CN110148523B - 一种铜铟硫纳米薄膜的制备方法 - Google Patents

一种铜铟硫纳米薄膜的制备方法 Download PDF

Info

Publication number
CN110148523B
CN110148523B CN201910325836.1A CN201910325836A CN110148523B CN 110148523 B CN110148523 B CN 110148523B CN 201910325836 A CN201910325836 A CN 201910325836A CN 110148523 B CN110148523 B CN 110148523B
Authority
CN
China
Prior art keywords
copper
indium
sulfur
source solution
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910325836.1A
Other languages
English (en)
Other versions
CN110148523A (zh
Inventor
密保秀
许颂
程娜
高志强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Posts and Telecommunications
Original Assignee
Nanjing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Posts and Telecommunications filed Critical Nanjing University of Posts and Telecommunications
Priority to CN201910325836.1A priority Critical patent/CN110148523B/zh
Publication of CN110148523A publication Critical patent/CN110148523A/zh
Application granted granted Critical
Publication of CN110148523B publication Critical patent/CN110148523B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2022Light-sensitive devices characterized by he counter electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Hybrid Cells (AREA)

Abstract

本发明公开了一种铜铟硫纳米薄膜的制备方法,包括以下步骤:步骤一:将铜铟硫纳米材料分散到非极性溶剂中,得到铜铟硫纳米材料源溶液;步骤二:将硫脲溶解到电喷溶剂中,得到硫源溶液;步骤三:将铜铟硫纳米材料源溶液与硫源溶液混合均匀,再加入足量的电喷溶剂得到电喷前驱液;第四步:利用静电喷雾法将电喷前驱液喷涂在导电基底上形成一层膜,再经后处理形成铜铟硫纳米薄膜。本发明具有制备过程简单、易操作、原材料消耗少的优点。

Description

一种铜铟硫纳米薄膜的制备方法
技术领域
本发明涉及光电器件技术领域,具体涉及一种铜铟硫纳米薄膜的制备方法。
技术背景
自1991年,
Figure BDA0002035074050000011
教授领导的研究小组在染料敏化太阳能电池(DyeSensitized Solar Cells,DSSCS)技术上取得突破以来,DSSCS凭借其工艺简单、相对较高能量转换效率和合理的成本而备受关注,并被认为是理想的下一代电池技术之一。
DSSCS通常由四部分组成,分别为:光阳极、染料、电解质和对电极。附着在光阳极上的染料通过吸收太阳光能量而产生电子空穴对;电子从光阳极侧导出,空穴则通过电解质的氧化还原反应传递至对电极界面;对电极从外电路收集电子并还原电解质,使电池形成完整的回路。可见,对电极在整个回路中的作用有两点:一是收集外电路电子;二是催化氧化态电解质还原,因此,高还原催化活性、大比表面积和足够的导电性是良好对电极的基本要求。
铂电极因为具有良好的导电性和优异的催化活性而成为目前DSSCS普遍使用的对电极。然而,作为贵金属的铂价格高昂,而且电解液中的氧化还原物质有腐蚀铂的风险,因此还需进一步拓展对电极材料的选择范围,尤其是开发低成本,易于扩展和更耐腐蚀材料。
目前已经探索了几种材料作为DSSCs中铂的替代品,包括碳材料(石墨烯,碳纳米管等),导电聚合物(PEDOT等)和无机半导体材料。无机半导体主要有金属氧化物(WO2,Nb2O5,NbO2,V2O3等),金属氮化物(NiN,TiN,VN等),金属硫化物(NiS,CoS,WS2等)。在这些材料中,金属硫化物是一类优异的对电极材料,因为他们具有低成本、良好的电化学催化活性和化学稳定性。尤其是金属硫化物纳米晶,凭借较成熟的胶体化学合成方法,通过控制纳米材料的尺寸和形态可以获得较高比表面积,这是对电极材料的重要性质。
铜铟硫(CuInS2)是典型的三元金属硫化物纳米晶,因其低毒、易制备和带隙可调等性质而被研究者广泛关注。近十年来虽然已有将铜铟硫做催化材料用于DSSCS对电极的报道,但是目前所使用的铜铟硫纳米薄膜的制备方法仍存在制备过程复杂、操作不便、以及原材料浪费严重等缺点。
发明内容
本发明的目的是提供一种制备过程简单、易操作且原材料消耗少的铜铟硫纳米薄膜的制备方法。
为实现上述目的,本发明采用了如下技术方案:一种铜铟硫纳米薄膜的制备方法,包括以下步骤:
步骤一:将铜铟硫纳米材料分散到非极性溶剂中,得到铜铟硫纳米材料源溶液;
步骤二:将硫脲溶解到电喷溶剂中,得到硫源溶液;
步骤三:将铜铟硫纳米材料源溶液与硫源溶液混合均匀,再加入足量的电喷溶剂得到电喷前驱液;
第四步:利用静电喷雾法将电喷前驱液喷涂在导电基底上形成一层膜,再经后处理形成铜铟硫纳米薄膜。
进一步地,前述的一种铜铟硫纳米薄膜的制备方法,其中:在步骤一中,非极性溶剂为正己烷、甲苯、氯仿、四氯乙烯、环己烷中的一种或多种。
进一步地,前述的一种铜铟硫纳米薄膜的制备方法,其中:在步骤二中,电喷溶剂为乙醇、乙二醇、丙三醇中的一种或多种。
进一步地,前述的一种铜铟硫纳米薄膜的制备方法,其中:在步骤三中,铜铟硫纳米材料源溶液与硫源溶液按照铜铟硫纳米材料源溶液:硫源溶液=1:(1~30)的摩尔比混合均匀。
进一步地,前述的一种铜铟硫纳米薄膜的制备方法,其中:在步骤四中,后处理方法为非氧化性气氛下的退火处理、或者激光照射或者等离子体轰击。
进一步地,前述的一种铜铟硫纳米薄膜的制备方法,其中:非氧化性气氛为氮气、氩气、氢气中的一种或多种。
通过上述技术方案的实施,本发明的有益效果是:
(1)本发明将含铜铟硫纳米材料的均匀分散液通过静电喷雾方法喷涂在导电基底上,后处理得到大比表面积且超薄的铜铟硫纳米薄膜,这种结构既增大对电极与电解质的接触面积,加速氧化还原反应速度,又减小电子传输距离,降低电子传输电阻,进而提高DSSCS器件光电性能;
(2)本发明较以往制膜方式极大地节约了原料,原材料消耗少,操作简单方便,极大地降低了器件的制作成本;
(3)本发明改善了以往方法制做纳米材料薄膜的厚度不易控制的问题,通过控制静电喷雾方法即可容易地控制纳米薄膜的厚度;
(4)本发明所制备出的铜铟硫纳米薄膜作为对电极,展现了与铂电极相近的光电性能,具有十分广阔的应用前景。
附图说明
图1为本发明所述的一种铜铟硫纳米薄膜的制备方法的流程示意图。
图2为本发明制备出的铜铟硫纳米薄膜的XRD&SEM图。
图3为铜铟硫纳米薄膜对电极与铂对电极的CV曲线图。
图4为铜铟硫纳米薄膜形成的对称电池结构的Nyquist曲线及等效电路图。
图5为铜铟硫纳米薄膜对电极与铂对电极的DSSCS的J-V曲线图。
图6为铜铟硫纳米薄膜对电极与铂对电极的电化学阻抗谱拟合数据图。
图7为铜铟硫纳米薄膜对电极与铂对电极的DSSCS光伏性能参数图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细说明,以使本发明技术方案更易于理解、掌握;但这些实施例并不限制本发明,在发明本质范围内的其它应用、变化和修饰也同样包括在本发明中。
如图1所示,所述的一种铜铟硫纳米薄膜的制备方法,包括以下步骤:
步骤一:将铜铟硫纳米材料分散到非极性溶剂中,得到铜铟硫纳米材料源溶液;其中,非极性溶剂为正己烷、甲苯、氯仿、四氯乙烯、环己烷中的一种或多种;
步骤二:将硫脲溶解到电喷溶剂中,得到硫源溶液;其中,电喷溶剂为乙醇、乙二醇、丙三醇中的一种或多种;
步骤三:将铜铟硫纳米材料源溶液与硫源溶液按照铜铟硫纳米材料源溶液:硫源溶液=1:(1~30)的摩尔比混合均匀,再加入足量的电喷溶剂得到电喷前驱液;
第四步:利用静电喷雾法将电喷前驱液喷涂在导电基底上形成一层膜,再经后处理形成铜铟硫纳米薄膜,其中,后处理方法为非氧化性气氛下的退火处理、或者激光照射或者等离子体轰击;当采用非氧化性气氛下的退火处理作为铜铟硫纳米薄膜的后处理方法时,非氧化性气氛为氮气、氩气、氢气中的一种或多种。
具体实施例一
一种铜铟硫纳米薄膜的制备方法,包括以下步骤:
步骤一:先将铜铟硫纳米材料分散到正己烷溶液中,搅拌均匀得到浓度为0.4mol/L的铜铟硫纳米晶的正己烷分散液,记为A溶液;
步骤二:接着将硫脲溶解到乙醇溶液中,混合均匀得到浓度为0.1mol/L的硫脲的乙醇溶液,记为B溶液;
步骤三:然后将A溶液与B溶液按照A溶液:B溶液=1:3的摩尔比混合均匀,再加入足量的乙醇得到电喷前驱液,前驱液中铜铟硫的浓度为10mmol/L,硫脲的浓度为30mmol/L;
第四步:利用静电喷雾法将电喷前驱液喷涂在导电基底上形成一层膜,再经后处理形成铜铟硫纳米薄膜;
其中,静电喷雾过程如下:先用锡纸包覆FTO导电玻璃边缘且导电面朝上平放在喷雾台上,再用一次性针筒抽取电喷前驱液并将针筒固定到推进器上,电喷前驱液经金属针头喷至台面上的导电基底上,得到一层均匀的膜;
其中,后处理过程如下:将经静电喷雾后得到一层膜的导电基底放在氮气氛围中以500℃退火30分钟,得到铜铟硫纳米薄膜。
图2为本方法所制备出的铜铟硫纳米薄膜的结构表征;具体地,(a)图为喷涂得到的铜铟硫纳米薄膜真空烧结前后的XRD图,可以看到,烧结后硫脲的衍射峰消失,说明硫脲已分解,铜铟硫纳米薄膜的物相结构没有发生改变,即仍为铜铟硫纳米晶,也未出现其他杂相,说明本方法制得的铜铟硫纳米薄膜非常稳定;(b)图为铜铟硫纳米薄膜真空烧结后的截面SEM图,可以看到,所得纳米薄膜无明显突起,避免造成器件短路;(c)图为铜铟硫纳米薄膜真空烧结前的表面SEM图,可以看到,由于硫脲的大量存在,烧结前纳米薄膜表面呈絮状分布,但还是可以看到细小的纳米颗粒;(d)图为铜铟硫纳米薄膜真空烧结后的表面SEM图,可以看到,烧结后,薄膜表面是由一个一个的纳米颗粒聚集而成,同时残留硫脲的分解物,这种表面结构可以为电解质提供更大的接触面积,提高催化还原反应速率。
下面以本方法所制备出的铜铟硫纳米薄膜与铂的循环伏安测试比较,来说明本方法所制备出的铜铟硫纳米薄膜的优越性;
以含有1mM I2、10mM LiI、100mM LiClO4的乙腈溶液为电解质,在以Ag/AgCl电极为参比电极、Pt片为辅助电极、待测纳米材料薄膜为工作电极的电化学工作站上,以10mV/s的扫瞄速率测试待测纳米薄膜的循环伏安曲线,结果见图3;与铂相比,铜铟硫材料的Epp较大、ipc较小,表明铜铟硫催化还原碘的能力较铂弱。
下面以本方法所制备出的铜铟硫纳米薄膜与铂的电化学阻抗谱测试比较,来说明本方法所制备出的铜铟硫纳米薄膜的优越性;
将两片相同的对电极封装成对称电池结构,中间注入电解质,进行电化学阻抗谱(EIS)测试,频率范围是0.1Hz~1MHz,振幅为5mV;建立等效电路,借助ZSimpWin软件对测得的阻抗谱进行拟合,结果见图4;Nyquist图中,选择R(C(RW))作为等效电路,其中RS为整个电路的串联电阻,通过高频区与实轴处的截距来表示;Rct为电极和电解质界面处的电荷转移电阻,通过高频区的第一个半圆直径来表示;C为电极和电解质界面处的双层电容,通过中频区的半圆直径来表示;Zw为电解质中I-/I3 -的扩散电阻,通过低频区与实轴成夹角直线的斜率表示;具体拟合数值如图6所示,可以看到,铜铟硫纳米薄膜与铂的RS、Rct、Zw均十分接近,说明本方法所制备出的铜铟硫纳米薄膜在催化还原的能力上接近于铂;此外,铜铟硫纳米薄膜的界面电容比铂大很多,说明本方法所制备出的铜铟硫纳米薄膜比铂拥有更多的催化活性位点。
下面以铜铟硫纳米薄膜与铂做对电极在DSSCS器件中应用比较,来说明本方法所制备出的铜铟硫纳米薄膜的优越性;
首先在FTO上使用静电喷雾方法喷涂约18μm的TiO2薄膜做光阳极,其中TiO2的粒径约25nm,光阳极TiO2经480℃退火处理,然后取0.25cm2有效面积,最后在N719染料中浸泡24小时;将得到的光阳极与铜铟硫纳米薄膜对电极用AB胶密封,通过预留的小孔注入I-/I3-电解质,再用胶带封住小孔,制得DSSCS器件;将氯铂酸的乙醇溶液旋涂在FTO上,420℃退火20分钟,制成铂对电极作为对比;采用光电流密度-电压(J-V)曲线表征DSSCS光伏性能,利用模拟光源(oriel,USA)提供标准太阳光(AM1.5),设定光强为100mW/cm2
图5为铜铟硫纳米薄膜对电极与铂对电极的DSSCS的J-V曲线,具体数值如图7所示;可以看到,铜铟硫纳米薄膜对电极与铂对电极制做DSSCS器件得到了相近的光电转换效率,分别为7.331%和7.600%,说明本发明方法所制备出的铜铟硫纳米薄膜对电极具有替代铂对电极应用于染料敏化太阳能电池中的潜力。
本发明的优点是:
(1)本发明将含铜铟硫纳米材料的均匀分散液通过静电喷雾方法喷涂在导电基底上,后处理得到大比表面积且超薄的铜铟硫纳米薄膜,这种结构既增大对电极与电解质的接触面积,加速氧化还原反应速度,又减小电子传输距离,降低电子传输电阻,进而提高DSSCS器件光电性能;
(2)本发明较以往制膜方式极大地节约了原料,原材料消耗少,操作简单方便,极大地降低了器件的制作成本;
(3)本发明改善了以往方法制做纳米材料薄膜的厚度不易控制的问题,通过控制静电喷雾方法即可容易地控制纳米薄膜的厚度;
(4)本发明所制备出的铜铟硫纳米薄膜作为对电极,展现了与铂电极相近的光电性能,具有十分广阔的应用前景。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神和基本特征的情况下,能够以其他的具体形式实现本发明;因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内,不应将权利要求中的任何附图标记视为限制所涉及的权利要求。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (6)

1.一种铜铟硫纳米薄膜的制备方法,其特征在于:包括以下步骤:
步骤一:将铜铟硫纳米材料分散到非极性溶剂中,得到铜铟硫纳米材料源溶液;
步骤二:将硫脲溶解到电喷溶剂中,得到硫源溶液;
步骤三:将铜铟硫纳米材料源溶液与硫源溶液混合均匀,再加入足量的电喷溶剂得到电喷前驱液;
第四步:利用静电喷雾法将电喷前驱液喷涂在导电基底上形成一层膜,再经后处理形成铜铟硫纳米薄膜。
2.根据权利要求1所述的一种铜铟硫纳米薄膜的制备方法,其特征在于:在步骤一中,非极性溶剂为正己烷、甲苯、氯仿、四氯乙烯、环己烷中的一种或多种。
3.根据权利要求1所述的一种铜铟硫纳米薄膜的制备方法,其特征在于:在步骤二中,电喷溶剂为乙醇、乙二醇、丙三醇中的一种或多种。
4.根据权利要求1所述的一种铜铟硫纳米薄膜的制备方法,其特征在于:在步骤三中,铜铟硫纳米材料源溶液与硫源溶液按照铜铟硫纳米材料源溶液:硫源溶液=1:(1~30)的摩尔比混合均匀。
5.根据权利要求1所述的一种铜铟硫纳米薄膜的制备方法,其特征在于:在步骤四中,后处理方法为非氧化性气氛下的退火处理、或者激光照射或者等离子体轰击。
6.根据权利要求5所述的一种铜铟硫纳米薄膜的制备方法,其特征在于:非氧化性气氛为氮气、氩气、氢气中的一种或多种。
CN201910325836.1A 2019-04-22 2019-04-22 一种铜铟硫纳米薄膜的制备方法 Active CN110148523B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910325836.1A CN110148523B (zh) 2019-04-22 2019-04-22 一种铜铟硫纳米薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910325836.1A CN110148523B (zh) 2019-04-22 2019-04-22 一种铜铟硫纳米薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN110148523A CN110148523A (zh) 2019-08-20
CN110148523B true CN110148523B (zh) 2021-03-30

Family

ID=67593787

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910325836.1A Active CN110148523B (zh) 2019-04-22 2019-04-22 一种铜铟硫纳米薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN110148523B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114250473B (zh) * 2022-03-01 2022-06-07 青岛理工大学 氧化铁基z型异质结复合光阳极膜及其制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130116746A (ko) * 2012-04-16 2013-10-24 한국과학기술원 정전분무법에 의하여 제조된 czts 박막 및 그의 제조방법

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102557728B (zh) * 2012-02-17 2013-07-17 上海大学 一种石墨烯膜及石墨烯复合碳膜的制备方法
CN103819099A (zh) * 2014-03-17 2014-05-28 上海交通大学 类石墨烯结构铜铟硫纳米片阵列薄膜的制备方法
CN106971857B (zh) * 2017-05-22 2018-07-24 华北电力大学(保定) 一种Li-Sb-Mn/C电极材料、其制备方法及泡沫镍电极片
CN108802138A (zh) * 2018-08-06 2018-11-13 南京工业大学 一种膜电极、电化学气体传感器及其应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130116746A (ko) * 2012-04-16 2013-10-24 한국과학기술원 정전분무법에 의하여 제조된 czts 박막 및 그의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Deposition of CuInS2 films by electrostatic field assisted ultrasonic spray pyrolysis";Dong-Yeup Lee et al;《Solar Energy Materials & Solar Cells》;20100501;第95卷;全文 *

Also Published As

Publication number Publication date
CN110148523A (zh) 2019-08-20

Similar Documents

Publication Publication Date Title
Murugadoss et al. A simple one-step hydrothermal synthesis of cobaltnickel selenide/graphene nanohybrid as an advanced platinum free counter electrode for dye sensitized solar cell
Dinari et al. Dye-sensitized solar cells based on nanocomposite of polyaniline/graphene quantum dots
Kumar et al. Synthesis and characterization of carbon based counter electrode for dye sensitized solar cells (DSSCs) using sugar free as a carbon material
Liu et al. A mesoscopic platinized graphite/carbon black counter electrode for a highly efficient monolithic dye-sensitized solar cell
Tang et al. A microporous platinum counter electrode used in dye-sensitized solar cells
Li et al. High-performance and low platinum loading Pt/Carbon black counter electrode for dye-sensitized solar cells
Wu et al. High-performance polypyrrole nanoparticles counter electrode for dye-sensitized solar cells
Peng et al. Facile fabrication of polypyrrole/functionalized multiwalled carbon nanotubes composite as counter electrodes in low-cost dye-sensitized solar cells
Sun et al. Metal-organic frameworks derived carbon as a high-efficiency counter electrode for dye-sensitized solar cells
Yue et al. Low cost poly (3, 4-ethylenedioxythiophene): polystyrenesulfonate/carbon black counter electrode for dye-sensitized solar cells
Yang et al. Sulfur-doped porous carbon as metal-free counter electrode for high-efficiency dye-sensitized solar cells
Hou et al. Serrated, flexible and ultrathin polyaniline nanoribbons: An efficient counter electrode for the dye-sensitized solar cell
Shahpari et al. The influence of morphology of hematite (α-Fe2O3) counter electrodes on the efficiency of dye-sensitized solar cells
Li et al. Electrospinning synthesis of high performance carbon nanofiber coated flower-like MoS2 nanosheets for dye-sensitized solar cells counter electrode
Chen et al. In-situ and green method to prepare Pt-free Cu2ZnSnS4 (CZTS) counter electrodes for efficient and low cost dye-sensitized solar cells
Xu et al. Electrospray preparation of CuInS2 films as efficient counter electrode for dye-sensitized solar cells
Zhang et al. Performance enhancement for quasi-solid-state dye-sensitized solar cells by using acid-oxidized carbon nanotube-based gel electrolytes
Li et al. Counter electrodes from conducting polymer intercalated graphene for dye-sensitized solar cells
Yue et al. Glucose aided synthesis of molybdenum sulfide/carbon nanotubes composites as counter electrode for high performance dye-sensitized solar cells
Jiang et al. Cobalt-nickel based ternary selenides as high-efficiency counter electrode materials for dye-sensitized solar cells
Cai et al. Direct application of commercial fountain pen ink to efficient dye-sensitized solar cells
Li et al. In situ grown MnCo2O4@ NiCo2O4 layered core-shell plexiform array on carbon paper for high efficiency counter electrode materials of dye-sensitized solar cells
Liu et al. Anatase TiO2 hollow spheres with small dimension fabricated via a simple preparation method for dye-sensitized solar cells with an ionic liquid electrolyte
Wang et al. Facile synthesis of NiCo2O4/carbon black composite as counter electrode for dye-sensitized solar cells
Yue et al. A dye-sensitized solar cell based on PEDOT: PSS counter electrode

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant