (0-1 distribution), the mathematical expectation of the number of fragments in the space unit is: E k =P k , if there are multiple space fragments involved in the calculation, record the total number of fragments as N deb , then the space The mathematical expectation of the total number of fragments in unit Cell k is the accumulation of the mathematical expectation of a single fragment
由几何关系可知,空间单元Cellk体积为It can be known from the geometric relationship that the volume of the space unit Cell k is
则空间单元Cellk内碎片空间密度为Then the fragment space density in the space unit Cell k is
其中,Δr、Δφ、Δλ为轨道高度、纬度及经度区间步长,r为地心距离,Δtone为每个离散点对应的空间碎片停留时间。 Among them, Δr, Δφ, Δλ are the orbital height, latitude and longitude interval step, r is the distance from the center of the earth, and Δt one is the residence time of space debris corresponding to each discrete point.
需要注意的是,具体实施方式仅仅是对本发明技术方案的解释和说明,不能以此限定权利保护范围。凡根据本发明权利要求书和说明书所做的仅仅是局部改变的,仍应落入本发明的保护范围内。It should be noted that the specific implementation is only an explanation and description of the technical solution of the present invention, and cannot limit the protection scope of rights. All changes made according to the claims and description of the present invention are only partial changes, and should still fall within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910488123.7A CN110175431B (en) | 2019-06-05 | 2019-06-05 | Space debris space density determination method under earth fixation system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910488123.7A CN110175431B (en) | 2019-06-05 | 2019-06-05 | Space debris space density determination method under earth fixation system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110175431A true CN110175431A (en) | 2019-08-27 |
CN110175431B CN110175431B (en) | 2022-05-20 |
Family
ID=67698083
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910488123.7A Active CN110175431B (en) | 2019-06-05 | 2019-06-05 | Space debris space density determination method under earth fixation system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110175431B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111353121A (en) * | 2020-03-31 | 2020-06-30 | 中国空气动力研究与发展中心超高速空气动力研究所 | Distribution method for uncertainty parameters of spacecraft disintegration fragments |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2332634A1 (en) * | 2008-06-13 | 2010-02-09 | Sistemas De Proteccion Para Seguridad Vial S.L. | Road safety barrier |
CN104794268A (en) * | 2015-04-09 | 2015-07-22 | 中国科学院国家天文台 | Method for generating space object track by means of space density distribution |
CN106709145A (en) * | 2016-11-23 | 2017-05-24 | 清华大学 | Parallel computing method for distribution state numerical value evolution of large-scale space debris |
CN107066641A (en) * | 2016-11-23 | 2017-08-18 | 清华大学 | The numerical computation method and system of extensive space junk Distribution evolution |
CN107797130A (en) * | 2017-10-16 | 2018-03-13 | 中国西安卫星测控中心 | Low orbit spacecraft multiple spot multi-parameter track upstream data computational methods |
CN108279426A (en) * | 2018-01-24 | 2018-07-13 | 北京电子工程总体研究所 | A kind of tracking telemetry and command station to sub-satellite point lateral range Analytic Calculation Method |
-
2019
- 2019-06-05 CN CN201910488123.7A patent/CN110175431B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2332634A1 (en) * | 2008-06-13 | 2010-02-09 | Sistemas De Proteccion Para Seguridad Vial S.L. | Road safety barrier |
CN104794268A (en) * | 2015-04-09 | 2015-07-22 | 中国科学院国家天文台 | Method for generating space object track by means of space density distribution |
CN106709145A (en) * | 2016-11-23 | 2017-05-24 | 清华大学 | Parallel computing method for distribution state numerical value evolution of large-scale space debris |
CN107066641A (en) * | 2016-11-23 | 2017-08-18 | 清华大学 | The numerical computation method and system of extensive space junk Distribution evolution |
CN107797130A (en) * | 2017-10-16 | 2018-03-13 | 中国西安卫星测控中心 | Low orbit spacecraft multiple spot multi-parameter track upstream data computational methods |
CN108279426A (en) * | 2018-01-24 | 2018-07-13 | 北京电子工程总体研究所 | A kind of tracking telemetry and command station to sub-satellite point lateral range Analytic Calculation Method |
Non-Patent Citations (2)
Title |
---|
WANG DONGFANG 等: "GEO objects spatial density and collision probability in the Earth-centered Earth-fixed (ECEF) coordinate system", 《ACTA ASTRONAUTICA》 * |
李灿安 等: "空间碎片的空间密度算法研究", 《空间科学学报》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111353121A (en) * | 2020-03-31 | 2020-06-30 | 中国空气动力研究与发展中心超高速空气动力研究所 | Distribution method for uncertainty parameters of spacecraft disintegration fragments |
CN111353121B (en) * | 2020-03-31 | 2023-04-11 | 中国空气动力研究与发展中心超高速空气动力研究所 | Method for determining uncertainty parameter distribution of spacecraft disintegration fragments |
Also Published As
Publication number | Publication date |
---|---|
CN110175431B (en) | 2022-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Smith et al. | Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars | |
Spencer et al. | The midnight temperature maximum in the earth's equatorial thermosphere | |
Chesley et al. | Orbit and bulk density of the OSIRIS-REx target Asteroid (101955) Bennu | |
Konopliv et al. | A global solution for the gravity field, rotation, landmarks, and ephemeris of Eros | |
Zurek et al. | Application of MAVEN accelerometer and attitude control data to Mars atmospheric characterization | |
Davies et al. | Radio echo measurements of the orbits of faint sporadic meteors | |
CN111523209A (en) | A method for land resource satellite calibration orbit planning and benchmark load orbit optimization | |
FR3008818A1 (en) | DEVICE AND METHOD FOR PREDICTING THE PRECISION, THE INTEGRITY AND AVAILABILITY OF THE POSITION OF AN AIRCRAFT ALONG A TRACK. | |
Wu et al. | FORMOSAT-3/COSMIC science mission update | |
Liou et al. | The new NASA orbital debris engineering model ORDEM2000 | |
CN110175431A (en) | It a kind ofly is admittedly that down space fragment space density determines method | |
Fong et al. | Toward the most accurate thermometer in space: FORMOSAT-7/COSMIC-2 constellation | |
Xiong et al. | Detecting seismic IR anomalies in bi-angular Advanced Along-Track Scanning Radiometer data | |
Klinkrad | On-orbit risk reduction—collision avoidance | |
Mousa et al. | Wireless sensor network-based urban traffic monitoring using inertial reference data | |
Datta-Barua | Ionospheric threats to the integrity of airborne GPS users | |
Hodgson et al. | Modeling remote sensing satellite collection opportunity likelihood for hurricane disaster response | |
Klinkrad et al. | Operational collision avoidance with regard to catalog objects | |
CN115048817B (en) | Decision-making auxiliary method and system for analyzing ground deterrence | |
Qiao et al. | Design and analysis of satellite orbits for the Garada mission | |
Kucharski et al. | Highdefinition Photometry–an optical method for remote detection of MMOD impacts on satellites | |
Farrell et al. | GPS/ins based lateral and longitudinal control demonstration | |
Masursky | Viking site selection and certification | |
POWELL et al. | Modeling of non-gravitational effects on GPS satellites | |
Xu et al. | Performance of AHI hourly aerosol optical property during frequent haze-fog events: a case study OF Beijing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |