CN110145497A - 一种轴向前移的压气机自循环机匣处理扩稳装置 - Google Patents

一种轴向前移的压气机自循环机匣处理扩稳装置 Download PDF

Info

Publication number
CN110145497A
CN110145497A CN201910382235.4A CN201910382235A CN110145497A CN 110145497 A CN110145497 A CN 110145497A CN 201910382235 A CN201910382235 A CN 201910382235A CN 110145497 A CN110145497 A CN 110145497A
Authority
CN
China
Prior art keywords
loopa
self
treated casing
jet
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910382235.4A
Other languages
English (en)
Inventor
晏松
楚武利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201910382235.4A priority Critical patent/CN110145497A/zh
Publication of CN110145497A publication Critical patent/CN110145497A/zh
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/06Fluid supply conduits to nozzles or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/321Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
    • F04D29/324Blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • F04D29/542Bladed diffusers

Abstract

本发明公开了一种轴向前移的压气机自循环机匣处理扩稳方法,该自循环机匣处理主要由三个部分组成,即引气通道,连接桥路,喷气通道。通过这样设计的自循环机匣处理,压气机的稳定工作裕度进一步提高,与此同时使效率损失减小,相比于其他机匣处理形式效益更佳。在某1.5级高负荷轴流压气机分别开展了对比研究,一种是引气位置位于叶片尾缘,喷气位置位于叶顶前缘附近的自循环机匣处理;另外一种是新设计的自循环机匣处理。研究表明新设计的自循环机匣处理能使压气机的稳定工作裕度得到大幅度提高,且对效率的负作用更低。

Description

一种轴向前移的压气机自循环机匣处理扩稳装置
技术领域
本发明涉及燃气轮机压缩系统稳定性技术领域,是一种提高高负荷轴流压气机稳定工作裕度的方法,具体是一种轴向前移的压气机自循环机匣处理扩稳装置。
背景技术
在航空发动机的稳定运行过程中,保证压气机部件的稳定工作尤为重要,而目前由于对高推重比发动机的迫切需求,高负荷轴流压气机的设计成功与否就显得格外重要,但在目前的设计研究中,高负荷轴流压气机的稳定工作裕度常常不能满足发动机稳定运行的需要,因此就需要在压气机设计完成后,对其开展被动控制扩稳研究,以增强压气机的稳定工作裕度。在目前众多的扩稳措施中,机匣处理是一种有效的扩稳措施,常见的机匣处理主要有槽式机匣处理,缝式机匣处理,叶顶喷气,级间引气等。但这些传统的机匣处理措施在提高压气机稳定工作裕度的同时,对效率产生的负作用使代价过于沉重,而自循环机匣在能提高压气机稳定工作裕度的同时,对效率的负作用很小,甚至还能提高压气机效率,所以受到了很多研究者的青睐。现在绝大多数自循环机匣处理均是把引气位置放置在叶栅后,对引气口放置在叶顶的研究尚少。
发明内容
本发明解决的技术问题是:为了使航空发动机能够稳定安全的运行,进一步提高高负荷轴流压气机的稳定工作裕度,并减小效率损失,本发明在对传统机匣处理研究的基础上提出了一种轴向前移的压气机自循环机匣处理。该方法重新设计了引气位置,喷气位置以及相关的型线参数,使之在相比于其他自循环机匣处理来说有更高的稳定工作裕度,且对效率的影响更低。
本发明的技术方案是:一种轴向前移的压气机自循环机匣处理扩稳装置,包括导流叶片、转子叶片、静子叶片;还包括若干引气通道、连接桥路和若干喷气通道;所述引气通道位于转子叶顶机匣内壁上,在轴向沿发动机轮毂轴线整体进行轴向前移,使得引气通道位于叶顶叶片通道内;在转子上游距离转子叶顶前缘50%-70%轴向弦长处机匣内壁开有若干个喷气通道,且在引气通道和喷气通道之间开同等数量的通孔作为连接桥路,用于连接引气通道和喷气通道。
本发明的进一步技术方案是:所述引气通道二维型线由贝塞尔曲线拟合而成。
本发明的进一步技术方案是:所述喷气通道二维型线由贝塞尔曲线拟合而成。
本发明的进一步技术方案是:所述连接桥路、引气通道和喷气通道连接处光滑过渡,以保证气流在整个循环过程中流动损失最小。
本发明的进一步技术方案是:所述喷气位置位于距离转子叶顶前缘上游50%-70%轴向弦长处;引气位置位于距离转子叶顶前缘下游10%-30%轴向弦长处。
本发明的进一步技术方案是:所述引气通道型线放缩比为1.6-2。
本发明的进一步技术方案是:所述喷气通道型线的收缩比为0.4-0.5,喉部高度为2-4倍叶顶间隙,喷嘴的喷气角为10-15度。
发明效果
本发明的技术效果在于:通过引气口和喷气口之间的压力差,气流在发明的机匣结构内自动实现气流循环。在引气口的抽吸作用和喷气口的高速射流的喷射作用下,轴向前移的自循环机匣处理改善了转子叶顶通道内的流通情况,抑制了叶顶间隙泄漏涡的发展和壮大,降低了转子的叶顶堵塞,起到了提高压气机稳定工作裕度的作用。在某1.5级高负荷轴流压气机试验台上开展了两种自循环机匣处理的研究,一种是引气位置位于转子叶顶尾缘的自循环机匣处理,另一种是新形成的引气位置位于叶顶通道内的轴向前移的自循环机匣处理。结果表明,新形成的轴向前移的自循环机匣处理的稳定工作裕度较引气位置位于转子叶顶尾缘的自循环机匣处理提高了6.61%,同时也使峰值效率提高了0.95%。即与传统的引气位置位于叶栅后的自循环机匣处理相比,新形成的轴向前移的自循环机匣处理在提高压气机稳定工作裕度的同时对效率影响更低,还使效率提高了0.95%。
附图说明
图1为某1.5级高负荷轴流压气机子午面示意图。
图2为轴向前移的压气机自循环机匣处理子午面示意图。
图3为轴向前移的压气机自循环机匣处理三维空间示意图。
图4为轴向前移的压气机自循环机匣处理的引气结构子午面示意图。
图5为轴向前移的压气机自循环机匣处理的喷气结构子午面示意图。
附图标记说明:1—导流叶片;2—转子叶片;3—静子叶片;4—引气通道;5—连接桥路;6—喷气通道;7—叶顶前缘
具体实施方式
参见图1—图5,一种轴向前移的压气机自循环机匣处理,所述的自循环机匣处理沿发动机轮毂轴线整体向转子上游移动,使得引气位置位于转子叶顶通道内。喷气通道型线的收缩比为0.45,喉部高度为4倍叶顶间隙,喷嘴径向喷气角为15度,喷气位置位于距离转子叶顶前缘上游60%轴向弦长处;引气通道型线放缩比为2,引气位置位于距离转子叶顶前缘下游20%轴向弦长处。所述的一种轴向前移的压气机自循环机匣处理的周向覆盖比例为50%。
所述的轴向前移的自循环机匣处理在轴向沿发动机轮毂轴线整体进行轴向前移,使得引气通道位于叶顶叶片通道内。自循环机匣处理结构的连接桥路部分二维形状为矩形,引气通道和喷气通道的二维型线均由贝塞尔曲线拟合而成;桥路型线与引气通道型线,喷气通道型线连接处光滑过渡,以保证气流在整个循环过程中流动损失最小。自循环机匣处理的周向覆盖比例为50%,单通道自循环机匣处理个数为1。喷气通道型线,连接桥路型线和引气通道型线沿轮毂线轴向为轴旋转相应的角度即可生成自循环机匣处理的空间结构。在压气机工作时,自循环机匣处理结构利用引气口和喷气口之间的压力差来自动实现气流循环,而不用添加任何外加动力来驱动,利用引气口的抽吸作用和喷气口的高速射流来降低压气机叶顶载荷和减弱叶顶通道中的堵塞程度,使压气机能在更高的负荷下工作并增强转子叶顶的流通能力,从而共同提高压气机的稳定工作裕度。
一种基于某1.5级高负荷轴流压气机轴向前移的压气机自循环机匣处理,其特点是包括下述步骤:
步骤一:在压气机机匣上沿机匣线往径向造特定参数的引气通道和喷气通道的贝塞尔曲线,其中喷气通道型线的收缩比为0.45,喉部高度为4倍叶顶间隙,喷嘴的喷气角为15度,喷气位置位于距离转子叶顶前缘上游60%轴向弦长处;引气通道型线放缩比为2,引气位置位于距离转子叶顶前缘下游20%轴向弦长处;然后用直线分别连接引气通道与喷气通道的型线构成连接桥路的子午面型线。
步骤二:将步骤一所得子午面二维型线沿轮毂线轴向为轴逆时针旋转12度,即可得轴向前移的自循环机匣处理的空间结构,在压气机真实运转过程中,整个自循环机匣处理形成一个密封的循环通道,气流在其中自动循环流动,密封性能良好,而不会发生漏气等情况。
步骤三:自循环机匣的周向覆盖面积为50%。
步骤四:单通道自循环机匣处理的数目为1;
下面结合附图对发明技术方案做进一步说明。
本发明应用在某1.5级高负荷轴流压气机试验台上,该压气机的主要参数如表1所示。
表1主要几何和性能参数
1、在压气机机匣上沿机匣线作引气通道与喷气通道的贝塞尔曲线,其中喷气通道型线的收缩比为0.45,喉部高度为1mm,喷嘴的喷气角为15度,喷气位置位于距离转子叶顶前缘上游4mm处;引气通道型线放缩比为2,引气位置位于距离转子叶顶前缘下游29.2mm处,分别连接引气通道与喷气通道的型线共同构成自循环机匣处理的子午面型线。
2、以压气机轮毂线轴向为轴,整个自循环机匣的子午面二维型线逆时针方向旋转12度,即得轴向前移前的自循环机匣处理。
3、将引气位置位于转子后的自循环机匣处理整体沿机匣线向上游移动22mm,即得新的轴向前移的压气机自循环机匣处理。
4、两种自循环机匣处理沿轴向分布15个,周向覆盖率均为50%。
上述自循环机匣处理、新的轴向前移的压气机自循环机匣处理的主要几何结构参数如表2所示。
表2两种自循环处理机匣主要几何结构参数
在某1.5级高负荷轴流压气机试验台上开展这两种自循环机匣处理的非定常数值模拟研究,其实施过程如下:
1、使用叶轮机械商用软件NUMECA软件包中的Igg/Autogrid5模块对1.5级压气机转子和自循环机匣处理进行结构化网格划分;
2、使用NUMECA FINE/Turbo软件包的Euranus求解器对生成的数值计算网格进行全三维数值计算,具体配置为,压气机转子的转速为34200r/min,空间离散采用Jameson有限体积2阶迎风格式并结合Spalart-Allmaras湍流模型对全三维雷诺时均方程在相对坐标系下进行求解,对于时间离散,定常计算时选择显式四阶Runge-Kuutta时间推进方法,同时加入二阶和四阶人工粘性项来消除数值计算中的伪数值计算振荡,并采用多重网格法、当地时间步长和隐式残差光顺等方法来加快收敛速度;非定常计算时利用隐式双时间步方法,物理时间步设置为3000,每个物理时间步下的虚拟时间步设置为为20;
3、获取数值计算结果并进行数据处理,获得引气位置位于转子后的自循环机匣处理、轴向前移后的自循环机匣处理的稳定工作裕度和峰值效率改进量。
研究结果表明,新的轴向前移后的自循环机匣处理获得的稳定工作裕度比引气位置位于转子后的自循环机匣处理的高6.61%%,同时峰值效率损失比之低0.95%,即新的轴向前移后的自循环机匣处理的扩稳能力比引气位置位于转子后的自循环机匣处理的更强,同时效率损失比之更小。

Claims (7)

1.一种轴向前移的压气机自循环机匣处理扩稳装置,包括导流叶片(1)、转子叶片(2)、静子叶片(3);其特征在于,还包括若干引气通道(4)、连接桥路(5)和若干喷气通道(6);所述引气通道(4)位于转子叶顶机匣内壁上,在轴向沿发动机轮毂轴线整体进行轴向前移,使得引气通道(6)位于叶顶叶片通道内;在转子上游距离转子叶顶前缘50%-70%轴向弦长处机匣内壁开有若干个喷气通道(6),且在引气通道(4)和喷气通道(6)之间开同等数量的通孔作为连接桥路(5),用于连接引气通道(4)和喷气通道(6)。
2.如权利要求1所述的一种轴向前移的压气机自循环机匣处理扩稳装置,其特征在于,所述引气通道(4)二维型线由贝塞尔曲线拟合而成。
3.如权利要求1所述的一种轴向前移的压气机自循环机匣处理扩稳装置,其特征在于,所述喷气通道(6)二维型线由贝塞尔曲线拟合而成。
4.如权利要求1所述的一种轴向前移的压气机自循环机匣处理扩稳装置,其特征在于,所述连接桥路(5)、引气通道(4)和喷气通道(6)连接处光滑过渡,以保证气流在整个循环过程中流动损失最小。
5.如权利要求1所述的一种轴向前移的压气机自循环机匣处理扩稳装置,其特征在于,所述喷气位置位于距离转子叶顶前缘上游50%-70%轴向弦长处;引气位置位于距离转子叶顶前缘下游10%-30%轴向弦长处。
6.如权利要求1所述的一种轴向前移的压气机自循环机匣处理扩稳装置,其特征在于,所述引气通道(4)型线放缩比为1.6-2。
7.如权利要求1所述的一种轴向前移的压气机自循环机匣处理扩稳装置,其特征在于,所述喷气通道(6)型线的收缩比为0.4-0.5,喉部高度为2-4倍叶顶间隙,喷嘴的喷气角为10-15度。
CN201910382235.4A 2019-05-09 2019-05-09 一种轴向前移的压气机自循环机匣处理扩稳装置 Pending CN110145497A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910382235.4A CN110145497A (zh) 2019-05-09 2019-05-09 一种轴向前移的压气机自循环机匣处理扩稳装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910382235.4A CN110145497A (zh) 2019-05-09 2019-05-09 一种轴向前移的压气机自循环机匣处理扩稳装置

Publications (1)

Publication Number Publication Date
CN110145497A true CN110145497A (zh) 2019-08-20

Family

ID=67594259

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910382235.4A Pending CN110145497A (zh) 2019-05-09 2019-05-09 一种轴向前移的压气机自循环机匣处理扩稳装置

Country Status (1)

Country Link
CN (1) CN110145497A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111810454A (zh) * 2020-07-17 2020-10-23 中国航空发动机研究院 一种基于自循环振荡射流的机匣、压气机及其扩稳方法
CN112539184A (zh) * 2020-12-04 2021-03-23 西北工业大学 一种分布式参数化叶轮自循环处理机匣
CN112685966A (zh) * 2020-12-22 2021-04-20 中国船舶重工集团公司第七0三研究所 一种船舶燃气轮机压气机自循环式处理机匣设计方法
CN113027817A (zh) * 2021-03-12 2021-06-25 西北工业大学 一种轴流压气机自循环机匣的加工方法及其结构
CN113107903A (zh) * 2021-05-06 2021-07-13 西北工业大学 一种对转压气机可周向偏转的自循环机匣处理装置
CN113931882A (zh) * 2021-12-16 2022-01-14 中国航发上海商用航空发动机制造有限责任公司 压气机、航空发动机和飞行器
CN114576205A (zh) * 2022-03-14 2022-06-03 中国航发湖南动力机械研究所 一种带模式转换的高效自循环处理机匣

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060222485A1 (en) * 2004-09-30 2006-10-05 Snecma Method for air circulation in a turbomachine compressor, compressor arrangement using this method, compression stage and compressor incorporating such a arrangement, and aircraft engine equipped with such a compressor
CN102094850A (zh) * 2010-12-24 2011-06-15 北京航空航天大学 一种周向不连续分布的发动机空气系统引气槽设计方法
CN102562666A (zh) * 2012-01-06 2012-07-11 北京航空航天大学 一种非定常驻涡式处理机匣
CN103967843A (zh) * 2013-02-04 2014-08-06 中国科学院工程热物理研究所 压气机周向槽自循环喷气组合式扩稳装置及方法
CN105122248A (zh) * 2013-04-16 2015-12-02 斯奈克玛 用于对部件尤其是涡轮叶片进行建模的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060222485A1 (en) * 2004-09-30 2006-10-05 Snecma Method for air circulation in a turbomachine compressor, compressor arrangement using this method, compression stage and compressor incorporating such a arrangement, and aircraft engine equipped with such a compressor
CN102094850A (zh) * 2010-12-24 2011-06-15 北京航空航天大学 一种周向不连续分布的发动机空气系统引气槽设计方法
CN102562666A (zh) * 2012-01-06 2012-07-11 北京航空航天大学 一种非定常驻涡式处理机匣
CN103967843A (zh) * 2013-02-04 2014-08-06 中国科学院工程热物理研究所 压气机周向槽自循环喷气组合式扩稳装置及方法
CN105122248A (zh) * 2013-04-16 2015-12-02 斯奈克玛 用于对部件尤其是涡轮叶片进行建模的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张皓光: "自适应流通机匣处理改善压气机性能的机理", 《推进技术》 *
牛茂升: "机匣喷气位置对涡轮间隙流动控制的影响", 《推进技术》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111810454A (zh) * 2020-07-17 2020-10-23 中国航空发动机研究院 一种基于自循环振荡射流的机匣、压气机及其扩稳方法
CN112539184A (zh) * 2020-12-04 2021-03-23 西北工业大学 一种分布式参数化叶轮自循环处理机匣
CN112685966A (zh) * 2020-12-22 2021-04-20 中国船舶重工集团公司第七0三研究所 一种船舶燃气轮机压气机自循环式处理机匣设计方法
CN113027817A (zh) * 2021-03-12 2021-06-25 西北工业大学 一种轴流压气机自循环机匣的加工方法及其结构
CN113107903A (zh) * 2021-05-06 2021-07-13 西北工业大学 一种对转压气机可周向偏转的自循环机匣处理装置
CN113931882A (zh) * 2021-12-16 2022-01-14 中国航发上海商用航空发动机制造有限责任公司 压气机、航空发动机和飞行器
CN114576205A (zh) * 2022-03-14 2022-06-03 中国航发湖南动力机械研究所 一种带模式转换的高效自循环处理机匣
CN114576205B (zh) * 2022-03-14 2023-11-28 中国航发湖南动力机械研究所 一种带模式转换的高效自循环处理机匣

Similar Documents

Publication Publication Date Title
CN110145497A (zh) 一种轴向前移的压气机自循环机匣处理扩稳装置
CN104675755B (zh) 轴流压气机周向错位型自流通机匣处理方法
CN110727995B (zh) 叶片形状的构造方法、叶片以及计算机设备
Li et al. Numerical investigation of impeller trimming effect on performance of an axial flow fan
CN103195757B (zh) 一种结合附面层抽吸的对转压气机气动设计方法
CN108953232B (zh) 一种非轴对称分布静叶轴流式压气机
CN104392018B (zh) 基于叶尖流场及几何定制的圆弧斜缝机匣的实现方法
CN106968988B (zh) 一种轴向前移、径向倾斜的反叶片角向缝处理机匣
CN103807201A (zh) 一种控制压气机静子角区分离的组合抽吸布局方法
CN102562666A (zh) 一种非定常驻涡式处理机匣
CN108661947A (zh) 采用康达喷气的轴流压气机叶片及应用其的轴流压气机
CN115374576B (zh) 用于压气机叶片与机匣处理一体化扩稳设计方法
Pelton et al. Design of a wide-range centrifugal compressor stage for supercritical CO2 power cycles
CN105179322B (zh) 叶根开设等宽直线槽的压气机静子叶栅
CN112539184B (zh) 一种分布式参数化叶轮自循环处理机匣
CN110030038B (zh) 考虑bli进气畸变效应的叶尖跨音风扇非对称静子设计方法
CN109386381B (zh) 分流环设计方法
CN113090580B (zh) 一种具有s型前缘的离心叶轮叶片及其造型方法
CN101158991A (zh) 大小叶片压气机的气动设计方法
CN106089806A (zh) 一种减小扩压器分离损失的端壁处理方法
Gu¨ mmer et al. Numerical investigation of endwall boundary layer removal on highly-loaded axial compressor blade rows
CN113007138A (zh) 一种压气机前置组合式机匣设计方法
CN105156356B (zh) 叶根开设等宽折线槽的压气机静子叶栅
KR101877167B1 (ko) 축류압축기
CN110319060A (zh) 一种跨音速轴流压气机前置的逆角向倾斜缝机匣处理方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190820