CN110170886A - A kind of Camshaft Grinding processing method based on T-S fuzzy control - Google Patents

A kind of Camshaft Grinding processing method based on T-S fuzzy control Download PDF

Info

Publication number
CN110170886A
CN110170886A CN201910315529.5A CN201910315529A CN110170886A CN 110170886 A CN110170886 A CN 110170886A CN 201910315529 A CN201910315529 A CN 201910315529A CN 110170886 A CN110170886 A CN 110170886A
Authority
CN
China
Prior art keywords
cam
grinding wheel
speed
curve
fuzzy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910315529.5A
Other languages
Chinese (zh)
Other versions
CN110170886B (en
Inventor
王洪
刘珏
段海容
潘艺萌
乐书思
张子军
李启平
陈永福
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Normal University
Original Assignee
Hunan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Normal University filed Critical Hunan Normal University
Priority to CN201910315529.5A priority Critical patent/CN110170886B/en
Publication of CN110170886A publication Critical patent/CN110170886A/en
Application granted granted Critical
Publication of CN110170886B publication Critical patent/CN110170886B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B1/00Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B19/00Single-purpose machines or devices for particular grinding operations not covered by any other main group
    • B24B19/08Single-purpose machines or devices for particular grinding operations not covered by any other main group for grinding non-circular cross-sections, e.g. shafts of elliptical or polygonal cross-section
    • B24B19/12Single-purpose machines or devices for particular grinding operations not covered by any other main group for grinding non-circular cross-sections, e.g. shafts of elliptical or polygonal cross-section for grinding cams or camshafts

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

本发明公开了一种基于T‑S模糊控制的凸轮轴磨削加工方法,由以下步骤实现:1.在砂轮高速旋转的同时,利用计算机的数控程序控制数控凸轮轴磨床中作为X轴的砂轮进给系统和作为C轴的凸轮旋转系统;2.根据用户提供的凸轮升程值、砂轮半径、测头半径、凸轮基圆半径和式(1)、(2)、(4)、(5),运用MATLAB软件工具由式(1)、(2)拟合出砂轮进给X(θ)与凸轮转角α(θ)的位移曲线,该位移曲线所形成的X(θ)‑α(θ)值由编程软件自动生成砂轮进给数控加工子程序,以实现砂轮跟随凸轮旋转作横向往复运动,同时运用MATLAB软件工具由式(2)、(5)拟合出凸轮旋转速度F(θ)与凸轮转角α(θ)的速度曲线,该速度曲线所形成的F(θ)‑α(θ)值由编程软件自动生成凸轮旋转数控加工子程序,以实现凸轮旋转运动。可以获得理想的磨削精度,加工效率与表面质量。

The invention discloses a camshaft grinding method based on T-S fuzzy control, which is realized by the following steps: 1. While the grinding wheel rotates at high speed, use the computer's numerical control program to control the grinding wheel feed system as the X axis and the cam rotation system as the C axis in the CNC camshaft grinder; 2. According to the cam lift value, grinding wheel radius, probe radius, cam base circle radius and formulas (1), (2), (4) and (5) provided by the user, use MATLAB software tools to formulate formulas (1), (2) ) to fit the displacement curve of the grinding wheel feed X ( θ ) and the cam angle α ( θ ), and the value of X ( θ ) ‑α ( θ ) formed by the displacement curve is automatically generated by the programming software for the CNC machining subroutine of the grinding wheel feed , so as to realize the lateral reciprocating motion of the grinding wheel following the rotation of the cam, and at the same time use the MATLAB software tool to fit the speed curve of the cam rotation speed F ( θ ) and the cam rotation angle α ( θ ) from equations (2) and (5), the speed curve The formed F ( θ ) - α ( θ ) value is automatically generated by the programming software for the cam rotation NC machining subroutine to realize the cam rotation motion. Ideal grinding accuracy, processing efficiency and surface quality can be obtained.

Description

一种基于T-S模糊控制的凸轮轴磨削加工方法A Camshaft Grinding Method Based on T-S Fuzzy Control

技术领域technical field

本发明属于磨削加工方法,具体涉及一种基于T-S模糊控制的凸轮轴磨削加工方法。The invention belongs to a grinding process method, in particular to a camshaft grinding process method based on T-S fuzzy control.

背景技术Background technique

凸轮轴是汽车发动机的关键零部件之一,由于其形状的特殊性,凸轮轴磨削采用非圆磨削加工方式,其加工精度和效率不仅决定着产品加工的质量和生产成本,还影响发动机的工作性能。目前传统凸轮轴磨削加工方法是砂轮进给(X轴)采用理想的砂轮进给位移运动方程,而凸轮旋转(C轴)速度采用经验模型并由有经验的工程技术人员修改凸轮旋转速度,经过反复试磨加工来确定的。该凸轮轴磨削加工方法难以满足现代汽车零件加工的高精度、高效率、高柔性的要求。The camshaft is one of the key parts of the automobile engine. Due to its special shape, the camshaft is ground by non-circular grinding. The machining accuracy and efficiency not only determine the quality and production cost of the product, but also affect the engine work performance. At present, the traditional camshaft grinding method is that the grinding wheel feed (X axis) adopts the ideal grinding wheel feed displacement motion equation, while the cam rotation (C axis) speed adopts an empirical model and the cam rotation speed is modified by experienced engineers and technicians. After repeated trial grinding processing to determine. This camshaft grinding method is difficult to meet the high precision, high efficiency and high flexibility requirements of modern automobile parts processing.

国内外学者一直致力于精密高效非圆磨削技术的研究,湖南大学许第洪等(“切点跟踪磨削法运动模型研究”,《机械工程学报》,2002.6)认为非圆磨削是沿磨削切点表面作恒线速度运动并按照恒磨除率进行修正的。根据该理论建立的凸轮轴磨削数学模型取得了实际应用价值,但其加工精度和效率仍有待进一步提高。中国专利(ZL201010278922.0)公开了“一种凸轮轴数控磨削加工方法”,该方法通过限定非圆段砂轮进给速度、加速度、加加速度,预测凸轮旋转(C轴)速度,实现了凸轮轴高精度磨削加工,但对于油泵凸轮和大升程值的凸轮,腰部起升程曲率大的部位,会产生较大凸轮升程误差。文献“数控凸轮轴磨床工件旋转轴转速优化方法”(《机械工程学报》,2014.15)提出了通过限定非圆段凸轮旋转速度、砂轮进给速度、加速度、加加速度,采用正、反向同步加速控制方法,动态地求解正、反向插补最大进给速度会合点,实现砂轮进给的最优插补,以减轻加速度对机床的冲击,提高机床的磨削加工精度和效率。但表面质量仍有待进一步提高。Scholars at home and abroad have been committed to the research of precision and high-efficiency non-circular grinding technology. Xu Dihong of Hunan University et al. The surface of the tangent point moves at a constant linear velocity and is corrected according to a constant removal rate. The camshaft grinding mathematical model based on this theory has achieved practical application value, but its machining accuracy and efficiency still need to be further improved. Chinese patent (ZL201010278922.0) discloses "a camshaft numerical control grinding method", which predicts the cam rotation (C axis) speed by limiting the non-circular segment grinding wheel feed speed, acceleration, and jerk The shaft is ground with high precision, but for the oil pump cam and the cam with a large lift value, the part with a large lift curvature at the waist will produce a large cam lift error. The document "Optimization method for the rotation speed of the rotating shaft of the CNC camshaft grinder" ("Journal of Mechanical Engineering", 2014.15) proposes to use forward and reverse synchronous acceleration by limiting the rotation speed of the non-circular segment cam, the feed speed of the grinding wheel, the acceleration, and the jerk. The control method dynamically solves the meeting point of the maximum feed speed of forward and reverse interpolation to realize the optimal interpolation of the grinding wheel feed, so as to reduce the impact of acceleration on the machine tool and improve the grinding accuracy and efficiency of the machine tool. But the surface quality still needs to be further improved.

发明内容Contents of the invention

本发明的目的是提供一种可以提高凸轮轴磨削精度和效率的基于T-S模糊控制的凸轮轴磨削加工方法。The purpose of the invention is to provide a camshaft grinding method based on T-S fuzzy control which can improve the camshaft grinding precision and efficiency.

实现本发明采用的技术方案如下:Realize that the technical scheme that the present invention adopts is as follows:

本发明提供的基于T-S模糊控制的凸轮轴磨削加工方法,由以下步骤实现:The camshaft grinding method based on T-S fuzzy control provided by the invention is realized by the following steps:

步骤1.在砂轮高速旋转的同时,利用计算机的数控程序控制数控凸轮轴磨床中作为X轴的砂轮进给系统和作为C轴的凸轮旋转系统;Step 1. While the grinding wheel rotates at high speed, use the numerical control program of the computer to control the grinding wheel feed system as the X axis and the cam rotation system as the C axis in the CNC camshaft grinder;

步骤2.根据用户提供的凸轮升程值、砂轮半径、测头半径、凸轮基圆半径和式(1)、(2)、(4)、(5),运用MATLAB软件工具由式(1)、(2)拟合出砂轮进给X(θ)与凸轮转角α(θ)的位移曲线,该位移曲线所形成的X(θ)-α(θ)值由编程软件自动生成砂轮进给数控加工子程序,以实现砂轮跟随凸轮旋转作横向往复运动,同时运用MATLAB软件工具由式(2)、(5)拟合出凸轮旋转速度F(θ)与凸轮转角α(θ)的速度曲线,该速度曲线所形成的F(θ)-α(θ)值由编程软件自动生成凸轮旋转数控加工子程序,以实现凸轮旋转运动;Step 2. According to the cam lift value, grinding wheel radius, probe radius, cam base circle radius and formulas (1), (2), (4) and (5) provided by the user, use the MATLAB software tool to formulate the formula (1) , (2) Fit the displacement curve of the grinding wheel feed X(θ) and the cam angle α(θ), and the X(θ)-α(θ) value formed by the displacement curve is automatically generated by the programming software for the numerical control of the grinding wheel feed The subroutine is processed to realize the lateral reciprocating motion of the grinding wheel following the rotation of the cam. At the same time, the speed curve of the cam rotation speed F(θ) and the cam rotation angle α(θ) is fitted by the formula (2) and (5) using MATLAB software tools. The F(θ)-α(θ) value formed by the speed curve is automatically generated by the programming software for the cam rotation numerical control machining subroutine to realize the cam rotation movement;

X(θ)=OO2-r2-r (1)X(θ)=OO 2 -r 2 -r (1)

式中:X(θ)为砂轮进给的位移量,r为凸轮基圆半径,O为凸轮基圆圆心,O1为滚子从动件测头圆心,O2为砂轮圆心,φ为凸轮基圆圆心O到测头滚子圆心O1的连线和凸轮瞬心M到测头滚子圆心O1的连线之间的夹角,O1O2=r2-r1,r2为砂轮半径,r1为滚子从动件测头半径,OO1=r+H(θ)+r1,H(θ)为凸轮的升程值,θ为凸轮基圆轮廓中点A到凸轮基圆圆心O的连线与凸轮基圆圆心O到测头滚子圆心O1的连线之间的夹角,α(θ)为凸轮基圆轮廓中点A与凸轮基圆圆心O连线与砂轮圆心O2到凸轮基圆圆心O连线之间夹角,ρ(θ)为凸轮轮廓与砂轮相切的切点P到凸轮基圆圆心O的极半径,β(θ)为凸轮基圆轮廓中点A到凸轮基圆圆心O的连线与凸轮轮廓与砂轮相切的切点P到凸轮基圆圆心O连线之间的夹角,ω(θ)为凸轮旋转至凸轮升程时凸轮轮廓与砂轮相切的切点P的旋转角速度,ω0为凸轮转至基圆时凸轮轮廓与砂轮相切点P的角速度,F(θ)为凸轮旋转至滚子从动件侧头转角θ处的旋转速度,n(θ)为凸轮旋转至滚子从动件侧头转角θ处的旋转转速;In the formula: X(θ) is the displacement of the grinding wheel feed, r is the radius of the base circle of the cam, O is the center of the base circle of the cam, O 1 is the center of the measuring head of the roller follower, O 2 is the center of the grinding wheel, φ is the angle between the line connecting the cam base circle center O to the probe roller center O 1 and the cam instant center M to the probe roller center O 1 , O 1 O 2 =r 2 -r 1 , r 2 is the radius of the grinding wheel, r 1 is the radius of the roller follower probe, OO 1 = r+H(θ)+r 1 , H(θ) is the lift value of the cam, θ is the cam base circle profile The angle between the line connecting point A to the cam base circle center O and the line connecting the cam base circle center O to the probe roller center O 1 , α(θ) is the midpoint A of the cam base circle profile and the cam base circle The angle between the line connecting the center O and the center O 2 of the grinding wheel to the center O of the base circle of the cam, ρ(θ) is the polar radius from the tangent point P between the cam profile and the grinding wheel to the center O of the base circle of the cam, β(θ ) is the angle between the line connecting the midpoint A of the cam base circle profile to the center O of the cam base circle and the tangent point P between the cam profile and the grinding wheel to the line O of the cam base circle center O, ω(θ) is the cam rotation Rotation angular velocity of the tangent point P between the cam profile and the grinding wheel when the cam is lifted, ω0 is the angular velocity of the tangent point P between the cam profile and the grinding wheel when the cam rotates to the base circle, F(θ) is the cam rotation to the roller from The rotation speed at the side head rotation angle θ of the movable member, n(θ) is the rotation speed from the cam rotation to the side head rotation angle θ of the roller follower;

步骤3.分别对砂轮进给位移式(1)求一阶导数、二阶导数、三阶导数分别得式(6)、(7)、(8);Step 3. Calculate the first-order derivative, the second-order derivative, and the third-order derivative respectively to the grinding wheel feed displacement formula (1) to obtain formulas (6), (7), and (8);

式中,v(θ)为砂轮进给速度,a(θ)为砂轮进给加速度,j(θ)为砂轮进给加加速度;In the formula, v(θ) is the feed speed of the grinding wheel, a(θ) is the feed acceleration of the grinding wheel, and j(θ) is the feed jerk of the grinding wheel;

运用MATLAB软件工具对式(2)、(6)拟合出砂轮进给速度v(θ)与凸轮转角α(θ)的速度曲线,运用MATLAB软件工具对式(2)、(7)拟合出砂轮进给加速度a(θ)与凸轮转角α(θ)的加速度曲线;凸轮轴最大旋转速度超过基圆旋转速度(36000deg/min)1.2倍以上,根据式(9)、(10)对砂轮进给速度、加速度、加加速度、凸轮旋转速度进行限制:Use MATLAB software tools to fit equations (2) and (6) to get the speed curve of the grinding wheel feed speed v(θ) and cam angle α(θ), and use MATLAB software tools to fit equations (2) and (7) Get the acceleration curve of the grinding wheel feed acceleration a(θ) and the cam rotation angle α(θ); the maximum rotation speed of the camshaft exceeds the rotation speed of the base circle (36000deg/min) by more than 1.2 times, according to formulas (9) and (10) for the grinding wheel Feedrate, acceleration, jerk, cam rotation speed are limited:

式中,v(θi)为第i个插补周期砂轮进给速度,a(θi)为第i个插补周期砂轮进给加速度,j(θi)为第i个插补周期砂轮进给加加速度,k为限速比,vmax为砂轮进给允许最大速度,amax为砂轮进给允许最大加速度,jmax为砂轮进给允许最大加加速度,ωmax为最大旋转角速度;In the formula, v(θ i ) is the feed speed of the grinding wheel in the i-th interpolation period, a(θ i ) is the feed acceleration of the grinding wheel in the i-th interpolation period, and j(θ i ) is the grinding wheel speed in the i-th interpolation period Feed jerk, k is the speed limit ratio, v max is the allowable maximum speed of grinding wheel feed, a max is the allowable maximum acceleration of grinding wheel feed, j max is the allowable maximum jerk of grinding wheel feed, ω max is the maximum rotational angular velocity;

步骤4.根据S型加减速控制方法、凸轮升程值得加速方式1的式(16)和加速方式2的式(18)、(19)、(20),求解砂轮进给插补周期Tsi和凸轮回程的插补周期,以预测出凸轮每旋转1度砂轮进给所用的时间;Step 4. According to the S-type acceleration and deceleration control method, the cam lift value, the formula (16) of acceleration mode 1 and the formulas (18), (19) and (20) of acceleration mode 2, solve the grinding wheel feed interpolation period T si and the interpolation cycle of the cam return to predict the time it takes for the cam to rotate 1 degree for the grinding wheel feed;

由式(16)计算加速方式1的插补周期TsiCalculate the interpolation period T si of acceleration mode 1 by formula (16):

ΔX(Tsi)为每旋转1度砂轮进给的位移量,ti1为加加速阶段时间,ti2为减加速阶段时间,vi-1为初始进给速度,jmax为砂轮进给允许最大加加速度,s(ti1)为ti1段砂轮进给位移,s(ti2)为ti2段砂轮进给位移,Tsi为砂轮进给ΔX(Tsi)时的一个插补周期;ΔX(T si ) is the displacement of the grinding wheel feed per rotation of 1 degree, t i1 is the acceleration phase time, t i2 is the deceleration phase time, v i-1 is the initial feed speed, j max is the allowable grinding wheel feed The maximum jerk, s(t i1 ) is the feed displacement of the grinding wheel at stage t i1 , s(t i2 ) is the feed displacement of the grinding wheel at stage t i2 , and T si is an interpolation cycle when the grinding wheel feeds ΔX(T si );

由式(18)、(19)、(20)计算加速方式2的插补周期TsiCalculate the interpolation period T si of acceleration mode 2 by formulas (18), (19) and (20):

amaxti2 2+(jmaxti1 2+2amaxti1+2vi-1)ti2+4vi-1ti1+jmaxti1 3+amaxti1 2-2ΔX(Tsi)=0 (18)a max t i2 2 +(j max t i1 2 +2a max t i1 +2v i-1 )t i2 +4v i-1 t i1 +j max t i1 3 +a max t i1 2 -2ΔX(T si ) =0 (18)

ti1=ti3=amax/jmax (19)t i1 =t i3 =a max /j max (19)

Tsi=ti1+ti2+ti3=2ti1+ti2 (20)T si =t i1 +t i2 +t i3 =2t i1 +t i2 (20)

其中:ΔX(Tsi)为每旋转1度砂轮进给的位移量,ti1为加加速阶段时间,ti2为匀加速段时间,ti3为减加速阶段时间,vi-1为初始进给速度,jmax为砂轮进给允许最大加加速度,amax为砂轮进给允许最大加速度,Tsi为砂轮进给ΔX(Tsi)时一个插补周期;Among them: ΔX(T si ) is the displacement of the grinding wheel per rotation of 1 degree, t i1 is the time of acceleration and acceleration phase, t i2 is the time of uniform acceleration phase, t i3 is the time of deceleration and acceleration phase, v i-1 is the initial progress Giving speed, j max is the allowable maximum jerk of the grinding wheel feed, a max is the allowable maximum acceleration of the grinding wheel feed, T si is an interpolation cycle when the grinding wheel feed ΔX(T si );

步骤5.由式(21)、(22)求出凸轮旋转速度值;Step 5. obtain the cam rotation speed value by formula (21), (22);

Tw=Tsi (21)T w = T si (21)

其中,T0为凸轮旋转基圆插补周期,n0为基圆转速,取值100rmp,Tw为凸轮旋转至升程段插补周期,F″″(θ)为凸轮旋转至升程段预测速度;Among them, T 0 is the base circle interpolation period of the cam rotation, n 0 is the base circle speed, and the value is 100rmp, T w is the interpolation period from the cam rotation to the lift section, and F″”(θ) is the cam rotation to the lift section predicted speed;

步骤6.建立单输入滚子从动件测头转角θ、单输出凸轮旋转速度F″(θ)的一维T-S模糊控制器模型,T-S模糊控制器简化模型如下:Step 6. Establish a one-dimensional T-S fuzzy controller model with a single-input roller follower measuring head rotation angle θ and a single-output cam rotation speed F″(θ), and the T-S fuzzy controller simplified model is as follows:

Ri:if θ is Ai then Fi′(θ)=ai0+ai1θ (25)R i : if θ is A i then F i ′(θ)=a i0 +a i1 θ (25)

其中Ri(i=1,2,...12)表示第i条模糊规则,θ为滚子从动件测头转角作为模糊控制器的输入变量,Ai为输入变量θ论域上的模糊子集,Fi′(θ)表示第i条模糊规则的凸轮旋转速度输出,ai0、ai1为第i条模糊规则的后件参数,F″(θ)为整个模糊控制器的凸轮旋转速度输出,由于只有一个输入量θ,μi(θ)即为Ai(θ),Ai(θ)为第i条模糊规则θ对模糊子集Ai的满足程度,hi(θ)为输入变量论域上的隶属度函数,即前件参数;Among them, R i (i=1, 2, ... 12) represents the i-th fuzzy rule, θ is the roller follower probe rotation angle as the input variable of the fuzzy controller, and A i is the input variable θ on the domain of discourse Fuzzy subset, F i ′(θ) represents the cam rotation speed output of the i-th fuzzy rule, a i0 and a i1 are the subsequent parameters of the i-th fuzzy rule, F″(θ) is the cam of the entire fuzzy controller Rotation speed output, since there is only one input quantity θ, μ i (θ) is A i (θ), A i (θ) is the satisfaction degree of the i-th fuzzy rule θ to the fuzzy subset A i , h i (θ ) is the membership function on the domain of input variables, that is, the antecedent parameter;

步骤7.通过对砂轮进给位移X(θ)和加速度a(θ)曲线的分析,得到每段滚子从动件测头转角θ的范围、砂轮进给位移X(θ)、砂轮进给加速度a(θ)、凸轮旋转速度起始值bi、凸轮旋转速度斜率ki的凸轮轴分段基本参数模糊规则表,同时画出凸轮旋转速度直线分段预测模型示意图;Step 7. By analyzing the curves of grinding wheel feed displacement X(θ) and acceleration a(θ), obtain the range of rotation angle θ of each roller follower probe, grinding wheel feed displacement X(θ), and grinding wheel feed Acceleration a(θ), cam rotation speed initial value b i , cam rotation speed slope k i basic parameter fuzzy rule table of the camshaft segment, and draw a schematic diagram of the cam rotation speed linear segment prediction model at the same time;

步骤8.计算T-S模糊控制器后件参数:T-S模糊控制器后件参数ai0、ai1由式(28)确定;Step 8. Calculation of TS fuzzy controller consequent parameters: TS fuzzy controller consequent parameters a i0 and a i1 are determined by formula (28);

其中ci为凸轮轴分段基本参数中每段滚子从动件测头转角范围中第i段的滚子从动件测头转角起始值;ki为各分段的转速斜率,bi为中各分段的凸轮旋转速度起始值;Among them, c i is the starting value of the roller follower probe rotation angle of the ith segment in the range of each segment of the roller follower probe rotation angle in the basic parameters of the camshaft segment; k i is the speed slope of each segment, b i is the initial value of the cam rotation speed of each segment in ;

步骤9.计算T-S模糊控制器前件参数:T-S模糊控制器前件参数由式(31)确定:Step 9. Calculate T-S fuzzy controller antecedent parameter: T-S fuzzy controller antecedent parameter is determined by formula (31):

由式(31)代入(30),再把(30)代入(29),得T-S模糊控制器隶属度函数hi(θ)表达式如下:Substituting (31) into (30), and then substituting (30) into (29), the expression of the membership function h i (θ) of the TS fuzzy controller is as follows:

hi(θ)=ftri(θ,ci-1,(ci+ci+1)/2,ci+2) (32)h i (θ) = f tri (θ, c i-1 , (c i +c i+1 )/2, c i+2 ) (32)

式(32)中θ为滚子从动件测头转角,ci为第i段的滚子从动件测头转角起始值,hi(θ)为输入变量论域上的隶属度函数,表示滚子从动件测头转至θ时模糊子集Ai的隶属度;In formula (32), θ is the rotation angle of the roller follower probe, c i is the initial value of the rotation angle of the roller follower probe in the i-th segment, h i (θ) is the membership function of the input variable universe , represents the membership degree of the fuzzy subset A i when the roller follower probe turns to θ;

步骤10.把式(32)、(25)代入式(26),通过MATLAB软件工具拟合出T-S模糊控制后的凸轮旋转速度F″(θ)与凸轮转角α(θ)预测曲线,将L1凸轮旋转速度F′(θ)与凸轮转角α(θ)预测直线段逼近曲线与L2经T-S模糊控制后的凸轮旋转速度F″(θ)与凸轮转角α(θ)预测曲线进行比较,如果L2凸轮旋转速度F″(θ)与凸轮转角α(θ)预测曲线光滑并且靠近L1凸轮旋转速度F′(θ)与凸轮转角α(θ)预测直线段曲线,则达到理想效果;否则,就需对T-S模糊控制器进行优化,使凸轮旋转速度F″(θ)与凸轮转角α(θ)预测曲线变得更加光滑的同时尽可能地靠近L1凸轮旋转速度F′(θ)与凸轮转角α(θ)预测直线段逼近曲线;Step 10. Substitute equations (32) and (25) into equation (26), and use MATLAB software tool to fit the prediction curve of cam rotation speed F″(θ) and cam rotation angle α(θ) after TS fuzzy control, and L 1 The cam rotation speed F′(θ) and the cam rotation angle α(θ) predict the linear segment approximation curve and L 2 The cam rotation speed F″(θ) after the TS fuzzy control is compared with the cam rotation angle α(θ) prediction curve, If the prediction curve of L 2 cam rotation speed F″(θ) and cam rotation angle α(θ) is smooth and close to the curve of L 1 cam rotation speed F′(θ) and cam rotation angle α(θ) prediction straight line segment curve, then the desired effect is achieved; Otherwise, it is necessary to optimize the TS fuzzy controller to make the prediction curve of cam rotation speed F″(θ) and cam rotation angle α(θ) smoother and at the same time be as close as possible to L 1 cam rotation speed F′(θ) Predict the straight line segment approaching the curve with the cam rotation angle α(θ);

步骤11.凸轮旋转速度预测值优化是利用邻近模糊子集隶属度函数对输出数据的影响规律进行调整以求更理想的曲线,主要有两种情形:Step 11. The optimization of the predicted value of the cam rotation speed is to use the adjacent fuzzy subset membership function to adjust the influence law of the output data in order to obtain a more ideal curve. There are mainly two situations:

情形1:假设对于滚子从动件测头某个转角θ1只激活两条相邻模糊规则R1、R2,即θ1仅对模糊子集A1、A2的隶属度不为零,由式(26)得式(33),当F2′(θ1)>F1′(θ1),F″(θ1)>F1′(θ1)时,通过调整相邻隶属度函数h2(θ)的转角初始值ci-1,见式(31),若ci-1增加为(ci-1+ci)/2时,h21)减小,增大,减小,由此F″(θ1)将会减小而逼近F1′(θ1),使预测速度逼近理想直线段,使曲线得到优化;Situation 1: Suppose only two adjacent fuzzy rules R 1 and R 2 are activated for a certain rotation angle θ 1 of the roller follower probe, that is, the membership degree of θ 1 only to fuzzy subsets A 1 and A 2 is not zero , get formula (33) from formula (26), when F 2 ′(θ 1 )>F 1 ′(θ 1 ), F″(θ 1 )>F 1 ′(θ 1 ), by adjusting the adjacent membership The initial value c i-1 of the rotation angle of degree function h 2 (θ), see formula (31), if c i-1 increases to (c i -1 +ci )/2, h 21 ) decreases , increase, decreases, thus F″(θ 1 ) will decrease and approach F 1 ′(θ 1 ), so that the predicted speed approaches the ideal straight line segment, and the curve is optimized;

F1′(θ1)、F2′(θ1)分别是滚子从动件测头转角θ1在模糊规则R1、R2上凸轮旋转速度的输出,F″(θ1)是输入为θ1时模糊控制器的总输出,h11)、h21)为滚子从动件测头转角θ1对模糊子集A1、A2的隶属度;F 1 ′(θ 1 ), F 2 ′(θ 1 ) are the outputs of the cam rotation speed of the roller follower measuring head rotation angle θ 1 on the fuzzy rules R 1 and R 2 respectively, and F″(θ 1 ) is the input is the total output of the fuzzy controller when θ 1 , h 11 ), h 21 ) are the membership degrees of the roller follower probe rotation angle θ 1 to the fuzzy subsets A 1 and A 2 ;

情形2:假设滚子从动件测头某个转角θ2作为模糊控制器的输入,凸轮旋转速度F″(θ2)作为模糊控制器输出,由式(26)得式(34),当F1′(θ2)<F2′(θ2),F″(θ2)<F2′(θ2)时,可以通过调整隶属度函数h1(θ)的滚子从动件测头转角结束值ci+2,若减少为(ci+1+ci+2)/2时,h12)减小,增大,增大(F1′(θ2)-F2′(θ2)为负数),由此F″(θ2)将会增大从而趋于F2′(θ2),使预测速度逼近理想直线段,使曲线得到优化。Case 2: Assume that a certain rotation angle θ 2 of the roller follower measuring head is used as the input of the fuzzy controller, and the cam rotation speed F″(θ 2 ) is used as the output of the fuzzy controller, and the equation (34) is obtained from the equation (26), when When F 1 ′(θ 2 )<F 2 ′(θ 2 ), F″(θ 2 )<F 2 ′(θ 2 ), it can be measured by adjusting the roller follower of the membership function h 1 (θ) If the end value of head rotation angle c i+2 is reduced to (c i+1 +c i+2 )/2, h 12 ) decreases, increase, Increase (F 1 ′(θ 2 )-F 2 ′(θ 2 ) is a negative number), so F″(θ 2 ) will increase and tend to F 2 ′(θ 2 ), making the predicted speed approach the ideal Straight line segment, so that the curve is optimized.

F1′(θ2)、F2′(θ2)分别是滚子从动件测头转角θ2在模糊规则R1、R2上凸轮旋转速度的输出,F″(θ2)是输入为θ2时模糊控制器的总输出,h12)、h22)为滚子从动件测头转角θ2对模糊子集A1、A2的隶属度;F 1 ′(θ 2 ), F 2 ′(θ 2 ) are the outputs of the cam rotation speed of the roller follower measuring head rotation angle θ 2 in the fuzzy rules R 1 and R 2 respectively, and F″(θ 2 ) is the input is the total output of the fuzzy controller when θ 2 , h 12 ), h 22 ) are the membership degrees of the roller follower probe rotation angle θ 2 to the fuzzy subsets A 1 and A 2 ;

根据上述原理,由式(32)经过反复试验得优化式如下:According to the above principles, the optimized formula from formula (32) after repeated tests is as follows:

hi(θ)=ftri(θ,(ci-1+ci)/s,(ci+ci+1)/s,(ci+1+ci+2)/s) (35)h i (θ)=f tri (θ, ( ci-1 + ci )/s, ( ci + ci+1 )/s, ( ci+1 + ci+2 )/s) ( 35)

其中s取值1.90~2.10之间,根据曲线每次可增加或减少0.01,可调整L2凸轮旋转速度F″(θ)与凸轮转角α(θ)预测曲线光滑并且靠近L1凸轮旋转速度F′(θ)与凸轮转角α(θ)预测直线段曲线。Among them, the value of s is between 1.90 and 2.10. According to the curve, it can be increased or decreased by 0.01 each time, and the L 2 cam rotation speed F″(θ) and the cam rotation angle α(θ) can be adjusted to predict that the curve is smooth and close to the L 1 cam rotation speed F '(θ) and the cam angle α(θ) predict the curve of the straight line segment.

本发明在以上文献基础上通过分析和完善凸轮轴磨削数学模型,在提供特定的磨削参数及升程值的条件下,利用T-S模糊控制器预测凸轮旋转速度。获得了理想的磨削精度,加工效率与表面质量。Based on the above documents, the present invention analyzes and perfects the camshaft grinding mathematical model, and uses the T-S fuzzy controller to predict the cam rotation speed under the condition of providing specific grinding parameters and lift values. The ideal grinding accuracy, processing efficiency and surface quality are obtained.

作为智能控制重要方法之一的模糊控制在一定程度上模仿了人的决策过程,其中T-S模糊控制是采用分段线性模型去逼近一个非线性凸轮转速全局模糊模型。在凸轮轴磨削加工过程中引入模糊控制,可以保持磨削的稳定性,使磨削表面质量达到良好的效果。As one of the important methods of intelligent control, fuzzy control imitates human decision-making process to a certain extent, among which T-S fuzzy control adopts piecewise linear model to approximate a nonlinear cam speed global fuzzy model. The introduction of fuzzy control in the grinding process of camshaft can maintain the stability of grinding and make the grinding surface quality achieve a good effect.

下面结合附图进一步说明本发明的技术方案。The technical solution of the present invention will be further described below in conjunction with the accompanying drawings.

附图说明Description of drawings

图1是数控凸轮轴磨削数学模型。Figure 1 is the mathematical model of CNC camshaft grinding.

图2是砂轮进给、凸轮旋转运动仿真曲线。Fig. 2 is the simulation curve of grinding wheel feed and cam rotation motion.

图3是砂轮进给S型加减速方式示意图。Fig. 3 is a schematic diagram of the S-type acceleration and deceleration mode of the grinding wheel feed.

图4是凸轮旋转速度预测直线分段模型示意图。Fig. 4 is a schematic diagram of a linear segment model for predicting cam rotation speed.

图5是三角形隶属函数曲线图。Fig. 5 is a triangular membership function graph.

图6是凸轮旋转速度F″(θ)与凸轮转角a(θ)预测曲线图。Fig. 6 is a prediction curve diagram of cam rotation speed F"(θ) and cam rotation angle a(θ).

图7是情形1时优化前滚子从动件测头转角θ与凸轮旋转速度F″(θ)、邻近模糊规则R1、R2凸轮旋转速度F1′(θ)和F2′(θ)的曲线图。Figure 7 shows the optimal front roller follower probe rotation angle θ and cam rotation speed F″(θ) in case 1, the adjacent fuzzy rules R 1 , R 2 cam rotation speeds F 1 ′(θ) and F 2 ′(θ ) graph.

图8是情形1时隶属度函数h2(θ)优化前后对比图。Fig. 8 is a comparison diagram before and after optimization of the membership function h 2 (θ) in case 1.

图9是情形1时优化后滚子从动件测头转角θ与凸轮旋转速度F″′(θ)、邻近模糊规则R1、R2凸轮旋转速度F1′(θ)和F2′(θ)的曲线图。Figure 9 shows the optimized roller follower probe rotation angle θ and cam rotation speed F″'(θ), adjacent fuzzy rules R 1 , R 2 cam rotation speeds F 1 ′(θ) and F 2 ′( θ) graph.

图10是情形2时优化前滚子从动件测头转角θ与凸轮旋转速度F″(θ)、邻近模糊规则R1、R2凸轮旋转速度F1′(θ)和F2′(θ)的曲线图。Figure 10 shows the optimal front roller follower probe rotation angle θ and cam rotation speed F″(θ) in case 2, the adjacent fuzzy rules R 1 , R 2 cam rotation speeds F 1 ′(θ) and F 2 ′(θ ) graph.

图11是情形2时隶属度函数h1(θ)优化前后对比图。Fig. 11 is a comparison diagram before and after optimization of the membership function h 1 (θ) in case 2.

图12是情形2时优化后滚子从动件测头转角θ与凸轮旋转速度F″′(θ)、邻近模糊规则R1、R2凸轮旋转速度F1′(θ)和F2′(θ)的曲线图。Figure 12 shows the optimized roller follower probe rotation angle θ and cam rotation speed F″′(θ), adjacent fuzzy rules R 1 , R 2 cam rotation speeds F 1 ′(θ) and F 2 ′( θ) graph.

图13是凸轮旋转速度预测曲线算法流程图。Fig. 13 is a flow chart of the cam rotation speed prediction curve algorithm.

图14是凸轮旋转速度F′(θ)与凸轮转角a(θ)预测直线段逼近曲线。Fig. 14 is the linear segment approximation curve predicted by the cam rotation speed F'(θ) and the cam rotation angle a(θ).

图15是凸轮旋转速度F″(θ)与凸轮转角a(θ)预测曲线。Fig. 15 is a prediction curve of cam rotation speed F"(θ) and cam rotation angle a(θ).

图16是凸轮旋转速度预测隶属度函数分布曲线图。Fig. 16 is a graph showing the distribution curve of the membership degree function for the prediction of the rotation speed of the cam.

图17是优化后凸轮旋转速度F″′(θ)与凸轮转角a(θ)预测曲线。Fig. 17 is a prediction curve of cam rotation speed F"'(θ) and cam rotation angle a(θ) after optimization.

图18是优化后的凸轮旋转转速预测隶属度函数分布曲线图。Fig. 18 is a graph showing the distribution curve of the membership degree function for the prediction of the rotation speed of the cam after optimization.

图19是经过反复优化后的凸轮旋转速度与凸轮转角a(θ)预测曲线与原可加工曲线对比图。Fig. 19 is a comparison chart of the predicted curve of cam rotation speed and cam angle a(θ) after repeated optimization and the original machinable curve.

具体实施方式Detailed ways

本发明方法的步骤及原理如下:The steps and principle of the inventive method are as follows:

1).在砂轮高速旋转的同时,利用计算机的数控程序控制数控凸轮轴磨床中作为X轴的砂轮进给系统和作为C轴的凸轮旋转系统。1). While the grinding wheel rotates at high speed, use the computer's numerical control program to control the grinding wheel feed system as the X axis and the cam rotation system as the C axis in the CNC camshaft grinder.

数控凸轮轴磨削数学模型如图1所示。凸轮轴的磨削数学模型是根据磨削点切点跟踪、恒磨除率原理及凸轮轮廓形状来建立的,即砂轮高速旋转的同时,通过数控指令控制凸轮轴磨床的砂轮(X轴)进给和凸轮(C轴)旋转两轴联动来实现凸轮轮廓表面磨削加工的。The mathematical model of CNC camshaft grinding is shown in Fig. 1. The grinding mathematical model of the camshaft is established according to the grinding point tangent point tracking, the principle of constant grinding removal rate and the shape of the cam profile, that is, while the grinding wheel rotates at high speed, the grinding wheel (X axis) of the camshaft grinding machine is controlled by the numerical control command to advance Grinding the surface of the cam profile is realized by the two-axis linkage with the rotation of the cam (C axis).

图1中,1为凸轮,2为砂轮,3为滚子从动件测头,O为凸轮基圆圆心,O1为滚子从动件测头圆心,O2为砂轮圆心,A为凸轮基圆轮廓中点,即砂轮磨削的起始点。滚子从动件测头在凸轮表面滚动,滚子中心O1运行轨迹为Kt。作OM与O1O垂线,延长O2O1,分别交凸轮与砂轮相切P点,与OM相交M点,砂轮P点切向速度为vs,凸轮P点切向速度为vj,凸轮的旋转转速为n1,砂轮的旋转转速为n2,凸轮与砂轮相切P点的角速度为ω(θ),凸轮转至基圆的角速度为ω0。凸轮基圆半径为OA=r,滚子从动件测头半径为PO1=r1,砂轮半径为O2P=r2。θ为凸轮基圆轮廓中点A到凸轮基圆圆心O的连线与测头滚子圆心O1到凸轮基圆圆心O的连线之间的夹角(即滚子从动件测头转角),α(θ)为凸轮基圆轮廓中点A与凸轮基圆圆心O连线与砂轮圆心O2到凸轮基圆圆心O连线之间夹角,β(θ)为凸轮基圆轮廓中点A与凸轮基圆圆心O连线与凸轮轮廓与砂轮相切的切点P到凸轮基圆圆心O连线之间的夹角,φ为凸轮基圆圆心O到测头滚子圆心O1的连线和凸轮瞬心M到测头滚子圆心O1的连线之间的夹角。In Fig. 1, 1 is the cam, 2 is the grinding wheel, 3 is the measuring head of the roller follower, O is the center of the base circle of the cam, O 1 is the center of the measuring head of the roller follower, O 2 is the center of the grinding wheel, and A is the cam The midpoint of the base circle profile, which is the starting point of grinding wheel grinding. The measuring head of the roller follower rolls on the surface of the cam, and the running track of the roller center O 1 is K t . Draw a vertical line between OM and O 1 O, extend O 2 O 1 , and intersect the cam and the grinding wheel at point P, and intersect with OM at point M, the tangential velocity at point P of the grinding wheel is v s , and the tangential velocity at point P of the cam is v j , the rotation speed of the cam is n 1 , the rotation speed of the grinding wheel is n 2 , the angular velocity at point P where the cam is tangent to the grinding wheel is ω(θ), and the angular velocity at which the cam rotates to the base circle is ω 0 . The radius of the base circle of the cam is OA=r, the radius of the measuring head of the roller follower is PO 1 =r 1 , and the radius of the grinding wheel is O 2 P=r 2 . θ is the angle between the line connecting the midpoint A of the cam base circle profile to the cam base circle center O and the line connecting the probe roller center O 1 to the cam base circle center O (that is, the roller follower probe rotation angle ), α(θ) is the angle between the line connecting the midpoint A of the cam base circle profile and the cam base circle center O and the line connecting the grinding wheel center O 2 to the cam base circle center O, β(θ) is the angle in the cam base circle profile The angle between point A and the line connecting the cam base circle center O and the tangent point P between the cam profile and the grinding wheel to the line connecting the cam base circle center O, φ is the cam base circle center O to the probe roller center O 1 The angle between the connection line of the cam and the line from the cam instant center M to the probe roller center O 1 .

凸轮机构的从动件(挺杆)有三种不同的形式:刀口挺杆、滚子挺杆和平面挺杆。刀口挺杆可看作滚子半径为0时的滚子挺杆;平面挺杆可看作滚子半径为无穷大时的滚子挺杆。因此,只要求出滚子挺杆形式下的砂轮进给位移的数学模型,就可以解决其他两种挺杆形式下的砂轮进给位移的问题。根据上图的几伺关系,可推导出式(1)、(2),其中式(1)是砂轮(X轴)进给运动方程(见“数控凸轮轴磨床工件旋转轴转速优化方法”,《机械工程学报》,2014.15)。The follower (lifter) of the cam mechanism comes in three different forms: knife-edge lifter, roller lifter, and flat lifter. The knife-edge lifter can be regarded as the roller lifter when the roller radius is 0; the plane lifter can be regarded as the roller lifter when the roller radius is infinite. Therefore, only the mathematical model of the feed displacement of the grinding wheel in the form of the roller tappet is required to solve the problem of the feed displacement of the grinding wheel in the other two tappet forms. According to the several servo relations in the above figure, formulas (1) and (2) can be deduced, where formula (1) is the feed motion equation of the grinding wheel (X axis) (see "Optimization method for the rotational speed of the workpiece rotating shaft of CNC camshaft grinder", "Chinese Journal of Mechanical Engineering", 2014.15).

2).根据恒磨除率原理以及圆弧微位移与角速度、极径、角度关系,可推导式(3)、(4)、(5)(MALKIN S.“Grinding technology Theory and applications of machiningwith abrasives”,Industrial Press Inc.,2008)。2). According to the principle of constant grinding removal rate and the relationship between arc micro-displacement and angular velocity, polar diameter and angle, formulas (3), (4) and (5) can be derived (MALKIN S. "Grinding technology Theory and applications of machining with abrasives ", Industrial Press Inc., 2008).

X(θ)=OO2-r2-r (1)X(θ)=OO 2 -r 2 -r (1)

式中:r为凸轮基圆半径,r1为滚子从动件测头半径,r2为砂轮半径,O为凸轮基圆圆心,O1为滚子从动件测头圆心,O2为砂轮圆心,φ为凸轮基圆圆心O到测头滚子圆心O1的连线和凸轮瞬心M到测头滚子圆心O1的连线之间的夹角,H(θ)为凸轮的升程值,θ为凸轮基圆轮廓中点A到凸轮基圆圆心O的连线与凸轮基圆圆心O到测头滚子圆心O1的连线之间的夹角(即滚子从动件测头转角),ρ(θ)为凸轮轮廓与砂轮相切的切点P到凸轮基圆圆心O的极半径,β(θ)为凸轮基圆轮廓中点A到凸轮基圆圆心O的连线与凸轮轮廓与砂轮相切的切点P到凸轮基圆圆心O连线之间的夹角,ω(θ)为凸轮旋转至凸轮升程时凸轮轮廓与砂轮相切的切点P的旋转角速度,ω0为凸轮转至凸轮基圆时凸轮轮廓与砂轮相切的切点P的旋转角速度,X(θ)为砂轮进给的位移,O1O2=r2-r1,OO1=r+H(θ)+r1ap为凸轮转至α(θ)处的切入深度,vj为凸轮转至α(θ)处凸轮P点线速度,vs为凸轮转至α(θ)处砂轮P点线速度,QW’为单位宽度去除率。如果凸轮转至某角度凸轮P点线速度能保证aep是常数,则表示单位宽度金属去除率相等,即磨削力恒定。其中,基圆某切点线速度v0,v0=ω0r,F(θ)为凸轮旋转至滚子从动件侧头转角θ处的旋转速度,n(θ)为凸轮旋转至滚子从动件侧头转角θ处的旋转转速。In the formula: r is the radius of the base circle of the cam, r 1 is the radius of the probe of the roller follower, r 2 is the radius of the grinding wheel, O is the center of the base circle of the cam, O 1 is the center of the probe of the roller follower, and O 2 is The center of the grinding wheel, φ is the angle between the line connecting the cam base circle center O to the probe roller center O 1 and the cam instant center M to the probe roller center O 1 , H(θ) is the cam Lift value, θ is the angle between the line connecting the cam base circle center point A to the cam base circle center O and the line connecting the cam base circle center O to the probe roller center O 1 (that is, the roller driven ρ(θ) is the polar radius from the tangent point P between the cam profile and the grinding wheel to the cam base circle center O, β(θ) is the distance from the midpoint A of the cam base circle profile to the cam base circle center O The angle between the connection line and the tangent point P between the cam profile and the grinding wheel to the cam base circle center O, ω(θ) is the tangent point P between the cam profile and the grinding wheel when the cam rotates to the cam lift Angular velocity of rotation, ω0 is the angular velocity of rotation of the tangent point P where the cam profile is tangent to the grinding wheel when the cam turns to the base circle of the cam, X(θ) is the displacement of the grinding wheel feed, O 1 O 2 =r 2 -r 1 , OO 1 =r+H(θ)+r 1 , a p is the cut-in depth at the point where the cam rotates to α(θ), v j is the linear velocity at point P of the cam at the point where the cam rotates to α(θ), v s is the linear velocity at point P of the grinding wheel at the point where the cam rotates to α(θ), Q W' is the removal rate per unit width. If the cam turns to a certain angle, the cam P point line speed It can guarantee that a ep is a constant, which means that the metal removal rate per unit width is equal, that is, the grinding force is constant. Among them, the linear velocity v 0 of a certain tangent point of the base circle, v 00 r, F(θ) is the rotational speed at which the cam rotates to the side head rotation angle θ of the roller follower, and n(θ) is the rotation speed at which the cam rotates to the side head rotation angle θ of the roller follower.

根据用户提供的凸轮升程值(见附录1)、砂轮半径、测头半径、凸轮基圆半径和式(1)、(2)、(4)、(5),运用MATLAB软件工具可以由式(1)、(2)拟合出砂轮进给X(θ)与凸轮转角α(θ)的位移曲线(见图2(a)),该位移曲线所形成的X(θ)-α(θ)值由编程软件自动生成砂轮进给数控加工子程序,以实现砂轮跟随凸轮旋转作横向往复运动,同时运用MATLAB软件工具还可以由式(2)、(5)拟合出凸轮旋转速度F(θ)与凸轮转角α(θ)的速度曲线(见图2(d)),该速度曲线所形成的F(θ)-α(θ)值由编程软件自动生成凸轮旋转数控加工子程序,以实现凸轮旋转运动。According to the cam lift value provided by the user (see appendix 1), the radius of the grinding wheel, the radius of the measuring head, the radius of the base circle of the cam and the formulas (1), (2), (4) and (5), using the MATLAB software tool, the formula (1), (2) Fit the displacement curve of grinding wheel feed X(θ) and cam angle α(θ) (see Figure 2(a)), the displacement curve formed by X(θ)-α(θ ) value is automatically generated by the programming software for the CNC machining subroutine of the grinding wheel feed, so as to realize the lateral reciprocating motion of the grinding wheel following the rotation of the cam. At the same time, using the MATLAB software tool, the cam rotation speed F( θ) and the cam rotation angle α(θ) speed curve (see Figure 2(d)), the F(θ)-α(θ) value formed by the speed curve is automatically generated by the programming software for the cam rotation NC machining subroutine to Realize cam rotation motion.

3).分别对式(1)求一阶导数、二阶导数、三阶导数,分别得式(6)、(7)、(8):3). Calculate the first-order derivative, second-order derivative, and third-order derivative of formula (1), respectively, and obtain formulas (6), (7), and (8):

式中,v(θ)为砂轮进给速度,a(θ)为砂轮进给加速度,j(θ)为砂轮进给加加速度。In the formula, v(θ) is the feed speed of the grinding wheel, a(θ) is the feed acceleration of the grinding wheel, and j(θ) is the feed jerk of the grinding wheel.

根据用户提供的凸轮升程值(见附录1),运用MATLAB软件工具分别对式(1)、(5)、(6)、(7)和式(2)进行拟合,得出如图2所示的砂轮进给、凸轮旋转运动仿真曲线,其中图2(a)为砂轮进给位移X(θ)对凸轮转角α(θ)曲线,图2(b)为砂轮进给速度v(θ)对凸轮转角α(θ)曲线,图2(c)为砂轮进给加速度a(θ)对凸轮转角α(θ)曲线,图2(d)为凸轮旋转角速度ω(θ)对凸轮转角α(θ)曲线。对2)、(6)可以拟合出砂轮进给速度v(θ)与凸轮转角α(θ)的速度曲线(见图2(b)),运用MATLAB软件工具对式(2)、(7)可以拟合出砂轮进给加速度a(θ)与凸轮转角α(θ)的加速度曲线(见图2(c));从图2(d)可以看到:当凸轮轴最大旋转速度达到了197991deg/min,超过基圆旋转速度(36000deg/min)约5倍时,即超过凸轮轴旋转系统驱动能力,需根据式(9)、(10)对砂轮进给速度、加速度、加加速度、凸轮旋转速度进行限制如下式:According to the cam lift value provided by the user (see Appendix 1), use MATLAB software tools to fit the formulas (1), (5), (6), (7) and formula (2) respectively, and the results are shown in Figure 2 The simulation curves of grinding wheel feed and cam rotation motion shown in Fig. 2(a) are the curves of grinding wheel feed displacement X(θ) versus cam rotation angle α(θ), and Fig. 2(b) is the curve of grinding wheel feed speed v(θ ) to the cam rotation angle α(θ) curve, Figure 2(c) is the curve of the grinding wheel feed acceleration a(θ) to the cam rotation angle α(θ), and Figure 2(d) is the cam rotation angular velocity ω(θ) to the cam rotation angle α (θ) curve. For 2) and (6), the speed curve of the grinding wheel feed speed v(θ) and the cam angle α(θ) can be fitted (see Figure 2(b)), and the equations (2), (7 ) can fit the acceleration curve of the grinding wheel feed acceleration a(θ) and the cam angle α(θ) (see Figure 2(c)); from Figure 2(d), it can be seen that: when the maximum rotation speed of the camshaft reaches 197991deg/min, when it exceeds the rotation speed of the base circle (36000deg/min) by about 5 times, that is, it exceeds the driving capacity of the camshaft rotation system, and the feed speed, acceleration, jerk, cam The rotation speed is limited as follows:

式中v(θi)为第i个插补周期砂轮进给速度,a(θi)为第i个插补周期砂轮进给加速度,j(θi)为第i个插补周期砂轮进给加加速度,vmax为砂轮进给允许最大速度,amax为砂轮进给允许最大加速度,jmax为砂轮进给允许最大加加速度ωmax为凸轮最大旋转角速度。在S型加减速控制方法中是利用位移来求插补周期的,因此需要将凸轮每旋转1度转换为旋转周期Tw,然后根据砂轮进给与凸轮旋转联通的关系,计算砂轮进给的周期Tsi。换算方法如下:In the formula, v(θ i ) is the feed speed of the grinding wheel in the i-th interpolation period, a(θ i ) is the feed acceleration of the grinding wheel in the i-th interpolation period, and j(θ i ) is the feed rate of the grinding wheel in the i-th interpolation period. Given the jerk, v max is the allowable maximum speed of the grinding wheel feed, a max is the allowable maximum acceleration of the grinding wheel feed, j max is the allowable maximum jerk of the grinding wheel feed, ω max is the maximum rotational angular velocity of the cam. In the S-type acceleration and deceleration control method, the displacement is used to calculate the interpolation period. Therefore, it is necessary to convert each rotation of the cam into a rotation period T w , and then calculate the grinding wheel feed according to the relationship between the grinding wheel feed and the cam rotation. Period T si . The conversion method is as follows:

式中,Tw为凸轮旋转至升程段插补周期,Tsi为砂轮进给的插补周期,n(θ)为凸轮旋转至θ处的旋转转速,ΔX(θ)为第Tsi个插补周期砂轮进给位移,Δv(θ)为第Tsi个插补周期砂轮进给速度,Δa(θ)为第Tsi个插补周期砂轮进给加速度,Δj(θ)为第Tsi个插补周期砂轮进给加加速度,F(θ)为凸轮旋转至升程段预测速度。In the formula, T w is the interpolation period from the cam rotation to the lift section, T si is the interpolation period of the grinding wheel feed, n(θ) is the rotation speed of the cam rotation to θ, ΔX(θ) is the T si The feed displacement of the interpolation period grinding wheel, Δv(θ) is the feed speed of the grinding wheel at the T si interpolation period, Δa(θ) is the feed acceleration of the T si interpolation period, and Δj(θ) is the T si Grinding wheel feed jerk for an interpolation period, F(θ) is the predicted speed from the cam rotation to the lift section.

4).由砂轮进给位移曲线图2(a)可知,曲线可划分为AB、BC、CD、DE、EF、FG共6段,其中AB、FG为基圆段,砂轮不进给。BC段砂轮进给从凸轮基圆至凸轮升程中部(即加速段),CD段砂轮从凸轮升程中部至凸轮桃尖(即减速段);DE段从凸轮桃尖至凸轮升程中部(即加速段),EF凸轮升程中部至凸轮基圆(即减速段)返回。然后根据S型加减速控制方法,分解成五种加减速方式,图3为4种加减速控制方式,其中图3(a)为加速方式1,只有加加速、加减速两个阶段;图3(b)为加速方式2,经过加加速、匀加速、加减速三个阶段;图3(c)为减速方式1,只有减减速、减加速两个阶段;图3(d)为减速方式2,经过减减速、匀减速、减加速三个阶段,第5种为匀速方式。图中分别画出了进给速度、加速度、加加速度曲线,该方式的优点是砂轮进给至某目标位时,加速度为零,可减少机械冲击,(见“数控凸轮轴磨床工件旋转轴转速优化方法”,《机械工程学报》,2014.15)。我们对式(15)、(16)和(17)、(18)、(19)、(20)分别进行计算,可以得到加速方式1和加速方式2的插补周期Tsi。由于加减速具有可逆性,因此:只需讨论加速方式1、加速方式2插补,就能求出整个插补周期,即可以预测出凸轮(C轴)旋转速度。4). From the feed displacement curve of the grinding wheel in Figure 2(a), it can be seen that the curve can be divided into 6 segments: AB, BC, CD, DE, EF, and FG, where AB and FG are base circle segments, and the grinding wheel does not feed. The feed of the grinding wheel in the BC section is from the base circle of the cam to the middle of the cam lift (that is, the acceleration section), and the grinding wheel in the CD section is from the middle of the cam lift to the cam lobe (that is, the deceleration section); the DE section is from the cam lobe to the middle of the cam lift ( That is, the acceleration section), and return from the middle of the EF cam lift to the cam base circle (that is, the deceleration section). Then, according to the S-type acceleration and deceleration control method, it is decomposed into five acceleration and deceleration modes. Figure 3 shows four acceleration and deceleration control modes, of which Figure 3(a) is the acceleration mode 1, which only has two stages of acceleration and deceleration; Figure 3 (b) is acceleration mode 2, after three stages of acceleration, uniform acceleration, and acceleration and deceleration; Figure 3(c) is deceleration mode 1, only deceleration and deceleration, deceleration and acceleration two stages; Figure 3(d) is deceleration mode 2 , after deceleration and deceleration, uniform deceleration and deceleration and acceleration three stages, the fifth is the constant speed mode. The curves of feed speed, acceleration and jerk are drawn respectively in the figure. The advantage of this method is that when the grinding wheel is fed to a certain target position, the acceleration is zero, which can reduce mechanical impact, (see "Numerical Control Camshaft Grinding Machine Workpiece Rotational Axis Speed Optimization method", "Chinese Journal of Mechanical Engineering", 2014.15). We calculate the equations (15), (16) and (17), (18), (19), and (20) respectively to obtain the interpolation period T si of acceleration mode 1 and acceleration mode 2. Because of the reversibility of acceleration and deceleration, it is only necessary to discuss the interpolation of acceleration mode 1 and acceleration mode 2, and the entire interpolation period can be obtained, that is, the rotation speed of the cam (C axis) can be predicted.

加速方式1:见图3(a),ai≤amax,将每个插补周期分两个阶段,根据图3(a)可列下式:Acceleration mode 1: see Fig. 3(a), a i ≤ a max , divide each interpolation cycle into two stages, according to Fig. 3(a), the following formula can be obtained:

ΔX(Tsi)为每旋转1度砂轮进给的位移量,ti1为加加速阶段时间,ti2为减加速阶段时间,vi-1为初始进给速度,jmax为最大加加速度,si1(ti1)为ti1段砂轮进给位移,si2(ti2)为ti2段砂轮进给位移,ai为ti1末加速度,vi1为ti1末速度,vi2为ti2末速度,Tsi为一个插补周期。ΔX(T si ) is the displacement of the grinding wheel per rotation of 1 degree, t i1 is the jerk phase time, t i2 is the deceleration phase time, v i-1 is the initial feed speed, j max is the maximum jerk, s i1 (t i1 ) is the feed displacement of the grinding wheel at stage t i1 , s i2 (t i2 ) is the feed displacement of the grinding wheel at stage t i2 , a i is the final acceleration of t i1 , v i1 is the final velocity of t i1 , and v i2 is t The end speed of i2 , T si is an interpolation cycle.

加速方式2:见图3(b),ai≥amax,将每个插补周期分三个阶段,根据图3(b)可列下式:Acceleration mode 2: see Figure 3(b), a i ≥ a max , each interpolation cycle is divided into three stages, according to Figure 3(b), the following formula can be expressed:

amaxti2 2+(jmaxti1 2+2amaxti1+2vi-1)ti2+4vi-1ti1+jmaxti1 3+amaxti1 2-2ΔX(Tsi)=0 (18)a max t i2 2 +(j max t i1 2 +2a max t i1 +2v i-1 )t i2 +4v i-1 t i1 +j max t i1 3 +a max t i1 2 -2ΔX(T si ) =0 (18)

ti1=ti3=amax/jmax (19)t i1 =t i3 =a max /j max (19)

Tsi=ti1+ti2+ti3=2ti1+ti2 (20)T si =t i1 +t i2 +t i3 =2t i1 +t i2 (20)

其中:ΔX(Tsi)为每旋转1度砂轮进给的位移量,ti1为加加速阶段时间,ti2为匀加速阶段时间,ti3为减加速段时间,vi-1为初始进给速度,jmax为最大加加速度,si1(ti1)为ti1段砂轮进给位移,si2(ti2)为ti2段砂轮进给位移,si3(ti3)为ti3段砂轮进给位移,ai为ti1末加速度,amax为最大加速度,vi1为ti1末速度,vi2为ti2末速度,vi3为ti3末速度,Tsi为一个插补周期。Among them: ΔX(T si ) is the displacement of the grinding wheel per rotation of 1 degree, t i1 is the time of jerk and acceleration phase, t i2 is the time of uniform acceleration phase, t i3 is the time of deceleration and acceleration phase, v i-1 is the initial progress Giving speed, j max is the maximum jerk, s i1 (t i1 ) is the feed displacement of the t i1 grinding wheel, s i2 (t i2 ) is the feed displacement of the t i2 grinding wheel, s i3 (t i3 ) is the t i3 segment Grinding wheel feed displacement, a i is the end acceleration of t i1 , a max is the maximum acceleration, v i1 is the end speed of t i1 , v i2 is the end speed of t i2 , v i3 is the end speed of t i3 , T si is an interpolation cycle .

5).由于砂轮进给与凸轮旋转两轴联动,即砂轮进给的插补周期Tsi就是凸轮旋转插补周期Tw。由式(21)、(22)可以求出凸轮旋转速度值。5). Since the grinding wheel feed and the cam rotation are two-axis linkage, that is, the interpolation period T si of the grinding wheel feed is the cam rotation interpolation period T w . By formula (21), (22) can obtain the cam rotation speed value.

Tw=Tsi (21)T w = T si (21)

其中,T0为凸轮旋转基圆插补周期,n0为基圆转速,取值100rmp,Tw为凸轮旋转至升程段插补周期,F′(θ)为凸轮旋转至升程段预测速度。Among them, T 0 is the base circle interpolation period of the cam rotation, n 0 is the base circle speed, the value is 100rmp, T w is the interpolation period from the cam rotation to the lift section, and F′(θ) is the prediction of the cam rotation to the lift section speed.

(6).根据T-S模糊控制基本原理,将每个输入变量的论域分成若干个模糊子集,每个输入变量的模糊子集按照一定经验相互组合后建立输入-输出的线性关系式,确定模糊蕴涵关系Ri“若输入......则输出......”(If...then...),即为一个模糊规则;采用局部分段线性模型逼近任意一个全局非线性函数。其表达式如下(见文献“T-S模糊控制器设计与优化方法研究”,闫小喜,2007.05):(6). According to the basic principle of TS fuzzy control, the discourse domain of each input variable is divided into several fuzzy subsets, and the fuzzy subsets of each input variable are combined with each other according to certain experience to establish an input-output linear relational expression, which is determined The fuzzy implication relation R i "If the input...then the output..." (If...then...), is a fuzzy rule; use a local segmental linear model to approximate any global non-linear function. Its expression is as follows (see the literature "TS Fuzzy Controller Design and Optimization Method Research", Yan Xiaoxi, 2007.05):

Ri:if z1 is Ai1 and z2 is Ai2......zj is Aij......and zn is Ain,then Fi(z)=ai0+ai1z1+ai2z2+......+aijzj+......+ainzn (23)R i : if z 1 is A i1 and z 2 is A i2 ......z j is A ij ......and z n is A in , then F i (z)=a i0 +a i1 z 1 +a i2 z 2 +...+a ij z j +...+a in z n (23)

其中,i(i=1,2,...,n)表示模糊规则个数,j(j=1,2,...,n)表示输入变量个数,Ri表示第i条模糊规则,z=[z1,z2,...,zj,...,zn]T表示模糊控制器的输入矢量。Aij(zj)为模糊子集,Fi(z)表示第i条模糊规则的输出,ai0、ai1、...、ain为第i条模糊规则的后件参数,F(z)为模糊控制器的输出,μi(z)是第i条模糊规则定义为乘积形式的满足程度,Aij(zj)为zj对Aij的满足程度,hij(zj)是输入变量论域上的隶属度函数。Among them, i(i=1,2,...,n) represents the number of fuzzy rules, j(j=1,2,...,n) represents the number of input variables, R i represents the i-th fuzzy rule , z=[z 1 , z 2 ,..., z j ,..., z n ] T represents the input vector of the fuzzy controller. A ij (z j ) is a fuzzy subset, F i (z) represents the output of the i-th fuzzy rule, a i0 , a i1 ,..., a in are the subsequent parameters of the i-th fuzzy rule, F( z) is the output of the fuzzy controller, μ i (z) is the degree of satisfaction of the i-th fuzzy rule defined as the product form, A ij (z j ) is the degree of satisfaction of z j to A ij , h ij (z j ) is the membership function on the domain of input variables.

根据式(23)、(24)可以建立单输入(滚子从动件测头转角θ)、单输出(凸轮旋转速度F″(θ))一维模糊控制器模型,即T-S模糊控制器可简化如下。According to equations (23) and (24), a one-dimensional fuzzy controller model with single input (roller follower probe rotation angle θ) and single output (cam rotation speed F″(θ)) can be established, that is, the T-S fuzzy controller can be The simplification is as follows.

Ri:if θ is Ai then Fi′(θ)=ai0+ai1θ (25)R i : if θ is A i then F i ′(θ)=a i0 +a i1 θ (25)

其中Ri(i=1,2,...12)(见表1)表示第i条模糊规则,θ为滚子从动件测头转角作为模糊控制器的输入变量。Ai为模糊子集,Fi′(θ)为第i条模糊规则的凸轮旋转速度输出,ai0、ai1为第i条模糊规则的后件参数,F″(θ)为整个模糊控制器的凸轮旋转速度输出,由于只有一个输入变量,μi(θ)直接表示为第i条模糊规则θ对Ai满足程度,Ai(θ)为θ对Ai的满足程度,hi(θ)为输入变量论域上的隶属度函数。Among them, R i (i=1, 2, ... 12) (see Table 1) represents the i-th fuzzy rule, and θ is the rotation angle of the roller follower probe as the input variable of the fuzzy controller. A i is a fuzzy subset, F i ′(θ) is the cam rotation speed output of the i-th fuzzy rule, a i0 and a i1 are the subsequent parameters of the i-th fuzzy rule, F″(θ) is the entire fuzzy control The cam rotation speed output of the device, since there is only one input variable, μ i (θ) is directly expressed as the satisfaction degree of the i-th fuzzy rule θ to A i , A i (θ) is the satisfaction degree of θ to A i , h i ( θ) is the membership function on the domain of input variables.

7).通过对砂轮进给位移X(θ)与凸轮转角α(θ)曲线(见图2(a))和砂轮进给加速度a(θ)与凸轮转角α(θ)曲线(见图2(c))的分析,可得到每段滚子从动件测头转角θ的范围、砂轮进给位移X(θ)、砂轮进给加速度a(θ)、凸轮旋转速度起始值bi、凸轮旋转速度斜率ki的凸轮轴分段基本参数模糊规则表(见表1),根据表1可画出如图4所示凸轮旋转速度预测直线分段模型示意图。7). Through the curve of grinding wheel feed displacement X(θ) and cam rotation angle α(θ) (see Figure 2(a)) and the curve of grinding wheel feed acceleration a(θ) and cam rotation angle α(θ) (see Figure 2 (c)), the range of rotation angle θ of the measuring head of each section of roller follower, the feed displacement X(θ) of the grinding wheel, the feed acceleration a(θ) of the grinding wheel, the initial value of the cam rotation speed b i , Camshaft segmentation basic parameter fuzzy rule table of cam rotation speed slope ki (see Table 1). According to Table 1, the schematic diagram of cam rotation speed prediction linear segment model shown in Fig. 4 can be drawn.

从砂轮进给加速度a(θ)与凸轮转角α(θ)仿真曲线(见图2(c))可知,砂轮进给加速度曲线可分A1、A2、......、A12段(见表1第1列),A1、A2、A11、A12为凸轮基圆段,A1、A12段凸轮旋转速度一般为36000deg/min,A2段为基圆到凸轮起升程段,转速应从b2(36000deg/min)快速降至b3。A3段为凸轮升程慢速加速段(见图2(c)),转速应从b3缓慢降至b4。A4段为凸轮升程快速加速段,转速应从b4降至b5。A5段为凸轮升程快速减速段,转速又从b5升至b6。A6段为凸轮升程慢速减速段,转速又从b6升至b7。A7段为凸轮升程慢速加速段,转速又从b7降至b8。A8段为凸轮升程快速加速段,转速又从b8降至b9。A9段为凸轮升程快速减速段,转速又从b9升至b10。A10段为凸轮升程慢速减速段,转速又从b10升至b11。A11段为凸轮升程结束段到基圆段,转速从b11快速升至b12(36000deg/min)。最后完成基圆A12段,根据滚子从动件测头转角θ、X(θ)位移曲线、a(θ)加速度曲线得到表1第2、3、4列的规律,即完成了凸轮一周的加工过程。表1中第5列由加减速控制方法求得每个分段转速的起始值bi,表1第6列旋转速度斜率见表1下方的注释。From the simulation curve of the grinding wheel feed acceleration a(θ) and the cam rotation angle α(θ) (see Figure 2(c)), it can be seen that the grinding wheel feed acceleration curve can be divided into A 1 , A 2 ,..., A 12 segment (see column 1 in Table 1), A 1 , A 2 , A 11 , and A 12 are cam base circle segments, A 1 and A 12 segment cam rotation speeds are generally 36000deg/min, A 2 segment is the base circle to cam In the lifting section, the speed should drop from b 2 (36000deg/min) to b 3 rapidly. Section A 3 is the slow acceleration section of the cam lift (see Figure 2(c)), and the speed should drop slowly from b 3 to b 4 . Section A 4 is the fast acceleration section of the cam lift, and the speed should drop from b 4 to b 5 . Section A 5 is the rapid deceleration section of the cam lift, and the speed increases from b 5 to b 6 . Section A 6 is the slow-speed deceleration section of the cam lift, and the speed increases from b 6 to b 7 . Section A 7 is the slow acceleration section of the cam lift, and the speed decreases from b 7 to b 8 . Section A 8 is the rapid acceleration section of the cam lift, and the speed decreases from b 8 to b 9 . Section A 9 is the rapid deceleration section of the cam lift, and the speed increases from b 9 to b 10 . Section A 10 is the slow deceleration section of the cam lift, and the speed increases from b 10 to b 11 . Section A 11 is the section from the end of the cam lift to the base circle, and the speed increases rapidly from b 11 to b 12 (36000deg/min). Finally, the 12 sections of the base circle A are completed, and according to the roller follower measuring head rotation angle θ, X(θ) displacement curve, and a(θ) acceleration curve, the rules in columns 2, 3, and 4 of Table 1 are obtained, that is, the cam cycle is completed. processing process. In column 5 of Table 1, the initial value b i of the rotation speed of each segment is obtained by the acceleration and deceleration control method, and the slope of the rotation speed in column 6 of Table 1 is shown in the notes below Table 1.

表1 凸轮轴分段基本参数模糊规则表Table 1 Fuzzy rule table of basic parameters of camshaft segmentation

注:Ai为第i段模糊子集;ci为第i段滚子从动件测头转角起始值;i=1,2,...,12;其中,Note: A i is the fuzzy subset of the i-th segment; c i is the initial value of the roller follower probe rotation angle of the i-th segment; i=1, 2, ..., 12; among them,

ki=(bi+1-bi)/(ci+1-ci);k1=0;k12=0;b1=b2=b12=36000,b4=b4=b8=b10,b11=b3,b5=b9k i =(b i+1 -b i )/(c i+1 -c i ); k 1 =0; k 12 =0; b 1 =b 2 =b 12 =36000, b 4 =b 4 = b 8 =b 10 , b 11 =b 3 , b 5 =b 9 .

8).计算T-S模糊控制器后件参数ai0、ai1:把表1的第2、5、6列参数代入式(25)得;8). Calculation of TS fuzzy controller subsequent parameters a i0 , a i1 : Substitute the parameters in columns 2, 5, and 6 of Table 1 into formula (25);

Fi′(θ)=bi+ki(θ-ci)=kiθ+bi-kici (27)F i ′(θ)=b i +k i (θ-c i )=k i θ+b i -k i c i (27)

由式(25)、(27)可得下式:From formulas (25) and (27), the following formula can be obtained:

其中i=1,2,...,12;ci为表1第2列中第i段的起始滚子从动件测头转角,ki为表1第6列中对应段的斜率,bi为表1第5列相对应的凸轮旋转速度起始值。Where i=1, 2, ..., 12; c i is the initial roller follower probe rotation angle in the i -th column in column 2 of Table 1, and ki is the slope of the corresponding segment in column 6 of Table 1 , b i is the initial value of the cam rotation speed corresponding to the fifth column of Table 1.

9).计算T-S模糊控制器前件参数:T-S模糊控制器的隶属度函数hi(θ)为:9). Calculate the antecedent parameters of the TS fuzzy controller: the membership function h i (θ) of the TS fuzzy controller is:

hi(θ)=ftri(θ,x1,x2,x3) (29)h i (θ) = f tri (θ, x 1 , x 2 , x 3 ) (29)

其中θ为滚子从动件测头转角,ftri(θ,x1,x2,x3)为三角形隶属函数,hi(θ)为隶属度函数,表示滚子从动件测头某个转角θ对模糊子集Ai的隶属度(满足程度),x1、x2、x3分别为模糊控制器的前件参数,且x1≤x2≤x3Where θ is the rotation angle of the roller follower probe, f tri (θ, x 1 , x 2 , x 3 ) is the triangular membership function, h i (θ) is the membership function, which means that the roller follower probe has a certain The degree of membership (satisfaction degree) of each rotation angle θ to the fuzzy subset A i , x 1 , x 2 , x 3 are the antecedent parameters of the fuzzy controller, and x 1 ≤ x 2 ≤ x 3 ;

本发明采用三角形隶属函数,三角形隶属函数表达式为(见文献“模糊控制及其MATLAB仿真”,石辛民等,清华大学出版社,2008.03):The present invention adopts the triangular membership function, and the triangular membership function expression is (seeing document " fuzzy control and MATLAB simulation thereof ", Shi Xinmin etc., Tsinghua University Press, 2008.03):

其中,θ为输入变量,x1、x2、x3分别为三角形隶属函数的参数,x1≤x2≤x3;三角形隶属函数曲线如图5所示,从图可知,x3-x1的值越小,函数形状越尖;Among them, θ is the input variable, x 1 , x 2 , and x 3 are the parameters of the triangular membership function, x 1 ≤ x 2 ≤ x 3 ; the curve of the triangular membership function is shown in Figure 5. It can be seen from the figure that x 3 -x The smaller the value of 1 , the sharper the function shape;

本发明T-S模糊控制器的前件参数由式(31)确定:The antecedent parameter of T-S fuzzy controller of the present invention is determined by formula (31):

把式(31)代入(30),再把(30)代入(29),得T-S模糊控制器隶属度函数hi(θ)可写成:Substituting (31) into (30), and then substituting (30) into (29), the membership function h i (θ) of the TS fuzzy controller can be written as:

hi(θ)=ftri(θ,ci-1,(ci+ci+1)/2,ci+2) (32)h i (θ) = f tri (θ, c i-1 , (c i +c i+1 )/2, c i+2 ) (32)

式(32)中θ为滚子从动件测头转角,ci为表1第2列中第i段的滚子从动件测头转角起始值,hi(θ)为输入变量论域上的隶属度函数,表示滚子从动件测头某个转角θ对模糊规则i的隶属度(满足程度)。In formula (32), θ is the rotation angle of the roller follower probe, c i is the initial value of the rotation angle of the roller follower probe in the second column of Table 1, h i (θ) is the input variable theory The membership function on the domain indicates the membership degree (satisfaction degree) of a certain rotation angle θ of the roller follower probe to the fuzzy rule i.

10).把式(25)、(32)代入式(26),通过MATLAB软件工具拟合出凸轮旋转速度F″(θ)与滚子从动件测头转角θ的曲线。再将凸轮旋转速度F″(θ)与凸轮转角α(θ)拟合得到T-S模糊控制器后的凸轮旋转速度F″(θ)与凸轮转角α(θ)预测曲线,图6为凸轮旋转速度F″(θ)与凸轮转角α(θ)预测曲线。10). Substitute equations (25) and (32) into equation (26), and use the MATLAB software tool to fit the curve of the cam rotation speed F″(θ) and the roller follower measuring head rotation angle θ. Then rotate the cam The speed F″(θ) and the cam rotation angle α(θ) are fitted to obtain the prediction curve of the cam rotation speed F″(θ) and the cam rotation angle α(θ) after the T-S fuzzy controller. Figure 6 shows the cam rotation speed F″(θ ) and cam angle α(θ) prediction curve.

图6中L1表示凸轮旋转速度F′(θ)与凸轮转角a(θ)预测直线段逼近曲线,L2表示经T-S模糊控制后的凸轮旋转速度F″(θ)与凸轮转角a(θ)预测曲线)。In Fig. 6, L 1 represents the cam rotation speed F′(θ) and the cam rotation angle a(θ) predicted linear segment approximation curve, and L 2 represents the cam rotation speed F″(θ) and the cam rotation angle a(θ) after TS fuzzy control ) forecast curve).

从图6可以看出经过T-S模糊控制器输出后的凸轮旋转速度F″(θ)与凸轮转角α(θ)预测曲线在A6、A7段没有靠近凸轮旋转速度F′(θ)与凸轮转角α(θ)预测直线段且曲线不够光滑,为使凸轮旋转速度F″(θ)靠近预测直线段(图6曲线L1)的同时保持凸轮旋转速度F″(θ)与凸轮转角α(θ)预测曲线的光滑,需对T-S模糊控制后的凸轮旋转速度F″(θ)与凸轮转角α(θ)预测曲线(图6曲线L2)进行优化。11).凸轮旋转速度预测值优化是利用调整相邻模糊规则的前件参数(隶属度函数hi(θ))来调整凸轮旋转速度F″(θ)的值,以此优化模糊控制器输出曲线使其光滑的同时更靠近理想状态,主要有以下两种情形:It can be seen from Figure 6 that the predicted curves of cam rotation speed F″(θ) and cam rotation angle α(θ) after the output of the TS fuzzy controller are not close to the cam rotation speed F′(θ) and cam rotation angle α(θ) in sections A 6 and A 7 The rotation angle α(θ) predicts the straight line segment and the curve is not smooth enough. In order to make the cam rotation speed F″(θ) close to the predicted straight line segment (Figure 6 curve L 1 ) while maintaining the cam rotation speed F″(θ) and the cam rotation angle α( To smooth the prediction curve of θ), it is necessary to optimize the prediction curve of cam rotation speed F″(θ) and cam rotation angle α(θ) after TS fuzzy control (curve L 2 in Figure 6). 11). The optimization of the predicted value of the cam rotation speed is to adjust the value of the cam rotation speed F″(θ) by adjusting the antecedent parameters (membership function h i (θ)) of the adjacent fuzzy rules, so as to optimize the output of the fuzzy controller The curve makes it smooth while being closer to the ideal state, mainly in the following two situations:

情形1:图7为优化前滚子从动件测头转角θ与凸轮旋转速度F″(θ)、邻近模糊规则R1、R2凸轮旋转速度F1′(θ)和F2′(θ)的曲线图。Situation 1: Fig. 7 shows the optimized front roller follower probe rotation angle θ and cam rotation speed F″(θ), adjacent fuzzy rules R 1 , R 2 cam rotation speed F 1 ′(θ) and F 2 ′(θ ) graph.

假设滚子从动件测头某个转角θ1作为模糊控制器的输入,凸轮旋转速度F′(θ1)作为模糊控制器输出。F1′(θ1)、F2′(θ1)分别为滚子从动件测头某个转角θ1在模糊规则R1、R2上的凸轮旋转速度。由式(26)得式(33),即得到模糊控制器输出的凸轮旋转速度F″(θ1)关系式如下:Assume that a certain rotation angle θ 1 of the roller follower probe is used as the input of the fuzzy controller, and the cam rotation speed F′(θ 1 ) is used as the output of the fuzzy controller. F 1 ′(θ 1 ), F 2 ′(θ 1 ) are the cam rotation speeds of a certain rotation angle θ 1 of the roller follower measuring head on the fuzzy rules R 1 and R 2 respectively. From formula (26) to formula (33), that is to say, the relational formula of the cam rotation speed F″(θ 1 ) output by the fuzzy controller is as follows:

其中:h11)、h21)表示滚子从动件测头某个转角θ1对模糊子集A1、A2的隶属度(满足程度),通过调整h21)的值来调整F″(θ1)的值,使模糊控制器输出曲线更贴近于理想状态(即预测直线分段模型F′(θ)),具体调整步骤如下:Among them: h 11 ), h 21 ) represent the degree of membership (satisfaction) of a certain rotation angle θ 1 of the roller follower probe to the fuzzy subsets A 1 and A 2 , by adjusting h 2 ( θ 1 ) to adjust the value of F″(θ 1 ), so that the output curve of the fuzzy controller is closer to the ideal state (that is, the predicted linear segment model F′(θ)), the specific adjustment steps are as follows:

若以图7中邻近模糊规则R1、R2凸轮旋转速度F1′(θ)和F2′(θ)的直线段的交点为界,从图7左半部分可知,F″(θ1)>F1′(θ1),且在邻近模糊规则R2上凸轮旋转速度F2′(θ1)大于在模糊规则R1上凸轮旋转速度F1′(θ1),即F2′(θ1)>F1′(θ1),可以通过调整隶属度函数h2(θ)的滚子从动件测头转角初始值ci-1,若增加为(ci-1+ci)/2(见图8),h21)变小至h2′(θ1),代入式(33),增大,减小,由此F″(θ1)将会减小从而更趋于F1′(θ1)。同理图7右半部分也可以通过调整隶属度函数h1(θ),减小F″(θ)使右半部分更靠近于F2′(θ)。If the intersection of the straight line segments adjacent to the fuzzy rules R 1 and R 2 in Fig. 7 of the cam rotation speeds F 1 ′(θ) and F 2 ′(θ) is taken as the boundary, it can be known from the left half of Fig. 7 that F″(θ 1 )>F 1 ′(θ 1 ), and the cam rotation speed F 2 ′(θ 1 ) on the adjacent fuzzy rule R 2 is greater than the cam rotation speed F 1 ′(θ 1 ) on the fuzzy rule R 1 , that is, F 2 ′ (θ 1 )>F 1 ′(θ 1 ), you can adjust the initial value c i-1 of the roller follower probe rotation angle of the membership function h 2 (θ), if it is increased to ( ci-1 +c i )/2 (see Figure 8), h 21 ) becomes smaller to h 2 ′(θ 1 ), substituting into formula (33), increase, As a result, F″(θ 1 ) will decrease and become closer to F 1 ′(θ 1 ). Similarly, the right half of Figure 7 can also reduce F by adjusting the membership function h 1 (θ). "(θ) brings the right half closer to F 2 '(θ).

结合上述优化规律对图7左半部分进行优化可得情形1优化后滚子从动件测头转角θ模糊控制器输出F″′(θ)曲线,图9为优化后滚子从动件测头转角θ模糊控制器输出F″′(θ)、邻近模糊规则R1、R2输出F1′(θ)和F2′(θ)曲线图。Combining with the above optimization rules, optimize the left half of Fig. 7 to obtain the F″′(θ) curve output by the fuzzy controller for the optimized roller follower measuring head rotation angle θ in case 1. Fig. 9 is the optimized roller follower measured The head rotation angle θ fuzzy controller outputs F″'(θ), and the adjacent fuzzy rules R 1 and R 2 output F 1 ′(θ) and F 2 ′(θ) curves.

图7中直线A表示模糊规则R1的F1′(θ)的直线段,直线B表示邻近模糊规则R2的F2′(θ)的直线段,曲线C代表模糊控制器的输出F″(θ))。In Fig. 7, straight line A represents the straight line segment of F 1 ′(θ) of fuzzy rule R 1 , straight line B represents the straight line segment of F 2 ′(θ) adjacent to fuzzy rule R 2 , and curve C represents the output F” of the fuzzy controller (θ)).

图8中直线A为优化前的隶属度函数h2(θ),直线B为优化后的隶属度函数h2’(θ))。The straight line A in Fig. 8 is the membership degree function h 2 (θ) before optimization, and the straight line B is the membership degree function h 2 '(θ) after optimization).

图9中直线A表示模糊规则R1的F1′(θ)的直线段,直线B表示邻近模糊规则R2的F2′(θ)的直线段,曲线C代表优化后模糊控制器的输出F″′(θ))。In Fig. 9, straight line A represents the straight line segment of F 1 ′(θ) of fuzzy rule R 1 , straight line B represents the straight line segment of F 2 ′(θ) adjacent to fuzzy rule R 2 , and curve C represents the output of fuzzy controller after optimization F"'(θ)).

情形2:如图10所示为另一种类型滚子从动件测头转角θ与凸轮旋转速度F″(θ)、邻近模糊规则R1、R2凸轮旋转速度F1′(θ)和F2′(θ)的曲线图。Situation 2: As shown in Figure 10, another type of roller follower probe rotation angle θ and cam rotation speed F″(θ), adjacent fuzzy rules R 1 , R 2 cam rotation speed F 1 ′(θ) and Graph of F 2 '(θ).

同样假设图10中滚子从动件测头某个转角θ2作为模糊控制器的输入,凸轮旋转速度F″(θ2)作为模糊控制器输出。F1′(θ2)、F2′(θ2)为滚子从动件测头某个转角θ2在模糊规则R1、R2上的凸轮旋转速度。由式(26)得式(34),即得到模糊控制器输出的凸轮旋转速度F″(θ2)关系式如下:Also assume that a certain rotation angle θ 2 of the roller follower measuring head in Fig. 10 is used as the input of the fuzzy controller, and the cam rotation speed F″(θ 2 ) is used as the output of the fuzzy controller. F 1 ′(θ 2 ), F 2 ′ (θ 2 ) is the rotation speed of the cam at a certain rotation angle θ 2 of the roller follower measuring head on the fuzzy rules R 1 and R 2. From the formula (26), the formula (34) is obtained, that is, the output cam of the fuzzy controller The relational formula of rotation speed F″(θ 2 ) is as follows:

其中:h12)、h22)表示滚子从动件测头某个转角θ2对模糊子集A1、A2的隶属度(满足程度),通过调整h12)来调整F″(θ2)的值,使模糊控制器输出曲线更贴近于理想状态(即预测直线分段模型F′(θ)),具体调整为:Among them: h 12 ), h 22 ) represent the degree of membership (satisfaction) of a certain rotation angle θ 2 of the roller follower probe to the fuzzy subsets A 1 and A 2 , by adjusting h 1 ( θ 2 ) to adjust the value of F″(θ 2 ), so that the output curve of the fuzzy controller is closer to the ideal state (that is, the predicted linear segment model F′(θ)), the specific adjustment is:

若以模糊规则R1、R2凸轮旋转速度F1′(θ)和F2′(θ)的直线段的交点为界,在图10右半部分滚子从动件测头某个转角θ2的输出F″(θ2)<F2′(θ2),且在邻近模糊规则R1上的输出F1′(θ2)小于在模糊规则R1上的输出F2′(θ2),即F1′(θ2)<F2′(θ2),可以通过调整隶属度函数h1(θ)的滚子从动件测头转角结束值ci+2,若减少为(ci+1+ci+2)/2(如图11),则h12)减小至h1′(θ2),增大,增大(F1′(θ2)-F2′(θ2)为负数),由此F″(θ2)将会增大从而趋于F2′(θ2)。同样地,对图10的左半部分也可调整隶属度函数h2(θ),从而F″(θ)增大使左半部分更靠近于F1′(θ)。If the intersection point of the straight line segment of the cam rotation speed F 1 ′(θ) and F 2 ′(θ) of the fuzzy rules R 1 and R 2 is used as the boundary, a certain rotation angle θ of the roller follower measuring head in the right half of Fig. 10 2 ’s output F″(θ 2 )<F 2 ′(θ 2 ), and the output F 1 ′(θ 2 ) on the adjacent fuzzy rule R 1 is smaller than the output F 2 ′(θ 2 ) on the fuzzy rule R 1 ), that is, F 1 ′(θ 2 )<F 2 ′(θ 2 ), which can be adjusted by adjusting the end value c i+2 of the roller follower probe rotation angle of the membership function h 1 (θ), if it is reduced to ( c i+1 +c i+2 )/2 (as shown in Figure 11), then h 12 ) decreases to h 1 ′(θ 2 ), increase, increase (F 1 ′(θ 2 )-F 2 ′(θ 2 ) is a negative number), thus F″(θ 2 ) will increase and tend to F 2 ′(θ 2 ). Similarly, for The left half of 10 can also adjust the membership function h 2 (θ), so that the increase of F″(θ) makes the left half closer to F 1 ′(θ).

结合上述规律可对图10左半部分和右半部分进行优化可得情形2优化后滚子从动件测头转角θ模糊控制器输出F″′(θ)曲线,图12为情形2优化后滚子从动件测头转角θ与凸轮旋转速度F″′(θ)、邻近模糊规则R1、R2凸轮旋转速度F1′(θ)和F2′(θ)的曲线图。Combined with the above rules, the left half and right half of Figure 10 can be optimized to obtain the F"'(θ) curve output by the fuzzy controller for the optimized roller follower probe angle θ in case 2. Figure 12 is the optimized case 2 Curves of roller follower probe rotation angle θ versus cam rotation speed F″′(θ), adjacent fuzzy rules R 1 , R 2 cam rotation speeds F 1 ′(θ) and F 2 ′(θ).

图10中直线A表示模糊规则R1的F1′(θ)的直线段,直线B表示邻近模糊规则R2的F2′(θ)的直线段,曲线C代表模糊控制器的输出F″(θ))。In Fig. 10, straight line A represents the straight line segment of F 1 ′(θ) of fuzzy rule R 1 , straight line B represents the straight line segment of F 2 ′(θ) adjacent to fuzzy rule R 2 , and curve C represents the output F” of the fuzzy controller (θ)).

图11中直线A为优化前的隶属度函数h1(θ),直线B为优化后的隶属度函数h1’(θ))。The straight line A in Fig. 11 is the membership degree function h 1 (θ) before optimization, and the straight line B is the membership degree function h 1 '(θ) after optimization).

图12中直线A表示模糊规则R1的F1′(θ)的直线段,直线B表示邻近模糊规则R2的F2′(θ)的直线段,曲线C代表优化后模糊控制器的输出F″′(θ))。In Fig. 12, straight line A represents the straight line segment of F 1 ′(θ) of fuzzy rule R 1 , straight line B represents the straight line segment of F 2 ′(θ) adjacent to fuzzy rule R 2 , and curve C represents the output of fuzzy controller after optimization F"'(θ)).

根据上述原理,由式(32)经过反复试验得优化式如下:According to the above principles, the optimized formula from formula (32) after repeated tests is as follows:

hi(θ)=ftri(θ,(ci-1+ci)/s,(ci+ci+1)/s,(ci+1+ci+2)/s) (35)h i (θ)=f tri (θ, ( ci-1 + ci )/s, ( ci + ci+1 )/s, ( ci+1 + ci+2 )/s) ( 35)

其中s为优化调整系数,取值1.90-2.10之间,一般为2,根据曲线每次可增加或减少0.01,可调整图6中L2凸轮旋转速度F″(θ)与凸轮转角α(θ)预测曲线光滑并且靠近L1凸轮旋转速度F′(θ)与凸轮转角α(θ)预测直线段曲线。Among them, s is the optimization adjustment coefficient, the value is between 1.90-2.10, generally 2 , and can be increased or decreased by 0.01 each time according to the curve, and the L2 cam rotation speed F″(θ) and cam rotation angle α(θ) in Figure 6 can be adjusted ) prediction curve is smooth and close to L 1 cam rotation speed F'(θ) and cam angle α(θ) prediction line section curve.

本发明算法流程图如图13所示。The algorithm flowchart of the present invention is shown in FIG. 13 .

12).以加工磨削某公司提供的凸轮轴为例进行计算。已知该凸轮轴采用平口测头滚子r1=999999;凸轮基圆半径r=17.5;砂轮半径r2=175,凸轮旋转转速n1=100rmp,砂轮转速n2=4367rmp。凸轮升程值见附录1所示。12). Take the machining and grinding of a camshaft provided by a company as an example to calculate. It is known that the camshaft adopts flat probe roller r 1 =999999; cam base circle radius r=17.5; grinding wheel radius r 2 =175, cam rotation speed n 1 =100rmp, grinding wheel speed n 2 =4367rmp. The cam lift value is shown in Appendix 1.

①转速限制计算① Speed limit calculation

由式(10)得:From formula (10):

起升程点角速度:Angular velocity at lift point:

由式(22)得:From formula (22):

在进入升程起点之前,应预先将凸轮转速降下来,以保证凸轮平稳运行。Before entering the starting point of the lift, the cam speed should be reduced in advance to ensure the smooth operation of the cam.

②由附录1及S型加减速方法得到凸轮轴分段参数表如表2所示。② According to Appendix 1 and the S-type acceleration and deceleration method, the segmented parameter table of the camshaft is shown in Table 2.

在进入凸轮升程起点之前,应预先将凸轮转速降为8737deg/min,以保证凸轮平稳运行。将上述条件代入公式(1)、对式(1)求一阶导数、二阶导数、三阶导数,可计算出砂轮进给最大速度vmax=0.252mm/deg;最大加速度amax=0.024mm/deg2;最大加加速度jmax=0.0085mm/deg3。再根据式(4)、(11)、(12)、(13)、(14)可换算出砂轮进给最大速度vmax=87mm/s;最大加速度amax=1795mm/s2;最大加加速度jmax=150791mm/s3。根据凸轮升程值与加减速控制方法可以计算出表2第7列速度值。Before entering the starting point of the cam lift, the cam speed should be reduced to 8737deg/min in advance to ensure the smooth operation of the cam. Substituting the above conditions into formula (1), calculating the first derivative, second derivative and third derivative of formula (1), the maximum feeding speed of the grinding wheel v max = 0.252mm/deg; the maximum acceleration a max = 0.024mm can be calculated /deg 2 ; maximum jerk j max =0.0085mm/deg 3 . Then according to formulas (4), (11), (12), (13), (14), the maximum feeding speed of the grinding wheel v max = 87mm/s; the maximum acceleration a max = 1795mm/s 2 ; the maximum jerk j max =150791 mm/s 3 . According to the cam lift value and the acceleration and deceleration control method, the speed value in column 7 of Table 2 can be calculated.

表2凸轮轴分段参数表Table 2 Camshaft Segment Parameter Table

根据表2的凸轮轴分段参数表,结合凸轮旋转速度预测直线分段模型示意图(见图4),用MATLAB软件工具可以拟合出凸轮旋转速度F′(θ)与凸轮转角α(θ)预测直线段逼近曲线如图14所示。According to the camshaft segmented parameter table in Table 2, combined with the schematic diagram of the cam rotation speed prediction linear segment model (see Figure 4), the cam rotation speed F′(θ) and the cam rotation angle α(θ) can be fitted by MATLAB software tools The predicted straight line segment approximation curve is shown in Figure 14.

③把表1第2列参数代入式(32)得式(36),由于A1、A12为水平直线段,且A2、A11的斜率相较于其他段的斜率来说相差较大,为避免A2、A11的斜率影响其他段,使其他段在模糊子集A2、A12的隶属度为0,所以h2(θ)、h12(θ)确定为直角三角形隶属度函数。③ Substituting the parameters in column 2 of Table 1 into formula (32) to get formula (36), since A 1 and A 12 are horizontal straight line segments, and the slopes of A 2 and A 11 are quite different from those of other segments , in order to avoid the slopes of A 2 and A 11 from affecting other segments, the membership degree of other segments in the fuzzy subsets A 2 and A 12 is 0, so h 2 (θ) and h 12 (θ) are determined as right triangle membership degrees function.

将表2第3列参数起始角ci代入式(36),得下式:Substituting the parameter starting angle c i in the third column of Table 2 into formula (36), the following formula is obtained:

④把表2中第3、7、8列的参数代入式(28),再把式(28)代入式(25),然后将式(25)、(37)代入式(26),利用MATLAB对式(26)、(2)进行拟合可得到凸轮旋转速度F″(θ)与凸轮转角α(θ)的预测曲线如图15所示。④ Substitute the parameters in columns 3, 7, and 8 in Table 2 into formula (28), then substitute formula (28) into formula (25), then substitute formulas (25) and (37) into formula (26), use MATLAB Fitting equations (26) and (2), the prediction curve of cam rotation speed F"(θ) and cam rotation angle α(θ) can be obtained as shown in Figure 15.

图15中L1表示凸轮旋转速度F′(θ)与凸轮转角a(θ)预测直线段逼近曲线,L2表示经T-S模糊控制后的凸轮旋转速度F″(θ)与凸轮转角a(θ)预测曲线)。In Fig. 15, L 1 represents the cam rotation speed F′(θ) and the cam rotation angle a(θ) predicted linear segment approximation curve, and L 2 represents the cam rotation speed F″(θ) and the cam rotation angle a(θ) after TS fuzzy control ) forecast curve).

此外把式(37)代入式(30),利用MATLAB进行仿真,可获得隶属度函数分布曲线如图16所示。In addition, substituting formula (37) into formula (30) and using MATLAB to simulate, the distribution curve of membership function can be obtained as shown in Figure 16.

由图15可知,进行T-S模糊控制后凸轮旋转速度F″(θ)与凸轮转角α(θ)预测曲线(图15曲线L2)在A6、A7段没有贴近凸轮旋转速度预测直线分段曲线,并且曲线不够光滑,需对凸轮旋转速度F″(θ)与凸轮转角α(θ)预测曲线进行优化,使得优化后的凸轮旋转速度F″′(θ)与凸轮转角α(θ)预测曲线在保证光滑的同时尽可能地靠近凸轮旋转速度预测直线分段曲线(图15曲线L1)。It can be seen from Fig. 15 that after TS fuzzy control, the prediction curve of cam rotation speed F"(θ) and cam rotation angle α(θ) (curve L 2 in Fig. 15) is not close to the cam rotation speed prediction line segment in A 6 and A 7 curve, and the curve is not smooth enough, it is necessary to optimize the prediction curve of cam rotation speed F″(θ) and cam rotation angle α(θ), so that the optimized cam rotation speed F″’(θ) and cam rotation angle α(θ) prediction The curve is as close as possible to the cam rotation speed prediction line segment curve (curve L 1 in FIG. 15 ) while ensuring smoothness.

⑤根据步骤11的优化方法根据式(35)可得式(38),从而对图15的凸轮旋转速度预测曲线进行优化。⑤ According to the optimization method in step 11, formula (38) can be obtained according to formula (35), so as to optimize the cam rotation speed prediction curve in Fig. 15 .

将表2第3列参数起始角ci代入式(38)可得:Substituting the parameter starting angle c i in the third column of Table 2 into formula (38) can be obtained:

同理把表2第3、7、8列的参数代入式(28),再把式(28)代入式(25),然后把式(25)、(39)代入式(26),利用MATLAB对式(26)、(2)进行拟合得到优化后凸轮旋转速度F″′(θ)对凸轮转角α(θ)预测曲线如图17所示。Similarly, substitute the parameters in columns 3, 7, and 8 of Table 2 into formula (28), then substitute formula (28) into formula (25), then substitute formulas (25) and (39) into formula (26), use MATLAB Fitting equations (26) and (2) to obtain the prediction curve of cam rotation speed F″'(θ) versus cam rotation angle α(θ) after optimization is shown in Figure 17.

把式(38)代入式(30),对式(30)进行MATLAB仿真得到优化后的隶属度函数hi(θ)分布曲线如图18所示。Substitute Equation (38) into Equation (30), and perform MATLAB simulation on Equation (30) to obtain the optimized membership function h i (θ) distribution curve as shown in Figure 18.

从上述图形可看出,经优化后的隶属度函数通过模糊控制得到的凸轮旋转速度预测曲线更加光滑,也更加接近凸轮旋转速度直线段逼近曲线,但是为了磨削效果更理想,通常会在此基础上依据实际效果,进行不断检验和优化隶属度函数以求更为合理的曲线。It can be seen from the above figure that the cam rotation speed prediction curve obtained by the optimized membership function through fuzzy control is smoother and closer to the linear segment approximation curve of the cam rotation speed. On the basis of the actual effect, the membership function is continuously tested and optimized to obtain a more reasonable curve.

⑥结果分析⑥Result Analysis

根据上述优化凸轮旋转速度预测曲线方法(步骤11)可通过不断优化,利用MATLAB对凸轮旋转速度F″′(θ)与凸轮转角α(θ)进行拟合可得到如图19所示凸轮旋转速度F″′(θ)对凸轮转角α(θ)预测曲线(图19中B曲线),将最终优化得到的仿真结果图与部分原方法可实现加工的曲线图对比。曲线A为可以实现加工的凸轮轴旋转速度曲线,曲线B为本发明最终优化得到的凸轮旋转速度F″′(θ)与凸轮转角α(θ)预测曲线。According to the above method of optimizing the cam rotation speed prediction curve (step 11), through continuous optimization, use MATLAB to fit the cam rotation speed F"'(θ) and the cam rotation angle α(θ) to obtain the cam rotation speed as shown in Figure 19 F″'(θ) vs. cam rotation angle α(θ) prediction curve (curve B in Fig. 19), compare the simulation result diagram obtained by the final optimization with the curve diagram of part of the original method that can realize processing. Curve A is the camshaft rotation speed curve that can be processed, and curve B is the cam rotation speed F"'(θ) and cam rotation angle α(θ) prediction curve finally optimized in the present invention.

原方法的凸轮旋转速度加工曲线效率有了明显提高,且稳定性较好。The efficiency of the cam rotation speed processing curve of the original method has been significantly improved, and the stability is better.

应用实例Applications

现以某公司改装的丰田工机数控凸轮轴磨床为试验设备,凸轮轴轮廓检测仪为检测设备,加工磨削某公司凸轮轴为例。已知该凸轮轴采用平口测头滚子r1=999999;凸轮基圆半径r=17.5;砂轮半径r2=175,凸轮转速n1=100rmp,砂轮转速n2=3000rmp。凸轮升程值见附录1所示。Now take the Toyota Koki CNC camshaft grinder modified by a company as the test equipment, and the camshaft profile detector as the testing equipment, and process and grind the camshaft of a certain company as an example. It is known that the camshaft adopts flat probe roller r 1 =999999; cam base circle radius r=17.5; grinding wheel radius r 2 =175, cam speed n 1 =100rmp, and grinding wheel speed n 2 =3000rmp. The cam lift value is shown in Appendix 1.

通过Visual Studio 2008中C#语言设计,设计用户参数设置界面、位移和速度子程序生成软件,将软件移植到Operate Programming Package的西门子840D SL数控系统中,只要输入凸轮升程值、砂轮半径、滚子从动件测头半径、基圆半径参数,就能通过软件自动生成数控加工的砂轮位移数控加工子程序和凸轮旋转数控加工子程序,凸轮旋转数控加工的子程序仿真曲线如图19所示。A为原方法生成的凸轮旋转数控加工的子程序仿真曲线,B为本方法生成的凸轮旋转数控加工的子程序仿真曲线,经过磨削加工、检测,其检测结果附录3所示。从附录3第4列可知,凸轮升程误差小于0.02mm,优于国家标准(见附录4)。附录4为技术性能对照表,从表中可以看到济南迈特力公司改装的丰田工机数控凸轮轴磨床与德国JUNKER公司的数控凸轮轴磨床性能指标相当。具体做法如下:Through the C# language design in Visual Studio 2008, design the user parameter setting interface, displacement and speed subroutine generation software, and transplant the software to the Siemens 840D SL CNC system of the Operate Programming Package, just input the cam lift value, grinding wheel radius, roller The parameters of the radius of the follower probe and the radius of the base circle can automatically generate the subroutine of the grinding wheel displacement NC machining and the cam rotation NC machining subroutine of the NC machining through the software. The simulation curve of the cam rotation NC machining subroutine is shown in Figure 19. A is the subroutine simulation curve of cam rotation NC machining generated by the original method, and B is the subroutine simulation curve of cam rotation NC machining generated by this method. After grinding and testing, the test results are shown in Appendix 3. It can be seen from the fourth column of appendix 3 that the cam lift error is less than 0.02mm, which is better than the national standard (see appendix 4). Appendix 4 is a comparison table of technical performance. From the table, it can be seen that the performance index of the CNC camshaft grinder modified by Jinan Maiteli Company is equivalent to that of the CNC camshaft grinder of JUNKER Company in Germany. The specific method is as follows:

1.将凸轮升程值(见附录1)中的数据、砂轮半径、滚子从动件测头半径、基圆半径值输入到本发明的用户界面,由上述步骤2)得到对砂轮位移控制的数控加工子程序,可以获得砂轮架X轴位移值曲线(见图2(a、b、c))和砂轮位移控制的数控加工子程序。1. Input the data in the cam lift value (seeing appendix 1), the radius of the grinding wheel, the radius of the roller follower measuring head, and the radius of the base circle to the user interface of the present invention, and obtain the displacement control of the grinding wheel by the above-mentioned step 2) The NC machining subroutine of the NC machining subroutine can obtain the X-axis displacement value curve of the grinding wheel holder (see Figure 2 (a, b, c)) and the NC machining subroutine of the grinding wheel displacement control.

2.将凸轮轴升程值(见附录1)中的数据、砂轮半径、滚子从动件测头半径、基圆半径值输入到本发明的用户界面,由上述步骤7)得到的经过修正的对凸轮旋转速度控制的数控加工子程序,可以获得凸轮旋转速度数控子程序曲线图(见图19)和凸轮C轴的旋转速度子程序,同时还可显示凸轮旋转速度的最小值。2. The data in the camshaft lift value (seeing appendix 1), the grinding wheel radius, the roller follower measuring head radius, and the base circle radius value are input to the user interface of the present invention, and the correction obtained by the above step 7) The NC machining subroutine for cam rotation speed control can obtain the cam rotation speed NC subroutine graph (see Figure 19) and the C-axis rotation speed subroutine of the cam, and can also display the minimum value of the cam rotation speed at the same time.

附录1厂家提供的凸轮升程值Appendix 1 The cam lift value provided by the manufacturer

附录2加减速算法计算凸轮旋转速度预测值Appendix 2 Acceleration and deceleration algorithm to calculate the predicted value of cam rotation speed

附录3凸轮加工误差检测表Appendix 3 Cam machining error detection table

附录4技术性能对照表Appendix 4 Technical Performance Comparison Table

Claims (1)

1.基于T-S模糊控制的凸轮轴磨削加工方法,由以下步骤实现:1. The camshaft grinding method based on T-S fuzzy control is realized by the following steps: 步骤1.在砂轮高速旋转的同时,利用计算机的数控程序控制数控凸轮轴磨床中作为X轴的砂轮进给系统和作为C轴的凸轮旋转系统;Step 1. While the grinding wheel rotates at high speed, use the numerical control program of the computer to control the grinding wheel feed system as the X axis and the cam rotation system as the C axis in the CNC camshaft grinder; 步骤2.根据用户提供的凸轮升程值、砂轮半径、测头半径、凸轮基圆半径和式(1)、(2)、(4)、(5),运用MATLAB软件工具由式(1)、(2)拟合出砂轮进给X(θ)与凸轮转角α(θ)的位移曲线,该位移曲线所形成的X(θ)-α(θ)值由编程软件自动生成砂轮进给数控加工子程序,以实现砂轮跟随凸轮旋转作横向往复运动,同时运用MATLAB软件工具由式(2)、(5)拟合出凸轮旋转速度F(θ)与凸轮转角α(θ)的速度曲线,该速度曲线所形成的F(θ)-α(θ)值由编程软件自动生成凸轮旋转数控加工子程序,以实现凸轮旋转运动;Step 2. According to the cam lift value, grinding wheel radius, probe radius, cam base circle radius and formulas (1), (2), (4) and (5) provided by the user, use the MATLAB software tool to formulate the formula (1) , (2) Fit the displacement curve of the grinding wheel feed X(θ) and the cam angle α(θ), and the X(θ)-α(θ) value formed by the displacement curve is automatically generated by the programming software for the numerical control of the grinding wheel feed The subroutine is processed to realize the lateral reciprocating motion of the grinding wheel following the rotation of the cam. At the same time, the speed curve of the cam rotation speed F(θ) and the cam rotation angle α(θ) is fitted by the formula (2) and (5) using MATLAB software tools. The F(θ)-α(θ) value formed by the speed curve is automatically generated by the programming software for the cam rotation numerical control machining subroutine to realize the cam rotation movement; X(θ)=OO2-r2-r (1)X(θ)=OO 2 -r 2 -r (1) 式中:X(θ)为砂轮进给的位移量,r为凸轮基圆半径,O为凸轮基圆圆心,O1为滚子从动件测头圆心,O2为砂轮圆心,φ为凸轮基圆圆心O到测头滚子圆心O1的连线和凸轮瞬心M到测头滚子圆心O1的连线之间的夹角,O1O2=r2-r1,r2为砂轮半径,r1为滚子从动件测头半径,OO1=r+H(θ)+r1,H(θ)为凸轮的升程值,θ为凸轮基圆轮廓中点A到凸轮基圆圆心O的连线与凸轮基圆圆心O到测头滚子圆心O1的连线之间的夹角,α(θ)为凸轮基圆轮廓中点A与凸轮基圆圆心O连线与砂轮圆心O2到凸轮基圆圆心O连线之间夹角,ρ(θ)为凸轮轮廓与砂轮相切的切点P到凸轮基圆圆心O的极半径,β(θ)为凸轮基圆轮廓中点A到凸轮基圆圆心O的连线与凸轮轮廓与砂轮相切的切点P到凸轮基圆圆心O连线之间的夹角,ω(θ)为凸轮旋转至凸轮升程时凸轮轮廓与砂轮相切的切点P的旋转角速度,ω0为凸轮转至基圆时凸轮轮廓与砂轮相切点P的角速度,F(θ)为凸轮旋转至滚子从动件侧头转角θ处的旋转速度,n(θ)为凸轮旋转至滚子从动件侧头转角θ处的旋转转速;In the formula: X(θ) is the displacement of the grinding wheel feed, r is the radius of the base circle of the cam, O is the center of the base circle of the cam, O 1 is the center of the measuring head of the roller follower, O 2 is the center of the grinding wheel, φ is the angle between the line connecting the cam base circle center O to the probe roller center O 1 and the cam instant center M to the probe roller center O 1 , O 1 O 2 =r 2 -r 1 , r 2 is the radius of the grinding wheel, r 1 is the radius of the roller follower probe, OO 1 = r+H(θ)+r 1 , H(θ) is the lift value of the cam, θ is the cam base circle profile The angle between the line connecting point A to the cam base circle center O and the line connecting the cam base circle center O to the probe roller center O 1 , α(θ) is the midpoint A of the cam base circle profile and the cam base circle The angle between the line connecting the center O and the center O 2 of the grinding wheel to the center O of the base circle of the cam, ρ(θ) is the polar radius from the tangent point P between the cam profile and the grinding wheel to the center O of the base circle of the cam, β(θ ) is the angle between the line connecting the midpoint A of the cam base circle profile to the center O of the cam base circle and the tangent point P between the cam profile and the grinding wheel to the line O of the cam base circle center O, ω(θ) is the cam rotation Rotation angular velocity of the tangent point P between the cam profile and the grinding wheel when the cam is lifted, ω0 is the angular velocity of the tangent point P between the cam profile and the grinding wheel when the cam rotates to the base circle, F(θ) is the cam rotation to the roller from The rotation speed at the side head rotation angle θ of the movable member, n(θ) is the rotation speed from the rotation of the cam to the side head rotation angle θ of the roller follower; 步骤3.分别对砂轮进给位移式(1)求一阶导数、二阶导数、三阶导数分别得式(6)、(7)、(8);Step 3. Calculate the first-order derivative, the second-order derivative, and the third-order derivative respectively to the grinding wheel feed displacement formula (1) to obtain formulas (6), (7), and (8); 式中,v(θ)为砂轮进给速度,a(θ)为砂轮进给加速度,j(θ)为砂轮进给加加速度;In the formula, v(θ) is the feed speed of the grinding wheel, a(θ) is the feed acceleration of the grinding wheel, and j(θ) is the feed jerk of the grinding wheel; 运用MATLAB软件工具对式(2)、(6)拟合出砂轮进给速度v(θ)与凸轮转角α(θ)的速度曲线,运用MATLAB软件工具对式(2)、(7)拟合出砂轮进给加速度a(θ)与凸轮转角α(θ)的加速度曲线;凸轮轴最大旋转速度超过基圆旋转速度(36000deg/min)1.2倍以上,根据式(9)、(10)对砂轮进给速度、加速度、加加速度、凸轮旋转速度进行限制:Use MATLAB software tools to fit equations (2) and (6) to get the speed curve of the grinding wheel feed speed v(θ) and cam angle α(θ), and use MATLAB software tools to fit equations (2) and (7) Get the acceleration curve of the grinding wheel feed acceleration a(θ) and the cam rotation angle α(θ); the maximum rotation speed of the camshaft exceeds the rotation speed of the base circle (36000deg/min) by more than 1.2 times, according to formulas (9) and (10) for the grinding wheel Feedrate, acceleration, jerk, cam rotation speed are limited: 式中,v(θi)为第i个插补周期砂轮进给速度,a(θi)为第i个插补周期砂轮进给加速度,j(θi)为第i个插补周期砂轮进给加加速度,k为限速比,vmax为砂轮进给允许最大速度,amax为砂轮进给允许最大加速度,jmax为砂轮进给允许最大加加速度,ωmax为最大旋转角速度;In the formula, v(θ i ) is the feed speed of the grinding wheel in the i-th interpolation period, a(θ i ) is the feed acceleration of the grinding wheel in the i-th interpolation period, and j(θ i ) is the grinding wheel speed in the i-th interpolation period Feed jerk, k is the speed limit ratio, v max is the allowable maximum speed of grinding wheel feed, a max is the allowable maximum acceleration of grinding wheel feed, j max is the allowable maximum jerk of grinding wheel feed, ω max is the maximum rotational angular velocity; 步骤4.根据S型加减速控制方法、凸轮升程值得加速方式1的式(16)和加速方式2的式(18)、(19)、(20),求解砂轮进给插补周期Tsi和凸轮回程的插补周期,以预测出凸轮每旋转1度砂轮进给所用的时间;Step 4. According to the S-type acceleration and deceleration control method, the cam lift value, the formula (16) of acceleration mode 1 and the formulas (18), (19) and (20) of acceleration mode 2, solve the grinding wheel feed interpolation period T si and the interpolation cycle of the cam return to predict the time it takes for the cam to rotate 1 degree for the grinding wheel feed; 由式(16)计算加速方式1的插补周期TsiCalculate the interpolation period T si of acceleration mode 1 by formula (16): ΔX(Tsi)为每旋转1度砂轮进给的位移量,ti1为加加速阶段时间,ti2为减加速阶段时间,vi-1为初始进给速度,jmax为砂轮进给允许最大加加速度,s(ti1)为ti1段砂轮进给位移,s(ti2)为ti2段砂轮进给位移,Tsi为砂轮进给ΔX(Tsi)时的一个插补周期;ΔX(T si ) is the displacement of the grinding wheel feed per rotation of 1 degree, t i1 is the acceleration phase time, t i2 is the deceleration phase time, v i-1 is the initial feed speed, j max is the allowable grinding wheel feed The maximum jerk, s(t i1 ) is the feed displacement of the grinding wheel at stage t i1 , s(t i2 ) is the feed displacement of the grinding wheel at stage t i2 , and T si is an interpolation cycle when the grinding wheel feeds ΔX(T si ); 由式(18)、(19)、(20)计算加速方式2的插补周期TsiCalculate the interpolation period T si of acceleration mode 2 by formulas (18), (19) and (20): amaxti2 2+(jmaxti1 2+2amaxti1+2vi-1)ti2+4vi-1ti1+jmaxti1 3+amaxti1 2-2ΔX(Tsi)=0 (18)a max t i2 2 +(j max t i1 2 +2a max t i1 +2v i-1 )t i2 +4v i-1 t i1 +j max t i1 3 +a max t i1 2 -2ΔX(T si ) =0 (18) ti1=ti3=amax/jmax (19)t i1 =t i3 =a max /j max (19) Tsi=ti1+ti2+ti3=2ti1+ti2 (20)T si =t i1 +t i2 +t i3 =2t i1 +t i2 (20) 其中:ΔX(Tsi)为每旋转1度砂轮进给的位移量,ti1为加加速阶段时间,ti2为匀加速段时间,ti3为减加速阶段时间,vi-1为初始进给速度,jmax为砂轮进给允许最大加加速度,amax为砂轮进给允许最大加速度,Tsi为砂轮进给ΔX(Tsi)时一个插补周期;Among them: ΔX(T si ) is the displacement of the grinding wheel per rotation of 1 degree, t i1 is the time of acceleration and acceleration phase, t i2 is the time of uniform acceleration phase, t i3 is the time of deceleration and acceleration phase, v i-1 is the initial progress Giving speed, j max is the allowable maximum jerk of the grinding wheel feed, a max is the allowable maximum acceleration of the grinding wheel feed, T si is an interpolation cycle when the grinding wheel feed ΔX(T si ); 步骤5.由式(21)、(22)求出凸轮旋转速度值;Step 5. obtain the cam rotation speed value by formula (21), (22); Tw=Tsi (21)T w = T si (21) 其中,T0为凸轮旋转基圆插补周期,n0为基圆转速,取值100rmp,Tw为凸轮旋转至升程段插补周期,F″″(θ)为凸轮旋转至升程段预测速度;Among them, T 0 is the base circle interpolation period of the cam rotation, n 0 is the base circle speed, and the value is 100rmp, T w is the interpolation period from the cam rotation to the lift section, and F″”(θ) is the cam rotation to the lift section predicted speed; 步骤6.建立单输入滚子从动件测头转角θ、单输出凸轮旋转速度F″(θ)的一维T-S模糊控制器模型,T-S模糊控制器简化模型如下:Step 6. Establish a one-dimensional T-S fuzzy controller model with a single-input roller follower measuring head rotation angle θ and a single-output cam rotation speed F″(θ), and the T-S fuzzy controller simplified model is as follows: Ri:if θ is Ai then Fi′(θ)=ai0+ai1θ (25)R i : if θ is A i then F i ′(θ)=a i0 +a i1 θ (25) 其中Ri(i=1,2,...12)表示第i条模糊规则,θ为滚子从动件测头转角作为模糊控制器的输入变量,Ai为输入变量θ论域上的模糊子集,Fi′(θ)表示第i条模糊规则的凸轮旋转速度输出,ai0、ai1为第i条模糊规则的后件参数,F″(θ)为整个模糊控制器的凸轮旋转速度输出,由于只有一个输入量θ,μi(θ)即为Ai(θ),Ai(θ)为第i条模糊规则θ对模糊子集Ai的满足程度,hi(θ)为输入变量论域上的隶属度函数,即前件参数;Among them, R i (i=1, 2, ... 12) represents the i-th fuzzy rule, θ is the roller follower probe rotation angle as the input variable of the fuzzy controller, and A i is the input variable θ on the domain of discourse Fuzzy subset, F i ′(θ) represents the cam rotation speed output of the i-th fuzzy rule, a i0 and a i1 are the subsequent parameters of the i-th fuzzy rule, F″(θ) is the cam of the entire fuzzy controller Rotation speed output, since there is only one input quantity θ, μ i (θ) is A i (θ), A i (θ) is the satisfaction degree of the i-th fuzzy rule θ to the fuzzy subset A i , h i (θ ) is the membership function on the domain of input variables, that is, the antecedent parameters; 步骤7.通过对砂轮进给位移X(θ)和加速度a(θ)曲线的分析,得到每段滚子从动件测头转角θ的范围、砂轮进给位移X(θ)、砂轮进给加速度a(θ)、凸轮旋转速度起始值bi、凸轮旋转速度斜率ki的凸轮轴分段基本参数模糊规则表,同时画出凸轮旋转速度直线分段预测模型示意图;Step 7. By analyzing the curves of grinding wheel feed displacement X(θ) and acceleration a(θ), obtain the range of rotation angle θ of each roller follower probe, grinding wheel feed displacement X(θ), and grinding wheel feed Acceleration a(θ), cam rotation speed initial value b i , cam rotation speed slope k i basic parameter fuzzy rule table of the camshaft segment, and draw a schematic diagram of the cam rotation speed linear segment prediction model at the same time; 步骤8.计算T-S模糊控制器后件参数:T-S模糊控制器后件参数ai0、ai1由式(28)确定;Step 8. Calculation of TS fuzzy controller consequent parameters: TS fuzzy controller consequent parameters a i0 and a i1 are determined by formula (28); 其中ci为凸轮轴分段基本参数中每段滚子从动件测头转角范围中第i段的滚子从动件测头转角起始值;ki为各分段的转速斜率,bi为中各分段的凸轮旋转速度起始值;Among them, c i is the starting value of the roller follower probe rotation angle of the ith segment in the range of each segment of the roller follower probe rotation angle in the basic parameters of the camshaft segment; k i is the speed slope of each segment, b i is the initial value of the cam rotation speed of each segment in ; 步骤9.计算T-S模糊控制器前件参数:T-S模糊控制器前件参数由式(31)确定:Step 9. Calculate T-S fuzzy controller antecedent parameter: T-S fuzzy controller antecedent parameter is determined by formula (31): 由式(31)代入(30),再把(30)代入(29),得T-S模糊控制器隶属度函数hi(θ)表达式如下:Substituting (31) into (30), and then substituting (30) into (29), the expression of the membership function h i (θ) of the TS fuzzy controller is as follows: hi(θ)=ftri(θ,ci-1,(ci+ci+1)/2,ci+2) (32)h i (θ) = f tri (θ, c i-1 , (c i +c i+1 )/2, c i+2 ) (32) 式(32)中θ为滚子从动件测头转角,ci为第i段的滚子从动件测头转角起始值,hi(θ)为输入变量论域上的隶属度函数,表示滚子从动件测头转至θ时模糊子集Ai的隶属度;In formula (32), θ is the rotation angle of the roller follower probe, c i is the initial value of the rotation angle of the roller follower probe in the i-th segment, h i (θ) is the membership function of the input variable universe , represents the membership degree of the fuzzy subset A i when the roller follower probe turns to θ; 步骤10.把式(32)、(25)代入式(26),通过MATLAB软件工具拟合出T-S模糊控制后的凸轮旋转速度F″(θ)与凸轮转角α(θ)预测曲线,将L1凸轮旋转速度F′(θ)与凸轮转角α(θ)预测直线段逼近曲线与L2经T-S模糊控制后的凸轮旋转速度F″(θ)与凸轮转角α(θ)预测曲线进行比较,如果L2凸轮旋转速度F″(θ)与凸轮转角α(θ)预测曲线光滑并且靠近L1凸轮旋转速度F′(θ)与凸轮转角α(θ)预测直线段曲线,则达到理想效果;否则,就需对T-S模糊控制器进行优化,使凸轮旋转速度F″(θ)与凸轮转角α(θ)预测曲线变得更加光滑的同时尽可能地靠近L1凸轮旋转速度F′(θ)与凸轮转角α(θ)预测直线段逼近曲线;Step 10. Substitute equations (32) and (25) into equation (26), and use MATLAB software tool to fit the prediction curve of cam rotation speed F″(θ) and cam rotation angle α(θ) after TS fuzzy control, and L 1 The cam rotation speed F′(θ) and the cam rotation angle α(θ) predict the linear segment approximation curve and L 2 The cam rotation speed F″(θ) after the TS fuzzy control is compared with the cam rotation angle α(θ) prediction curve, If the prediction curve of L 2 cam rotation speed F″(θ) and cam rotation angle α(θ) is smooth and close to the curve of L 1 cam rotation speed F′(θ) and cam rotation angle α(θ) prediction straight line segment curve, then the desired effect is achieved; Otherwise, it is necessary to optimize the TS fuzzy controller to make the prediction curve of cam rotation speed F″(θ) and cam rotation angle α(θ) smoother and at the same time be as close as possible to L 1 cam rotation speed F′(θ) Predict the straight line segment approaching the curve with the cam rotation angle α(θ); 步骤11.凸轮旋转速度预测值优化是利用邻近模糊子集隶属度函数对输出数据的影响规律进行调整以求更理想的曲线,主要有两种情形:Step 11. The optimization of the predicted value of the cam rotation speed is to use the adjacent fuzzy subset membership function to adjust the influence law of the output data in order to obtain a more ideal curve. There are mainly two situations: 情形1:假设对于滚子从动件测头某个转角θ1只激活两条相邻模糊规则R1、R2,即θ1仅对模糊子集A1、A2的隶属度不为零,由式(26)得式(33),当F2′(θ1)>F1′(θ1),F″(θ1)>F1′(θ1)时,通过调整相邻隶属度函数h2(θ)的转角初始值ci-1,(见式(31)),若ci-1增加为(ci-1+ci)/2时,h21)减小,增大,减小,由此F″(θ1)将会减小而逼近F1′(θ1),使预测速度逼近理想直线段,使曲线得到优化;Situation 1: Suppose only two adjacent fuzzy rules R 1 and R 2 are activated for a certain rotation angle θ 1 of the roller follower probe, that is, the membership degree of θ 1 only to fuzzy subsets A 1 and A 2 is not zero , get formula (33) from formula (26), when F 2 ′(θ 1 )>F 1 ′(θ 1 ), F″(θ 1 )>F 1 ′(θ 1 ), by adjusting the adjacent membership The initial value c i-1 of the rotation angle of the degree function h 2 (θ), (see formula (31)), if c i-1 increases to ( ci-1 + ci )/2, h 21 ) decrease, increase, Decrease, so F″(θ 1 ) will decrease and approach F 1 ′(θ 1 ), so that the predicted speed approaches the ideal straight line segment, and the curve is optimized; F1′(θ1)、F2′(θ1)分别是滚子从动件测头转角θ1在模糊规则R1、R2上凸轮旋转速度的输出,F″(θ1)是输入为θ1时模糊控制器的总输出,h11)、h21)为滚子从动件测头转角θ1对模糊子集A1、A2的隶属度;F 1 ′(θ 1 ), F 2 ′(θ 1 ) are the outputs of the cam rotation speed of the roller follower measuring head rotation angle θ 1 on the fuzzy rules R 1 and R 2 respectively, and F″(θ 1 ) is the input is the total output of the fuzzy controller when θ 1 , h 11 ), h 21 ) are the membership degrees of the roller follower probe rotation angle θ 1 to the fuzzy subsets A 1 and A 2 ; 情形2:假设滚子从动件测头某个转角θ2作为模糊控制器的输入,凸轮旋转速度F″(θ2)作为模糊控制器输出,由式(26)得式(34),当F1′(θ2)<F2′(θ2),F″(θ2)<F2′(θ2)时,可以通过调整隶属度函数h1(θ)的滚子从动件测头转角结束值ci+2,若减少为(ci+1+ci+2)/2时,h12)减小,增大,增大(F1′(θ2)-F2′(θ2)为负数),由此F″(θ2)将会增大从而趋于F2′(θ2),使预测速度逼近理想直线段,使曲线得到优化。Case 2: Assume that a certain rotation angle θ 2 of the roller follower measuring head is used as the input of the fuzzy controller, and the cam rotation speed F″(θ 2 ) is used as the output of the fuzzy controller, and the equation (34) is obtained from the equation (26), when When F 1 ′(θ 2 )<F 2 ′(θ 2 ), F″(θ 2 )<F 2 ′(θ 2 ), it can be measured by adjusting the roller follower of the membership function h 1 (θ) If the end value of head rotation angle c i+2 is reduced to (c i+1 +c i+2 )/2, h 12 ) decreases, increase, Increase (F 1 ′(θ 2 )-F 2 ′(θ 2 ) is a negative number), so F″(θ 2 ) will increase and tend to F 2 ′(θ 2 ), making the predicted speed approach the ideal Straight line segment, so that the curve is optimized. F1′(θ2)、F2′(θ2)分别是滚子从动件测头转角θ2在模糊规则R1、R2上凸轮旋转速度的输出,F″(θ2)是输入为θ2时模糊控制器的总输出,h12)、h22)为滚子从动件测头转角θ2对模糊子集A1、A2的隶属度;F 1 ′(θ 2 ), F 2 ′(θ 2 ) are the outputs of the cam rotation speed of the roller follower measuring head rotation angle θ 2 in the fuzzy rules R 1 and R 2 respectively, and F″(θ 2 ) is the input is the total output of the fuzzy controller when θ 2 , h 12 ), h 22 ) are the membership degrees of the roller follower probe rotation angle θ 2 to the fuzzy subsets A 1 and A 2 ; 根据上述原理,由式(32)经过反复试验得优化式如下:According to the above principles, the optimized formula from formula (32) after repeated tests is as follows: hi(θ)=ftri(θ,(ci-1+ci)/s,(ci+ci+1)/s,(ci+1+ci+2)/s) (35)h i (θ)=f tri (θ, ( ci-1 + ci )/s, ( ci + ci+1 )/s, ( ci+1 + ci+2 )/s) ( 35) 其中s取值1.90~2.10之间,根据曲线每次可增加或减少0.01,可调整L2凸轮旋转速度F″(θ)与凸轮转角α(θ)预测曲线光滑并且靠近L1凸轮旋转速度F′(θ)与凸轮转角α(θ)预测直线段曲线。Among them, the value of s is between 1.90 and 2.10. According to the curve, it can be increased or decreased by 0.01 each time, and the L 2 cam rotation speed F″(θ) and the cam rotation angle α(θ) can be adjusted to predict that the curve is smooth and close to the L 1 cam rotation speed F '(θ) and the cam angle α(θ) predict the curve of the straight line segment.
CN201910315529.5A 2019-04-19 2019-04-19 A camshaft grinding method based on T-S fuzzy control Expired - Fee Related CN110170886B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910315529.5A CN110170886B (en) 2019-04-19 2019-04-19 A camshaft grinding method based on T-S fuzzy control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910315529.5A CN110170886B (en) 2019-04-19 2019-04-19 A camshaft grinding method based on T-S fuzzy control

Publications (2)

Publication Number Publication Date
CN110170886A true CN110170886A (en) 2019-08-27
CN110170886B CN110170886B (en) 2021-01-19

Family

ID=67689787

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910315529.5A Expired - Fee Related CN110170886B (en) 2019-04-19 2019-04-19 A camshaft grinding method based on T-S fuzzy control

Country Status (1)

Country Link
CN (1) CN110170886B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114800160A (en) * 2022-04-21 2022-07-29 一拖(洛阳)液压传动有限公司 Conversion algorithm of cam corner and grinding wheel corner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0079750A1 (en) * 1981-11-12 1983-05-25 WALLER, Francis E. Parallel cylinder internal combustion engine
CN101486162A (en) * 2009-01-16 2009-07-22 北京诺思泰格精密技术有限公司 X-Y-C three axis linkage high tracking counter shaft-crank shaft grinding machine
CN102049719A (en) * 2010-09-13 2011-05-11 湖南宇环同心数控机床有限公司 Numerically controlled grinding machining method of camshaft
CN107520752A (en) * 2016-06-22 2017-12-29 许亚夫 A kind of high precision numerical control camshaft grinding machine control system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0079750A1 (en) * 1981-11-12 1983-05-25 WALLER, Francis E. Parallel cylinder internal combustion engine
CN101486162A (en) * 2009-01-16 2009-07-22 北京诺思泰格精密技术有限公司 X-Y-C three axis linkage high tracking counter shaft-crank shaft grinding machine
CN102049719A (en) * 2010-09-13 2011-05-11 湖南宇环同心数控机床有限公司 Numerically controlled grinding machining method of camshaft
CN107520752A (en) * 2016-06-22 2017-12-29 许亚夫 A kind of high precision numerical control camshaft grinding machine control system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘艳等: "凸轮恒磨除率磨削的转速曲线优化", 《机械制造与自动化》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114800160A (en) * 2022-04-21 2022-07-29 一拖(洛阳)液压传动有限公司 Conversion algorithm of cam corner and grinding wheel corner
CN114800160B (en) * 2022-04-21 2024-05-31 一拖(洛阳)液压传动有限公司 Conversion algorithm of cam angle and grinding wheel angle

Also Published As

Publication number Publication date
CN110170886B (en) 2021-01-19

Similar Documents

Publication Publication Date Title
CN105488282B (en) A kind of cutting parameter segmentation and change cutting-in optimization method based on dynamic machining feature
Shixiong et al. Trochoidal machining for the high-speed milling of pockets
Rao et al. Tool deflection compensation in peripheral milling of curved geometries
CN102540978B (en) High-speed processing-oriented surface quality preferred spline real-time interpolation method
CN103869757B (en) The dynamic control method that complex-curved five-shaft numerical control processing cutter is vowed
CN103809521B (en) SPL interpolating method based on Secant Method
CN102001042B (en) High-speed strong-force snagging machine tool multispindle synergic mixed hydraulic control system and control method
CN102500800B (en) Open type intelligent milling system and milling method based on same
CN105945311A (en) Numerically-controlled machine tool feed system speed regulation method based on power prediction
Deng et al. Position error compensation of semi-closed loop servo system using support vector regression and fuzzy PID control
CN102081380B (en) Speed control method for numerical control multilayer leather cutting machine tool
CN110170886A (en) A kind of Camshaft Grinding processing method based on T-S fuzzy control
Haber-Guerra et al. Fuzzy control of spindle torque in high-speed milling processes
CN111474898A (en) Method for optimizing processing technological parameters of free-form surface
CN107942953B (en) Method for inhibiting machining vibration
CN102999008B (en) Method for optimizing parameters of overlap controller of edge trimming circle shear
Meng et al. A servo-motor driven active blank holder control system for deep drawing process
Zhou et al. Energy consumption prediction model of plane grinder processing system based on BP neural network
Xiao et al. Research on the control strategy of battery roller press deflection device by introducing genetic algorithm to optimize integral separation PID
Wang et al. Optimal design of motion control for scan tracking measurement: A CMAC approach
CN114740800B (en) A dual-sliding mode direct contour control method for parametric curve machining paths
Li et al. Research on quartic polynomial velocity planning algorithm based on filtering
Liu Application of RBF neural network and sliding mode control for a servo mechanical press
CN114035504B (en) Acceleration and deceleration control method based on time optimization, numerical control system, medium and machine tool
Zhang et al. Development of a NURBS curve interpolator with look-ahead control and feedrate filtering for CNC system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210119