CN110148126B - 基于颜色分量组合和轮廓拟合的血液白细胞分割方法 - Google Patents

基于颜色分量组合和轮廓拟合的血液白细胞分割方法 Download PDF

Info

Publication number
CN110148126B
CN110148126B CN201910426535.8A CN201910426535A CN110148126B CN 110148126 B CN110148126 B CN 110148126B CN 201910426535 A CN201910426535 A CN 201910426535A CN 110148126 B CN110148126 B CN 110148126B
Authority
CN
China
Prior art keywords
segmentation
image
white blood
contour
points
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910426535.8A
Other languages
English (en)
Other versions
CN110148126A (zh
Inventor
李佐勇
王传胜
张祖昌
肖国宝
刘伟霞
周常恩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Gufan Intelligent Technology Co.,Ltd.
Original Assignee
Minjiang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minjiang University filed Critical Minjiang University
Priority to CN201910426535.8A priority Critical patent/CN110148126B/zh
Publication of CN110148126A publication Critical patent/CN110148126A/zh
Priority to NL2024777A priority patent/NL2024777B1/en
Application granted granted Critical
Publication of CN110148126B publication Critical patent/CN110148126B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/69Microscopic objects, e.g. biological cells or cellular parts
    • G06V20/695Preprocessing, e.g. image segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/12Edge-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/136Segmentation; Edge detection involving thresholding
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/62Analysis of geometric attributes of area, perimeter, diameter or volume
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/90Determination of colour characteristics
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10056Microscopic image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30024Cell structures in vitro; Tissue sections in vitro

Abstract

本发明涉及一种基于颜色分量组合和轮廓拟合的血液白细胞分割方法。首先利用颜色分量组合增强白细胞细胞核的对比度,进而利用经典阈值分割方法实现细胞核的分割;然后,利用颜色先验去除图像的背景,执行边缘检测和轮廓拟合来获得白细胞分割结果;最后利用白细胞分割结果减去细胞核分割结果得到细胞质分割结果。在标准和快速两种染色制备下白细胞图像集上的实验结果表明,本发明方法改善了白细胞的分割精度。

Description

基于颜色分量组合和轮廓拟合的血液白细胞分割方法
技术领域
本发明属于图像处理技术领域,用于对血常规检查中采集到的血液细胞图像中的白细胞进行分割,具体为一种基于颜色分量组合和轮廓拟合的血液白细胞分割方法。
背景技术
血常规检查是人体健康检测中的常见项目。血常规检查中一项重要的内容便是对白细胞进行分类计数与异常形态分析。目前,国内医院通常先用基于电阻抗法(物理方法)加流式分析法(物理-化学方法)的血细胞分析仪进行血细胞分类计数。血涂片中白细胞的分类计数和形态分析对诊断白血病等血液疾病意义重大。当血细胞计数结果异常或者主诊医生怀疑患者有血液疾病时,再由检验科医生对血液进行推片、染色、镜检,对白细胞进行分类计数的确认与异常形态分析。人工镜检的准确率依赖于医生的专业技能,存在检测主观性强、个体差异性大、耗时费力的问题,还容易因为医生的视力疲劳影响检测精度。计算机辅助下的血细胞图像自动分析不仅可以节省人力和时间,还可以减少疲劳等造成的人为分析错误。白细胞分割是血细胞图像自动分析的基础,白细胞分割的精度将直接影响后续的白细胞分类计数和形态分析的准确性。
白细胞图像可以通过数字成像设备对血涂片进行拍摄而获得。未染色的白细胞与背景之间颜色相近,对比度低,辨识起来困难。为此,制备血涂片时通常要用染色剂进行染色,以增强白细胞与背景之间的对比度,提高辨识度。标准的血涂片制备方式常用瑞氏染色法、姬姆萨染色法对细胞进行着色,着色效果好而稳定;但着色通常需要十分钟以上,着色速度慢,不能满足大范围临床应用的需要。华中科技大学刘建国和汪国有教授的研究团队提出一种血涂片快速制备方法,将细胞着色时间缩短为十秒左右,着色速度快;但着色效果不够稳定,容易产生深色杂质和被污染背景,会溶解掉对部分血液疾病有诊断作用的红细胞。
白细胞图像分割的挑战在于:(1)不同染色试剂、染色时长等都会导致不同血细胞图像中的白细胞具有颜色差异和个体差异;(2)成像设备参数设置、拍摄环境等可能使得白细胞存在边缘模糊、纹理不清晰、对比度低、含噪声等现象;(3)在标准的染色制备下,白细胞和红细胞以及周围染色杂质有时会发生粘连。
白细胞分割旨在从染色后的人体外周血细胞图像中提取出单个白细胞所在区域,并进而分割出细胞核与细胞质,如图1所示。近年来,国内外学者对白细胞分割问题进行了一系列研究。根据现有白细胞分割方法采用的技术,我们将其归类为有监督的白细胞分割[1]和无监督的白细胞分割[2]。无监督的白细胞分割方法直接根据白细胞的颜色、亮度等特征实现分割。最常用的白细胞分割技术是阈值分割,其它依次为形态学变换、模糊理论、聚类、形变模型、分水岭分割、区域合并、视觉注意模型、边缘检测。有监督的白细胞分割把图像分割问题看待成图像分类问题,先提取训练样本的颜色、纹理等特征,然后利用训练样本特征对分类器进行训练,最后利用训练好的分类器对测试样本图像中的像素点进行分类,识别出白细胞所在区域。最常用的有监督白细胞分割技术是支持向量机,其它依次为神经网络、最近邻分类器、极限学习机、随机森林。
现有的血液白细胞图像分割方法分割精度有待进一步提升。为了提高分割精度,本发明提出一种基于颜色分量组合和轮廓拟合的白细胞分割方法。
参考文献:
[1]顾广华,崔东.白细胞图像的柔性组合分割算法[J].仪器仪表学报,2008,29(9): 1977-1981.
[2]郑馨,王勇,汪国有.EM聚类和SVM自动学习的白细胞图像分割算法[J].数据采集与处理,2013,28(5):614-619.。
发明内容
本发明的目的在于提供一种基于颜色分量组合和轮廓拟合的血液白细胞分割方法,能够提高白细胞分割精度。
为实现上述目的,本发明的技术方案是:一种基于颜色分量组合和轮廓拟合的血液白细胞分割方法,首先,利用颜色分量组合增强白细胞细胞核的对比度,进而利用经典阈值分割方法实现细胞核的分割;然后,利用颜色先验去除图像的背景,执行边缘检测和轮廓拟合来获得白细胞分割结果;最后,利用白细胞分割结果减去细胞核分割结果得到细胞质分割结果。
在本发明一实施例中,所述利用颜色分量组合增强白细胞细胞核的对比度,进而利用经典阈值分割方法实现细胞核的分割的具体实现方式如下:
步骤S11、利用颜色分量组合增强细胞核区域,其形式化描述为:
I1=Ir+Ib-k×Ig (1)
其中,Ir、Ib和Ig分别表示RGB颜色空间中的红色、蓝色和绿色分量;
步骤S12、在执行完细胞核增强后,采用经典的图像阈值分割方法Otsu提取出细胞核区域,具体如下:
步骤S121、分割阈值的确定:对于给定的一幅具有N个像素和L个灰度级{0,1,...,L-1}的增强后的图像I1,Otsu算法确定分割阈值t*的形式化描述为:
t*=Argmax0≤t≤L-1oωbob)2} (2)
其中,ωo表示以t为分割阈值对应分割结果中目标像素点即灰度为{t+1,t+2,…,L-1}的像素点占图像总像素点的比例,ωb表示以t为分割阈值对应分割结果中背景像素点即灰度为{0,1,…,t} 的像素点占图像总像素点的比例;μo和μb代表目标像素点和背景像素点的灰度平均值;
步骤S122、图像阈值分割:以t*作为分割阈值,对图像I1执行如下的阈值分割:
Figure RE-GDA0002107509910000031
步骤S13、基于形态学运算的细胞核分割结果修正:先选取最大连通白色区域,即目标区域,然后执行图像填充来修正细胞核初始分割结果,获得细胞核最终分割结果。
在本发明一实施例中,所述利用颜色先验去除图像的背景,执行边缘检测和轮廓拟合来获得白细胞分割结果的具体实现方式如下:
步骤S21、基于颜色先验的图像背景移除:
通过阈值分割实现图像背景的去除:
Figure RE-GDA0002107509910000032
其中,t为阈值参数,Ir代表背景移除,即变为白色后的图像;
步骤S22、对背景移除后的图像执行边缘检测,以提取白细胞初始轮廓,而后为了拟合粘连处白细胞的轮廓,先在白细胞初始轮廓开口处找到两个断点,然后拟合两个断点之间的弧段,以此实现白细胞粘连处的分离;其中,断点的选择过程如下:
步骤S221、使用Harris角点检测器检测白细胞轮廓中的角点;
步骤S222、将每个角点作为坐标原点,确定由坐标点(0,d)、(0,-d)、(-d,0)、(d,0)构成的局部笛卡尔坐标系,其中,
Figure RE-GDA0002107509910000033
H代表图像矩阵总的行数,符号
Figure RE-GDA0002107509910000034
代表向下取整;
步骤S223、从图像中心点向步骤S222确定的四个笛卡尔坐标点发射四条射线,计算每条射线与白细胞轮廓相交的轮廓点个数,如果四条射线中有一条及以上的射线经过的轮廓点个数为0,则判定相应角点为断点;否则,判定相应角点为非断点;根据此规则,若白细胞初始轮廓含两个以上的断点,则继续执行后续步骤;否则,终止程序,将白细胞初始轮廓认定为白细胞最终轮廓;
步骤S224、分别计算细胞核质心和两个断点之间的距离,记为a和b;计算两个断点之间的距离,记为c;使用两个断点和细胞核质心点构造一个三角形,计算两个断点与细胞核质心点连线的夹角θ:
Figure RE-GDA0002107509910000041
步骤S225、找到两个断点之间线段中轴线上与两个断点之间线段夹角度数为θ的点,记这些点中与图像中心点距离最近的那个点为p2;
步骤S226、计算p2点和任一断点之间的距离,记为r;以p2为圆心点、r为半径构造一个圆;取两个断点之间的圆弧作为拟合所得两个断点之间的白细胞轮廓,用于分离粘连的白细胞。
相较于现有技术,本发明具有以下有益效果:为提高标准和快速制备下血液白细胞图像的分割精度,特别是粘连白细胞的分割精度,本发明提出一种基于颜色分量组合和轮廓拟合的白细胞分割算法。本发明方法首先通过颜色分量组合增强细胞核的对比度,利用经典的阈值分割技术对细胞核进行分割;然后利用颜色先验信息移除图像背景,进而执行边缘检测,获取最大连通分量作为白细胞初始轮廓;最后,利用轮廓拟合、图像填充和形态学腐蚀运算实现白细胞区域的提取,进而获得细胞质分割结果。在快速和标准染色血细胞图像数据集上的实验结果证实了本发明方法对两种制备下的白细胞分割精度均有提升。
附图说明
图1为快速和标准染色制备的白细胞图像示例。
图2为本发明方法流程图。
图3为9种颜色及其颜色分量示例图。
图4为颜色分量示例图;其中:(a)原图,(b)细胞核增强结果,(c)子图(b)的阈值分割结果,(d)细胞核分割结果。
图5为白细胞图像背景移除结果;其中:(a)快速和标准染色下的白细胞图像,(b)子图(a)的绿色分量,(c)子图(a)的背景移除结果。
图6为边缘检测结果;其中:(a)快速和标准染色下的白细胞图像,(b)边缘检测结果,(c) 白细胞初始轮廓。
图7为断点选择;其中:(a)从轮廓点中检测到的由蓝色箭头指示的角点,(b)由黄色十字表示的局部笛卡尔坐标系以及由绿色箭头指示的断点,(c)从轮廓点中检测到的角点,(d)由黄色十字表示的局部笛卡尔坐标系。
图8为轮廓拟合;其中:(a)粘连的白细胞图像,(b)图像中心点p1以及与两个断点构成的三角形,(c)选定的p2点即半径r,(d)由拟合的弧段封闭的白细胞轮廓,(e)图像填充后的结果,(f)图像腐蚀结果。
图9为细胞质分割结果;其中:(a)白细胞分割结果,(b)细胞核分割结果,(c)细胞质分割结果。
图10为快速染色下的白细胞分割结果,从左到右依次为:原始图像,手动理想分割结果, Gu方法[1]分割结果,Zheng方法[2]分割结果,本发明方法分割结果。
图11为标准染色下未粘连白细胞的分割结果,从左到右依次为:原始图像,手动理想分割结果,Gu方法[1]分割结果,Zheng方法[2]分割结果,本发明方法分割结果。
图12为标准染色下粘连白细胞的分割结果,从左到右依次为:原始图像,手动理想分割结果,Gu方法[1]分割结果,Zheng方法[2]分割结果,本发明方法分割结果。
具体实施方式
下面结合附图,对本发明的技术方案进行具体说明。
如图2所示,本发明提供了一种基于颜色分量组合和轮廓拟合的血液白细胞分割方法,首先,利用颜色分量组合增强白细胞细胞核的对比度,进而利用经典阈值分割方法实现细胞核的分割;然后,利用颜色先验去除图像的背景,执行边缘检测和轮廓拟合来获得白细胞分割结果;最后,利用白细胞分割结果减去细胞核分割结果得到细胞质分割结果。
以下具体描述本发明的实现过程。
1细胞核分割
1.1基于颜色分量组合的细胞核增强
本发明方法在观察白细胞细胞核颜色构成的基础上,提出利用颜色分量组合增强细胞核的策略。以图3为例,图中每个矩形块中的三个数值代表该颜色块对应颜色的R、G、B分量值。可以观察到:当R和B分量值远大于G分量值时,对应颜色越接近于细胞核的颜色。为此,提出利用颜色分量组合来增强细胞核区域,其形式化描述为:
I1=Ir+Ib-k×Ig (1)
其中,Ir、Ib和Ig分别表示RGB颜色空间中的红色、蓝色和绿色分量;以图4(a)为例,执行细胞核增强所得颜色分量组合图像如图4(b)所示。从图中可以看到,细胞核之外的区域在执行细胞核增强后变得很暗,细胞核区域的对比度得到增强,有利于后续对其进行分割。
1.2基于阈值技术的细胞核粗分割
在执行完细胞核增强后,细胞核以外的图像区域基本上变成黑色背景区域,与细胞核区域之间存在明显的灰度差异。为此,采用经典的图像阈值分割方法Otsu就可以很容易地提取出细胞核区域。细胞核区域提取的详细过程如下:
1)分割阈值的确定:对于给定的一幅具有N个像素和L个灰度级{0,1,...,L-1}的增强后的图像I1,Otsu算法确定分割阈值t*的形式化描述为:
t*=Arg max0≤t≤L-1oωbob)2} (2)
其中,ωo表示以t为分割阈值对应分割结果中目标像素点即灰度为{t+1,t+2,…,L-1}的像素点占图像总像素点的比例,ωb表示以t为分割阈值对应分割结果中背景像素点即灰度为{0,1,…,t} 的像素点占图像总像素点的比例;μo和μb代表目标像素点和背景像素点的灰度平均值;
2)图像阈值分割:以t*作为分割阈值,对图像I1执行如下的阈值分割:
Figure RE-GDA0002107509910000061
如图4(b)所示,其阈值分割结果如图4(c)所示。
1.3基于形态学运算的细胞核分割结果修正
如图4(c)所示,阈值分割结果中细胞核出现了孔洞,且有时会出现面积小的虚假细胞核区域。为此,本发明方法先选取最大连通白色(目标)区域,然后执行图像填充来修正细胞核初始分割结果,获得细胞核最终分割结果。
2细胞质分割
2.1基于颜色先验的图像背景移除
背景移除旨在去除图像中白细胞以外的区域,为白细胞分割做好铺垫。由图1可知,标准染色的白细胞图像背景呈绿色,因此,图像背景区域绿色分量值大;快速染色的白细胞图像背景呈黄色,由颜色先验知识可知,通过混合红色和绿色可以得到黄色。因此可见,两种染色条件下白细胞图像的共同特点是绿色分量的值比较大。基于该特点,本发明方法通过以下阈值分割实现图像背景的去除:
Figure RE-GDA0002107509910000062
其中,t为阈值参数,Ir代表背景移除,即变为白色后的图像;
2.2白细胞轮廓提取及修正
对背景移除后的图像执行边缘检测,以提取白细胞初始轮廓。以图5中快速染色和标准染色下的白细胞图像为例,图6(b)给出了边缘检测结果,检测结果中存在虚假的目标边缘。为此,本发明方法仅保留边缘检测结果中像素点最多的白色连通分量作为白细胞初始轮廓,结果如图 6(c)所示。
观察图6(c)中上面一幅图可见,当白细胞与其周围的红细胞发生粘连时,白细胞初始轮廓未闭合,需要进行轮廓拟合来闭合它,实现白细胞粘连处的分离。为了拟合粘连处白细胞的轮廓,本发明方法先在白细胞初始轮廓开口处找到两个断点,然后拟合两个断点之间的弧段,以此实现白细胞粘连处的分离。其中,断点的选择过程如下:
1)使用Harris角点检测器检测白细胞轮廓中的角点,图7(a)和7(c)展示了检测到角点。
2)将每个角点作为坐标原点,确定由坐标点(0,d)、(0,-d)、(-d,0)、(d,0)构成的局部笛卡尔坐标系,其中,
Figure RE-GDA0002107509910000071
H代表图像矩阵总的行数,符号
Figure RE-GDA0002107509910000072
代表向下取整;图7(b)和(d) 用十字表示局部笛卡尔坐标系。
3)从图像中心点向步骤S222确定的四个笛卡尔坐标点发射如图7(b)和(d)所示的四条射线,计算每条射线与白细胞轮廓相交的轮廓点个数,如果四条射线中有一条及以上的射线经过的轮廓点个数为0,则判定相应角点为断点;否则,判定相应角点为非断点;根据此规则,图7(b) 有箭头指向的两个角点为断点,图7(d)没有断点,若白细胞初始轮廓含两个以上的断点,则继续执行后续步骤;否则,终止程序,将白细胞初始轮廓认定为白细胞最终轮廓;
4)分别计算细胞核质心和两个断点之间的距离,记为a和b;计算两个断点之间的距离,记为c;使用两个断点和细胞核质心点构造一个三角形,计算两个断点与细胞核质心点连线的夹角θ(如图8(b)所示):
Figure RE-GDA0002107509910000073
5)找到两个断点之间线段中轴线上与两个断点之间线段夹角度数为θ的点,记这些点中与图像中心点距离最近的那个点为p2,如图8(c)所示。
6)计算p2点和任一断点之间的距离,记为r;以p2为圆心点、r为半径构造一个圆;取两个断点之间的圆弧作为拟合所得两个断点之间的白细胞轮廓,用于分离粘连的白细胞。图8(d) 展示了用弧段闭合后的白细胞轮廓,图8(e)展示了在图8(d)上执行图像填充后的结果,图8(f) 展示了对图8(e)进行图像腐蚀后的结果。
2.3细胞质分割
将前面所得白细胞区域减去细胞核区域,即可获得细胞质区域,结果如图9所示。
为了评价白细胞分割方法的性能,我们在由100幅快速染色白细胞图像构成的数据集和由 50幅标准染色白细胞图像构成的数据集上进行了实验。每幅快速染色白细胞图像大小为 120×120,每幅标准染色白细胞图像大小为260×260,每幅图像的手动理想分割结果由医院血检科医生给出。本发明方法首先与已有的两种白细胞分割方法(Gu方法[1]和Zheng方法[2])分别在 8幅代表性快速染色图像、8幅标准染色图像上进行了分割精度的定性比较;然后,利用四个常见的分割测度对三种算法在两个数据集上的平均分割精度进行了定量的比较。这四个测度是错分类误差(Misclassification error,ME)、假正率/虚警率(False positive rate,FPR)、假负率(False negative rate,FNR)以及kappa指数(Kappaindex,KI),其定义如下:
Figure RE-GDA0002107509910000081
Figure RE-GDA0002107509910000082
Figure RE-GDA0002107509910000083
Figure RE-GDA0002107509910000084
其中,Bm和Fm分别代表手动理想分割结果的背景和目标,Ba和Fa分别代表自动分割算法所得分割结果中的背景和目标,|·|代表集合中元素的个数。四个测度的取值范围均为0~1。越低的ME、FPR和FNR值代表越好的分割效果,越高的KI值代表越好的分割效果。所有实验均在一台CPU为2.39GHz Intel Xeon W3503、内存6G的台式机上进行。
1参数选择
本发明方法最重要的参数是公式(1)中的k、公式(4)中的t。以快速染色数据集上所有白细胞图像作为测试对象,我们分别探讨了参数k和t对本发明方法分割精度的影响,其中,k 取自集合{1,3,5},t取自集合{165,190,215}。不同参数k的取值下本发明方法所得细胞核分割结果对应平均ME和KI值如表1所示;从表1可见,当k=3时,本发明方法获得最低的平均 ME和最高的KI值,对应分割精度最高。不同参数t的取值下本发明方法的ME和KI测度结果如表2所示;从表2可见,当t=190时,本发明方法获得最低的平均ME和最高的KI值,对应分割精度最高。
表1参数k不同取值下本发明方法在快速染色数据集所得细胞核分割结果平均KI和ME值
Figure RE-GDA0002107509910000085
表2参数t不同取值下本发明方法在快速染色数据集所得白细胞分割结果平均KI和ME值
Figure RE-GDA0002107509910000086
2定性比较
为了定性地比较三种白细胞分割方法的分割效果,进行三组实验,分别对8幅快速染色白细胞图像、4幅标准染色无粘连白细胞图像、4幅标准染色有粘连白细胞图像进行分割,分割结果如图10-12所示。
图10展示了快速染色条件下8幅白细胞图像的分割结果,图中从左到右的五列分别展示了原始图像、手动理想分割结果、Gu方法[1]、Zheng方法[2]和本发明方法的分割结果。从图10 可以看到,本发明方法的分割效果通常好于其他两种方法。就细胞核分割而言,Gu方法在图 10(a)-(b)和(d)-(e)上获得了相对满意的分割效果;Zheng方法在图10(a)-(e)和(h)上获得了相对满意的分割效果。就细胞质分割而言,Gu方法仅在图10(b)和(d)上取得了相对满意的分割效果,而Zheng方法仅在图10(d)和(h)上获得了相对满意的分割效果。
图11展示了标准染色条件下未发生粘连的4幅白细胞图像的分割结果,图中从左到右的五列分别展示了原始图像、手动理想分割结果、Gu方法[1]、Zheng方法[2]和本发明方法的分割结果。从图11可以看到,对细胞核分割而言,Gu方法和Zheng方法在图11(a)和(c)-(d)上获得了满意的分割效果,但Gu方法在图11(b)上产生了欠分割,而Zheng方法在图11(b)上既存在欠分割又存在过分割。本发明方法在4幅图上均取得了良好的分割效果。对细胞质的分割,Gu方法和本发明方法比Zheng方法取得了更好的分割效果。Zheng方法在图11(b)-(c)上产生了过分割。
图12展示了标准染色条件下发生粘连的4幅白细胞图像的分割结果,图中从左到右的五列分别展示了原始图像、手动理想分割结果、Gu方法[1]、Zheng方法[2]和本发明方法的分割结果。从图12可以看到,对细胞核分割而言,三种方法都有轻微的过分割,但本发明方法和Zheng方法比Gu方法的分割效果更好。对细胞质的分割,Gu方法在图12(a)和(c)上存在过分割,在图 12(b)和(d)上存在欠分割。Zheng方法在四幅图上均产生了过分割。本发明方法比其他两种方法分割效果更好。
表3三组定量实验的白细胞细胞核分割结果的定量比较
ME FPR FNR KI
第一组实验
Gu方法<sup>[1]</sup> 0.086 0.078 0.151 0.723
Zheng方法<sup>[2]</sup> 0.021 0.007 0.121 0.914
本发明算法 0.015 0.001 0.115 0.936
第二组实验
Gu方法<sup>[1]</sup> 0.031 0.015 0.104 0.913
Zheng方法<sup>[2]</sup> 0.026 0.017 0.065 0.935
本发明算法 0.034 0.031 0.050 0.920
第三组实验
Gu方法<sup>[1]</sup> 0.047 0.031 0.100 0.891
Zheng方法<sup>[2]</sup> 0.104 0.076 0.181 0.774
本发明算法 0.041 0.033 0.073 0.894
表4三组定量实验的白细胞分割结果的定量比较
Figure RE-GDA0002107509910000091
Figure RE-GDA0002107509910000101
3定量比较
为了对三种方法(即Gu方法[1]、Zheng方法[2]和本发明方法)进行分割精度的定量比较,我们在100幅快速染色白细胞图像构成的数据集、30幅标准染色未粘连白细胞图像构成的数据集、 20幅标准染色粘连白细胞图像构成的数据集上分别进行了实验,用ME、FPR、FNR和KI四种测度对分割结果进行定量评价。表3和表4分别展示了三个数据集上细胞核和白细胞分割结果的定量评价结果,每列数据中最好的测度值进行了加粗展示。对于细胞核的分割,从表3可以看到,本发明方法在第一组和第三组图像上分割效果最佳,因为其对应的KI最高、ME最低;在第二组实验上的分割效果居中。对于整个白细胞的分割,从表4可以看到,本发明方法所得分割结果对应的ME值最低、KI值最高,表明本发明方法分割效果最好。
以上是本发明的较佳实施例,凡依本发明技术方案所作的改变,所产生的功能作用未超出本发明技术方案的范围时,均属于本发明的保护范围。

Claims (2)

1.一种基于颜色分量组合和轮廓拟合的血液白细胞分割方法,其特征在于,首先,利用颜色分量组合增强白细胞细胞核的对比度,进而利用经典阈值分割方法实现细胞核的分割;然后,利用颜色先验去除图像的背景,执行边缘检测和轮廓拟合来获得白细胞分割结果;最后,利用白细胞分割结果减去细胞核分割结果得到细胞质分割结果;
所述利用颜色分量组合增强白细胞细胞核的对比度的具体实现方式如下:
步骤S11、利用颜色分量组合增强细胞核区域,其形式化描述为:
I1=Ir+Ib-k×Ig (1)
其中,Ir、Ib和Ig分别表示RGB颜色空间中的红色、蓝色和绿色分量;
所述利用颜色先验去除图像的背景,执行边缘检测和轮廓拟合来获得白细胞分割结果的具体实现方式如下:
步骤S21、基于颜色先验的图像背景移除:
通过阈值分割实现图像背景的去除:
Figure FDA0002816970700000011
其中,t为阈值参数,Iv代表背景移除,即将背景变为白色后的图像;
步骤S22、对背景移除后的图像执行边缘检测,以提取白细胞初始轮廓,而后为了拟合粘连处白细胞的轮廓,先在白细胞初始轮廓开口处找到两个断点,然后拟合两个断点之间的弧段,以此实现白细胞粘连处的分离;其中,断点的选择过程如下:
步骤S221、使用Harris角点检测器检测白细胞轮廓中的角点;
步骤S222、将每个角点作为坐标原点,确定由坐标点(0,d)、(0,-d)、(-d,0)、(d,0)构成的局部笛卡尔坐标系,其中,
Figure FDA0002816970700000012
H代表图像矩阵总的行数,符号
Figure FDA0002816970700000013
代表向下取整;
步骤S223、从图像中心点向步骤S222确定的四个笛卡尔坐标点发射四条射线,计算每条射线与白细胞轮廓相交的轮廓点个数,如果四条射线中有一条及以上的射线经过的轮廓点个数为0,则判定相应角点为断点;否则,判定相应角点为非断点;根据此规则,若白细胞初始轮廓含两个断点,则继续执行后续步骤;否则,终止程序,将白细胞初始轮廓认定为白细胞最终轮廓;
步骤S224、分别计算细胞核质心和两个断点之间的距离,记为a和b;计算两个断点之间的距离,记为c;使用两个断点和细胞核质心点构造一个三角形,计算两个断点与细胞核质心点连线的夹角θ:
Figure FDA0002816970700000021
步骤S225、找到两个断点之间线段中轴线上与两个断点之间线段夹角度数为θ的点,记这些点中与图像中心点距离最近的那个点为p2;
步骤S226、计算p2点和任一断点之间的距离,记为r;以p2为圆心点、r为半径构造一个圆;取两个断点之间的圆弧作为拟合所得两个断点之间的白细胞轮廓,用于分离粘连的白细胞。
2.根据权利要求1所述的基于颜色分量组合和轮廓拟合的血液白细胞分割方法,其特征在于,所述利用经典阈值分割方法实现细胞核的分割的具体实现方式如下:
步骤S12、在执行完细胞核增强后,采用经典的图像阈值分割方法Otsu提取出细胞核区域,具体如下:
步骤S121、分割阈值的确定:对于给定的一幅具有N个像素和L个灰度级{0,1,...,L-1}的增强后的图像I1,Otsu算法确定分割阈值t*的形式化描述为:
t*=Arg max0≤g≤L-1oωbob)2} (2)
其中,ωo表示以g为分割阈值对应分割结果中目标像素点即灰度为{g+1,g+2,…,L-1}的像素点占图像总像素点的比例,ωb表示以g为分割阈值对应分割结果中背景像素点即灰度为{0,1,…,g}的像素点占图像总像素点的比例;μo和μb代表目标像素点和背景像素点的灰度平均值;
步骤S122、图像阈值分割:以t*作为分割阈值,对图像I1执行如下的阈值分割:
Figure FDA0002816970700000022
步骤S13、基于形态学运算的细胞核分割结果修正:先选取最大连通白色区域,即目标区域,然后执行图像填充来修正细胞核初始分割结果,获得细胞核最终分割结果。
CN201910426535.8A 2019-05-21 2019-05-21 基于颜色分量组合和轮廓拟合的血液白细胞分割方法 Active CN110148126B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910426535.8A CN110148126B (zh) 2019-05-21 2019-05-21 基于颜色分量组合和轮廓拟合的血液白细胞分割方法
NL2024777A NL2024777B1 (en) 2019-05-21 2020-01-28 Blood leukocyte segmentation method based on color component combination and contour fitting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910426535.8A CN110148126B (zh) 2019-05-21 2019-05-21 基于颜色分量组合和轮廓拟合的血液白细胞分割方法

Publications (2)

Publication Number Publication Date
CN110148126A CN110148126A (zh) 2019-08-20
CN110148126B true CN110148126B (zh) 2021-01-29

Family

ID=67592296

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910426535.8A Active CN110148126B (zh) 2019-05-21 2019-05-21 基于颜色分量组合和轮廓拟合的血液白细胞分割方法

Country Status (2)

Country Link
CN (1) CN110148126B (zh)
NL (1) NL2024777B1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110796668B (zh) * 2019-10-28 2022-04-01 闽江学院 一种基于稀疏限制的白细胞细胞核分割方法
CN110766680B (zh) * 2019-10-28 2021-06-22 闽江学院 一种基于几何约束的白细胞图像分割方法
CN113313719A (zh) * 2021-06-11 2021-08-27 福州大学 基于视觉注意机制和模型拟合的白细胞分割方法
CN114639102B (zh) * 2022-05-11 2022-07-22 珠海横琴圣澳云智科技有限公司 基于关键点与尺寸回归的细胞分割方法和装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101493400A (zh) * 2008-01-25 2009-07-29 深圳迈瑞生物医疗电子股份有限公司 一种基于形状特征的自动分类校正的方法
CN101944232A (zh) * 2010-09-02 2011-01-12 北京航空航天大学 一种利用最短路径的粘连细胞精确分割方法
US8428331B2 (en) * 2006-08-07 2013-04-23 Northeastern University Phase subtraction cell counting method
CN103985119A (zh) * 2014-05-08 2014-08-13 山东大学 一种彩色血细胞图像中白细胞的细胞质和细胞核分割方法
CN106372642A (zh) * 2016-08-31 2017-02-01 北京航空航天大学 基于轮廓曲线分割弧合并与组合的椭圆快速检测方法
CN107492088A (zh) * 2016-06-11 2017-12-19 青岛华晶生物技术有限公司 一种妇科显微图像中白细胞自动识别与统计方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8428331B2 (en) * 2006-08-07 2013-04-23 Northeastern University Phase subtraction cell counting method
CN101493400A (zh) * 2008-01-25 2009-07-29 深圳迈瑞生物医疗电子股份有限公司 一种基于形状特征的自动分类校正的方法
CN101944232A (zh) * 2010-09-02 2011-01-12 北京航空航天大学 一种利用最短路径的粘连细胞精确分割方法
CN103985119A (zh) * 2014-05-08 2014-08-13 山东大学 一种彩色血细胞图像中白细胞的细胞质和细胞核分割方法
CN107492088A (zh) * 2016-06-11 2017-12-19 青岛华晶生物技术有限公司 一种妇科显微图像中白细胞自动识别与统计方法
CN106372642A (zh) * 2016-08-31 2017-02-01 北京航空航天大学 基于轮廓曲线分割弧合并与组合的椭圆快速检测方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Fast and robust segmentation of white blood cell images by self-supervised learning;X. Zheng 等;《Micron》;20180430;第107卷;第55-71页 *
Segmentation of white blood cells through nucleus mark watershed operations and mean shift clustering;Z. Liu 等;《Sensors》;20151231;第15卷(第9期);第22561-22586页 *
基于支持向量机和椭圆拟合的细胞图像自动分割;廖苗 等;《浙江大学学报(工学版)》;20170430;第51卷(第4期);第723页右栏第1段、第725页右栏第1段、图6 *
白细胞图形的自动分割算法;顾广华 等;《仪器仪表学报》;20090930;第30卷(第9期);第1874-1879页 *

Also Published As

Publication number Publication date
CN110148126A (zh) 2019-08-20
NL2024777B1 (en) 2020-12-01

Similar Documents

Publication Publication Date Title
CN110148126B (zh) 基于颜色分量组合和轮廓拟合的血液白细胞分割方法
CN110120056B (zh) 基于自适应直方图阈值和轮廓检测的血液白细胞分割方法
CN112070772B (zh) 基于UNet++和ResNet的血液白细胞图像分割方法
CN107274386B (zh) 一种宫颈细胞液基涂片人工智能辅助阅片系统
Tosta et al. Segmentation methods of H&E-stained histological images of lymphoma: A review
Kothari et al. Eliminating tissue-fold artifacts in histopathological whole-slide images for improved image-based prediction of cancer grade
Shahin et al. A novel white blood cells segmentation algorithm based on adaptive neutrosophic similarity score
CN108257124B (zh) 一种基于图像的白细胞计数方法和系统
Alreza et al. Design a new algorithm to count white blood cells for classification leukemic blood image using machine vision system
Mohamed et al. A fast technique for white blood cells nuclei automatic segmentation based on gram-schmidt orthogonalization
Elsalamony Anaemia cells detection based on shape signature using neural networks
Wang et al. Identifying neutrophils in H&E staining histology tissue images
Rachna et al. Detection of Tuberculosis bacilli using image processing techniques
Khademi et al. Segmentation of white matter lesions in multicentre FLAIR MRI
Anari et al. Computer-aided detection of proliferative cells and mitosis index in immunohistichemically images of meningioma
Zhang et al. Automatic detection of microaneurysms in fundus images based on multiple preprocessing fusion to extract features
Saxena et al. Study of Computerized Segmentation & Classification Techniques: An Application to Histopathological Imagery
JP7326316B2 (ja) 細胞学的試料中の少なくとも1つの異常を有する細胞を検出するための方法
Akram et al. Detection of neovascularization for screening of proliferative diabetic retinopathy
Rege et al. Automatic leukemia identification system using otsu image segmentation and mser approach for microscopic smear image database
Ruberto et al. A leucocytes count system from blood smear images.
Zheng et al. White blood cell segmentation based on visual attention mechanism and model fitting
Wang et al. White blood cell image segmentation based on color component combination and contour fitting
Taher et al. Extraction of sputum cells using thresholding techniques for lung cancer detection
Peng et al. Integrating multi-scale blob/curvilinear detector techniques and multi-level sets for automated segmentation of stem cell images

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230109

Address after: Room 201, Building 1, No. 3, Xiankun Road, Jianye District, Nanjing City, Jiangsu Province, 210019

Patentee after: Jiangsu Gufan Intelligent Technology Co.,Ltd.

Address before: 200 xiyuangong Road, Shangjie Town, Minhou County, Fuzhou City, Fujian Province

Patentee before: MINJIANG University

TR01 Transfer of patent right