CN110134018B - Multi-foot cooperative control method of underwater multi-foot robot system - Google Patents
Multi-foot cooperative control method of underwater multi-foot robot system Download PDFInfo
- Publication number
- CN110134018B CN110134018B CN201910525253.3A CN201910525253A CN110134018B CN 110134018 B CN110134018 B CN 110134018B CN 201910525253 A CN201910525253 A CN 201910525253A CN 110134018 B CN110134018 B CN 110134018B
- Authority
- CN
- China
- Prior art keywords
- legged
- underwater
- legged robot
- mechanical
- foot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 36
- 238000004891 communication Methods 0.000 claims abstract description 25
- 230000033001 locomotion Effects 0.000 claims abstract description 21
- 239000011159 matrix material Substances 0.000 claims description 49
- 230000003044 adaptive effect Effects 0.000 claims description 18
- 238000010586 diagram Methods 0.000 claims description 17
- 230000004913 activation Effects 0.000 claims description 10
- 210000003108 foot joint Anatomy 0.000 claims description 9
- 238000013528 artificial neural network Methods 0.000 claims description 8
- 238000005516 engineering process Methods 0.000 claims description 6
- 238000012545 processing Methods 0.000 claims description 6
- 230000005484 gravity Effects 0.000 claims description 5
- 230000001133 acceleration Effects 0.000 claims description 3
- 230000007613 environmental effect Effects 0.000 claims description 2
- 230000008054 signal transmission Effects 0.000 abstract description 4
- 230000008859 change Effects 0.000 abstract description 3
- 238000004088 simulation Methods 0.000 description 6
- 238000011160 research Methods 0.000 description 5
- 230000004888 barrier function Effects 0.000 description 4
- 238000005553 drilling Methods 0.000 description 3
- 206010033799 Paralysis Diseases 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000001934 delay Effects 0.000 description 2
- 238000009795 derivation Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000002427 irreversible effect Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000012827 research and development Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000005021 gait Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 239000011664 nicotinic acid Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Manipulator (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
一种水下多足机器人系统多足协同控制方法,属于水下多足机器人协同控制技术领域。本发明是为了解决多足机器人受处理器运算速度和信号传输路径的影响,不同机械足之间存在通讯延迟的问题。本发明引入一种对数形式的障碍李雅普诺夫函数使得系统的轨迹跟踪误差始终满足设定的误差限制要求;仅要求不同机械足之间的通讯拓扑为有向图,只有部分跟随者可以获得领航者的信息即可,避免了信息全局可知带来的通讯负担;选用输入信号源作为虚拟领航者使得领航者的更改更加灵活,满足机器人对于运动灵活性的要求。本发明适用于水下多足机器人的协同运动控制。
A multi-legged collaborative control method for an underwater multi-legged robot system belongs to the technical field of underwater multi-legged robot collaborative control. The present invention is to solve the problem of communication delay between different mechanical legs of the multi-legged robot, which is affected by the processor's operation speed and the signal transmission path. The present invention introduces an obstacle Lyapunov function in logarithmic form, so that the trajectory tracking error of the system always meets the set error limit requirement; only the communication topology between different mechanical feet is required to be a directed graph, and only some followers can obtain it. The information of the navigator is enough, avoiding the communication burden caused by the global knowledge of the information; the selection of the input signal source as the virtual navigator makes the change of the navigator more flexible and meets the requirements of the robot for movement flexibility. The invention is suitable for the coordinated motion control of the underwater multi-legged robot.
Description
技术领域technical field
本发明属于水下多足机器人协同控制技术领域。The invention belongs to the technical field of collaborative control of an underwater multi-legged robot.
背景技术Background technique
作为一个海洋大国,近年来,我国大力发展海洋经济,近海的开发利用显得愈发重要。其中,海上钻井平台作为海洋资源开发利用的载体,有关海上钻井平台安全性的研究逐渐深入,海上钻井平台的日常检查维护工作非常重要,但是由于恶劣工作环境,导致人工检修维护十分不便。随着科技的进步,水下机器人的研发工作受到更多的重视,多足机器人相对于传统的滚轮或履带机器人的优势逐渐显现,水下多足机器人的设计已经成为一个热点。多足仿生机器人的协调运动的控制问题的研究吸引了越来越多的专家和学者的注意。As a major marine country, in recent years, my country has vigorously developed the marine economy, and the development and utilization of offshore areas has become more and more important. Among them, the offshore drilling platform is the carrier for the development and utilization of marine resources, and the research on the safety of the offshore drilling platform is gradually deepening. The daily inspection and maintenance of the offshore drilling platform is very important, but due to the harsh working environment, manual maintenance is very inconvenient. With the advancement of science and technology, more attention has been paid to the research and development of underwater robots, and the advantages of multi-legged robots over traditional roller or crawler robots have gradually emerged. The design of underwater multi-legged robots has become a hot topic. The research on the control of coordinated motion of multi-legged bionic robots has attracted more and more attention of experts and scholars.
水下多足机器人目前所用到的理论是能量最低假设,即通过优化外形结构和控制算法使得多足机器人的运动所消耗的能量达到最低。多体系统动力学是多足机器人研发的重要理论基础,因此,对于水下多足机器人的控制问题可以借鉴多体系统的协调控制的研究成果。目前,对于多体系统协同跟踪问题的研究多采用的是跟随者对领航者跟踪的方式,只需要对领航者的运动轨迹进行精确的规划,其他跟随者在有效的控制算法的作用下利用自己或者邻居的信息实现对领航者的跟踪,多足机器人系统中常采用这种控制方式,达到降低能耗、节约成本的目的。其中,将信号源虚拟为领航者,将水下多足机器人的每一条机械足看作一个具有多自由度的跟随者。The theory currently used by the underwater multi-legged robot is the assumption of minimum energy, that is, the energy consumed by the motion of the multi-legged robot can be minimized by optimizing the shape structure and control algorithm. Multi-body system dynamics is an important theoretical basis for the research and development of multi-legged robots. Therefore, the research results of coordinated control of multi-body systems can be used for the control of underwater multi-legged robots. At present, the research on the collaborative tracking of multi-body systems mostly adopts the follower to track the leader. It only needs to accurately plan the trajectory of the leader, and other followers use their own under the action of effective control algorithms. Or the information of neighbors can track the leader. This control method is often used in multi-legged robot systems to reduce energy consumption and save costs. Among them, the signal source is virtualized as the leader, and each mechanical foot of the underwater multipedal robot is regarded as a follower with multiple degrees of freedom.
但是在实际的工程项目中,往往对于控制精度要求较高,特别是在多足机器人系统当中,如果误差太大,可能会导致多足机器人出现侧翻甚至瘫痪,造成无法挽回的后果。However, in actual engineering projects, there are often high requirements for control accuracy, especially in multi-legged robot systems. If the error is too large, it may cause the multi-legged robot to roll over or even become paralyzed, resulting in irreversible consequences.
因此有必要对输出误差加以限制,限制控制误差的一个好方法是BLF(障碍李雅普诺夫函数)技术。目前使用非对称的时变BLF(障碍李雅普诺夫函数)构造自适应控制器,应用李雅普诺夫稳定性理论保证输出误差在设定的范围内。但是,多足机器人多采用微型计算机网络进行控制,受处理器运算速度和信号传输路径的影响,常常造成不同机械足之间的通讯延迟。Therefore, it is necessary to limit the output error, and a good method to limit the control error is the BLF (Barrier Lyapunov Function) technique. At present, an asymmetric time-varying BLF (Barrier Lyapunov function) is used to construct an adaptive controller, and the Lyapunov stability theory is applied to ensure that the output error is within the set range. However, multi-legged robots are mostly controlled by a microcomputer network, which is affected by the computing speed of the processor and the signal transmission path, which often causes communication delays between different mechanical legs.
发明内容SUMMARY OF THE INVENTION
本发明目的是为了解决多足机器人受处理器运算速度和信号传输路径的影响,不同机械足之间存在通讯延迟的问题,提出了一种水下多足机器人系统多足协同控制方法。The purpose of the present invention is to solve the problem of communication delay between different mechanical legs of the multi-legged robot, which is affected by the processor operation speed and signal transmission path, and proposes a multi-legged cooperative control method for an underwater multi-legged robot system.
本发明所述一种水下多足机器人系统多足协同控制方法,该方法的具体步骤包括:The multi-legged collaborative control method of an underwater multi-legged robot system according to the present invention, the specific steps of the method include:
步骤一、建立水下多足机器人所有机械足的动力学模型;获得水下多足机器人控制系统;
步骤二、建立步骤一所述的水下多足机器人系统中各机械足之间的通讯关系有向拓扑结构图;所述有向拓扑结构图的根节点为领航者,其他每个节点为一个机械足,领航者为控制信号源,一个机械足为一个跟随者;
步骤三、利用分布式观测器和步骤二所述的有向拓扑结构图对所有节点获得的领航者状态信息进行估计,获得领航者的状态信息;
步骤四、采用障碍李雅普诺夫函数对步骤三获得的领航者的状态信息进行误差约束;将误差变量限定在规定范围内;Step 4: Use the obstacle Lyapunov function to constrain the error of the pilot's state information obtained in
步骤五、利用神经网络技术对水下多足机器人系统中的非线性不确定性进行处理;实现对未知参数进行估计;
步骤六、根据步骤四所述的误差补偿和步骤五所述的非线性不确定性的处理,获得水下多足机器人控制系统的自适应控制律,实现对水下多足机器人系统的多足协同控制。Step 6: According to the error compensation described in
本发明综合考虑了多足机器人系统的不同机械足之间存在恒定的通讯延迟、多足机器人动力学模型存在的广义干扰情况,同时引入一种对数形式的障碍李雅普诺夫函数使得系统的轨迹跟踪误差始终满足设定的误差限制要求;仅要求不同机械足之间的通讯拓扑为有向图,只有部分跟随者可以获得领航者的信息即可,避免了信息全局可知带来的通讯负担;选用输入信号源作为虚拟领航者使得领航者的更改更加灵活,满足机器人对于运动灵活性的要求。The invention comprehensively considers the constant communication delay between different mechanical feet of the multi-legged robot system and the generalized interference of the dynamic model of the multi-legged robot, and at the same time introduces a logarithmic obstacle Lyapunov function to make the trajectory of the system The tracking error always meets the set error limit requirements; only the communication topology between different mechanical feet is required to be a directed graph, and only some followers can obtain the information of the leader, avoiding the communication burden caused by the global knowledge of information; Selecting the input signal source as the virtual navigator makes the change of the navigator more flexible and meets the requirements of the robot for motion flexibility.
附图说明Description of drawings
图1是本发明所述水下多足机器人系统多足协同控制方法的流程图;Fig. 1 is the flow chart of the multi-legged cooperative control method of the underwater multi-legged robot system according to the present invention;
图2是水下多足机器人机械足示意图;Fig. 2 is a schematic diagram of a mechanical foot of an underwater multi-legged robot;
图3是水下多足机器人机械足的通讯拓扑图;Fig. 3 is the communication topology diagram of the mechanical foot of the underwater multi-legged robot;
图4是机械足的结构示意图;Fig. 4 is the structural representation of mechanical foot;
图5是各机械足关节1跟踪领航者关节1的运动轨迹曲线图;Fig. 5 is the motion trajectory curve diagram of each
图6是各机械足关节2跟踪领航者关节2的运动轨迹曲线图;Fig. 6 is the motion trajectory curve diagram of each
图7是各机械足关节1与领航者关节1的轨迹跟踪误差曲线图;Fig. 7 is the trajectory tracking error curve diagram of each
图8是各机械足关节2与领航者关节2的轨迹跟踪误差曲线图;Fig. 8 is the trajectory tracking error curve diagram of each
图9是各机械足关节1处的输入控制力矩曲线图;Fig. 9 is the input control torque curve diagram at each
图10是各机械足关节2处的输入控制力矩曲线图;Fig. 10 is the input control torque curve diagram at each
图11是辅助变量Z11与时变误差限制的关系曲线图;Figure 11 is a graph showing the relationship between the auxiliary variable Z 11 and the time-varying error limit;
图12是辅助变量Z12与时变误差限制的关系曲线图;Figure 12 is a graph of the relationship between the auxiliary variable Z 12 and the time-varying error limit;
图13是辅助变量Z21与时变误差限制的关系曲线图;Figure 13 is a graph of the relationship between the auxiliary variable Z 21 and the time-varying error limit;
图14是辅助变量Z22与时变误差限制的关系曲线图;Figure 14 is a graph of auxiliary variable Z 22 versus time-varying error limit;
图15是辅助变量Z31与时变误差限制的关系曲线图;Figure 15 is a graph of the relationship between the auxiliary variable Z 31 and the time-varying error limit;
图16是辅助变量Z32与时变误差限制的关系曲线图;Figure 16 is a graph of auxiliary variable Z 32 versus time-varying error limit;
图17是辅助变量Z41与时变误差限制的关系曲线图;Figure 17 is a graph of the relationship between the auxiliary variable Z 41 and the time-varying error limit;
图18是辅助变量Z42与时变误差限制的关系曲线图。FIG. 18 is a graph of auxiliary variable Z 42 versus time-varying error limit.
具体实施方式Detailed ways
以下将结合附图及实施例来详细说明本发明的实施方式,借此对本发明如何应用技术手段来解决技术问题,并达成相应技术效果的实现过程能充分理解并据以实施。本申请实施例以及实施例中的各个特征,在不相冲突前提下可以相互结合,所形成的技术方案均在本发明的保护范围之内。The embodiments of the present invention will be described in detail below with reference to the accompanying drawings and examples, so as to fully understand and implement the implementation process of how the present invention applies technical means to solve technical problems and achieve corresponding technical effects. The embodiments of the present application and the various features in the embodiments can be combined with each other under the premise of no conflict, and the formed technical solutions all fall within the protection scope of the present invention.
具体实施方式一:下面结合图1说明本实施方式,本实施方式所述一种水下多足机器人系统多足协同控制方法,该方法的具体步骤包括:Embodiment 1: The present embodiment will be described below with reference to FIG. 1 , and a multi-legged collaborative control method of an underwater multi-legged robot system described in this embodiment. The specific steps of the method include:
步骤一、建立水下多足机器人所有机械足的动力学模型;获得水下多足机器人控制系统;
步骤二、建立步骤一所述的水下多足机器人系统中各机械足之间的通讯关系有向拓扑结构图;所述有向拓扑结构图的根节点为领航者,其他每个节点为一个机械足,领航者为控制信号源,一个机械足为一个跟随者;
步骤三、利用分布式观测器和步骤二所述的有向拓扑结构图对所有节点获得的领航者状态信息进行估计,获得领航者的状态信息;
步骤四、采用障碍李雅普诺夫函数对步骤三获得的领航者的状态信息进行误差约束;将误差变量限定在规定范围内;Step 4: Use the obstacle Lyapunov function to constrain the error of the pilot's state information obtained in
步骤五、利用神经网络技术对水下多足机器人系统中的非线性不确定性进行处理;实现对未知参数进行估计;
步骤六、根据步骤四所述的误差补偿处理和步骤五所述的非线性不确定性的处理,获得水下多足机器人控制系统的自适应控制律,实现对水下多足机器人系统的多足协同控制。Step 6: According to the error compensation processing described in
本实施方式提出了考虑不同机械足之间通讯延迟的观测器,在误差的限制方面,引入了一种对数形式的障碍李雅普诺夫函数,采用反步法的方法设计了一种分布式自适应控制算法来保证多足机器人的机械足对领航者的轨迹跟踪误差收敛到0附近。This embodiment proposes an observer that considers the communication delay between different mechanical feet. In terms of error limitation, a logarithmic barrier Lyapunov function is introduced, and a distributed automatic Lyapunov function is designed by using the backstep method. The adaptive control algorithm is used to ensure that the trajectory tracking error of the multi-legged robot's mechanical feet to the leader converges to around 0.
本发明采用有向图来描述水下多足机器人的各机械足之间的拓扑结构,主要针对水下多足机器人的n条机械足的运动情况进行研究;由于水下多足机器人的每个机械足都可以单独地接收到控制信号,具有运动的独立性,因此可以将其视为单独的个体。水下多足机器人系统可以看作一个多体系统,考虑到欧拉-拉格朗日方程在非线性多体系统中的广泛应用,所以用欧拉-拉格朗日方程对水下多足机器人的机械足的运动情况进行描述。将水下多足机器人的每一条机械足看作一个具有p个自由度的跟随者,跟随者用1,...,n表示。由于水下多足机器人对于运动灵活性的要求较高,通常需要通过增加和布置领航者以实现另加灵活的运动,所以将信号源设定为一个虚拟的领航者,领航者用n+1表示。The present invention uses a directed graph to describe the topology between the mechanical feet of the underwater multi-legged robot, and mainly studies the motion of the n mechanical feet of the underwater multi-legged robot; The mechanical feet can receive control signals independently and have independent movement, so they can be regarded as separate individuals. The underwater multi-legged robot system can be regarded as a multi-body system. Considering the wide application of Euler-Lagrangian equations in nonlinear multi-body systems, the Euler-Lagrange equations are used for underwater multi-legged systems. The motion of the robotic foot of the robot is described. Each mechanical foot of the underwater multipedal robot is regarded as a follower with p degrees of freedom, and the follower is denoted by 1,...,n. Because the underwater multi-legged robot has high requirements for motion flexibility, it is usually necessary to add and arrange navigators to achieve additional flexible motion, so the signal source is set as a virtual navigator, and the navigator uses n+1 express.
用有向图ζ=(υ,ε,A)表示1个虚拟领航者与水下多足机器人的n条机械足之间的通讯关系,在有向图中,υ={1,2,....,n+1}为所有顶点的集合,表示所有边的集合, A={aij}∈R(n+1)×(n+1)表示的邻接矩阵;在点集υ中,υi表示水下多足机器人的第i条机械足,边(υi,υj)∈ε表示水下多足机器人的第j条机械足可以获得第i条机械足的信息。υi称为父节点,υj称为子节点,并且υi和υj是相邻的两个节点。有向图的路径为一个有限的顶点序列υi1,...,υin,满足(υi,υj)∈ε。如果有向图中除了一个节点(称为根节点(root))外,其余每个节点均有且仅有一个父节点,且存在根节点到其余任何节点的路径,则称该有向图为有向树(directed tree)。有向图的有向生成树(directed spanning tree)为包含该有向图所有节点的有向树。如果有向图存在一个为有向生成树的子图,则称该有向图具有有向生成树。定义邻接矩阵A是一个非负矩阵。当且仅当(υi,υj)∈ε时,元素aij=1,否则aij=0。对于所有的j=1,...,n+1,都有a(n+1)j=0,定义矩阵其中i∈{1,...,n}, j=1,...,n+1。当有向图ζ包含一个有向生成树成立的时候,的分母不为0。A directed graph ζ=(υ,ε,A) is used to represent the communication relationship between a virtual pilot and the n mechanical feet of the underwater multipedal robot. In the directed graph, υ={1,2,. ...,n+1} is the set of all vertices, represents the set of all edges, and A={a ij }∈R (n+1)×(n+1) represents the adjacency matrix; in the point set υ, υ i represents the ith mechanical foot of the underwater multipedal robot , the edge (υ i ,υ j )∈ε indicates that the jth mechanical foot of the underwater multipod robot can obtain the information of the ith mechanical foot. υ i is called the parent node, υ j is called the child node, and υ i and υ j are two adjacent nodes. The path of a directed graph is a finite sequence of vertices υ i1 ,...,υ in , satisfying (υ i ,υ j )∈ε. If each node in a directed graph has one and only one parent node except one node (called the root node), and there is a path from the root node to any other node, then the directed graph is called Directed tree. A directed spanning tree of a directed graph is a directed tree that contains all the nodes of the directed graph. If a directed graph has a subgraph that is a directed spanning tree, the directed graph is said to have a directed spanning tree. Define the adjacency matrix A to be a non-negative matrix. The element a ij =1 if and only if (υ i ,υ j )∈ε, otherwise a ij =0. For all j=1,...,n+1, there is a (n+1)j =0, defining the matrix in i∈{1,...,n}, j=1,...,
具体实施方式二:本实施方式对实施方式一所述的一种水下多足机器人系统多足协同控制方法作进一步说明,本实施方式中,步骤一中所述的水下多足机器人所有机械足的动力学模型的方法均相同,以第i条机械足的动力学模型为例进行说明,具体为:Specific embodiment 2: This embodiment further describes the multi-leg collaborative control method of the underwater multi-legged robot system described in the first embodiment. In this embodiment, all the mechanical mechanisms of the underwater multi-legged robot described in step The method of the dynamic model of the mechanical foot is the same, and the dynamic model of the i-th mechanical foot is taken as an example to illustrate, specifically:
其中,qi为第i条机械足的关节转动角度,i={1,2,....,n},n为正整数,为第i条机械足的关节转动角速度,为第i条机械足的关节转动角加速度,且qi,Rp是p维实数列向量,τi表示输入第i条机械足的控制力拒,τi∈Rp,Mi(qi)表示对称正定的惯性矩阵,Mi(qi)∈Rp×p,Rp×p是p行p列的实数矩阵,表示第i条机械足的偏心力,gi(qi)表示第i条机械足的重力,gi(qi)∈Rp,ωi表示外部扰动,ωi∈Rp,所述外部扰动包括环境扰动和外部噪声;其中,对称正定的惯性矩阵Mi(qi)、偏心力和重力gi(qi)为未知参数。Among them, qi is the joint rotation angle of the i -th mechanical foot, i={1,2,....,n}, n is a positive integer, is the joint rotational angular velocity of the i-th mechanical foot, is the joint rotational angular acceleration of the i-th mechanical foot, and q i , R p is a p-dimensional real number sequence vector, τ i represents the input control force of the i-th mechanical foot, τ i ∈R p , M i (q i ) represents a symmetric positive definite inertia matrix, M i (q i )∈R p×p , R p×p is a real matrix with p rows and p columns, represents the eccentric force of the i-th mechanical foot, g i (q i ) represents the gravity of the i-th mechanical foot, g i (q i )∈R p , ω i denotes the external disturbance, ω i ∈ R p , the external disturbance includes environmental disturbance and external noise; wherein, Symmetric positive definite inertia matrix M i (q i ), eccentric force and gravity g i (q i ) are unknown parameters.
具体实施方式三:本实施方式对实施方式二所述的一种水下多足机器人系统多足协同控制方法作进一步说明,本实施方式中,步骤三所述的利用分布式观测器和步骤二所述的有向拓扑结构图对所有节点获得的领航者状态信息进行估计,获得领航者的状态信息的具体方法为:Specific embodiment 3: This embodiment further describes a multi-legged cooperative control method for an underwater multi-legged robot system described in
由于式(1)所述的动力学模型满足性质:Since the kinetic model described in equation (1) satisfies the property:
性质1:矩阵是反对称的,那么有:对于 Property 1: Matrix is antisymmetric, then there are: for
性质2:存在两个正数和B使得其中Ip表示p×p的单位矩阵。Property 2: There are two positive numbers and B makes where I p represents the identity matrix of p × p.
因此,航者的广义坐标qn+1表示成:Therefore, the generalized coordinate q n+1 of the voyager is expressed as:
qn+1=Fv (3)q n+1 = Fv (3)
其中,v为领航者的辅助状态变量,v∈Rm,为v的导数,S和F为恒定实数矩阵, S∈Rm×m,F∈Rn×m;Among them, v is the auxiliary state variable of the leader, v∈R m , is the derivative of v, S and F are constant real number matrices, S∈R m×m , F∈R n×m ;
分布式观测器对领航者状态信息进行估计:The distributed observer estimates the leader state information:
其中, 为矩阵的元素,为邻接矩阵,ηj为第j个跟随者对领航者的位置信息的估计值,第j个跟随者对领航者的速度信息的估计值,j=1,...,n+1,ηi表示第i个跟随者对于v的估计值,ηi∈Rm,是i个跟随者对领航者的速度信息的估计值,T 表示相邻跟随者i和j之间的通讯延迟,t为时间。in, is a matrix Elements, is the adjacency matrix, η j is the estimated value of the position information of the jth follower to the leader, The estimated value of the speed information of the leader by the jth follower, j=1,...,n+1, η i represents the estimated value of v by the ith follower, η i ∈R m , is the estimated value of the speed information of the leader by i followers, T represents the communication delay between adjacent followers i and j, and t is the time.
在本实施方式中,水下机器人的机械足(跟随者)的动态虚拟领航者的轨迹由式(2) 和式(3)表示。考虑到水下多足机器人的不同机械足之间由于信号传输路径不同,会造成不同机械足之间的通讯延迟。在只有部分机械足(跟随者)可以获得领航者信息的情况下,设计了分布式观测器和自适应神经网络控制算法确保每条机械足对领航者的轨迹跟踪误差有界。同时,考虑到多足机器人系统当中,如果实际运动轨迹与预期轨迹之间误差太大,可能会导致多足机器人出现侧翻甚至瘫痪,造成无法挽回的后果。因此对水下多足机器人机械足关节处的转动角度加以限制。In this embodiment, the trajectory of the dynamic virtual leader of the mechanical feet (followers) of the underwater robot is represented by equations (2) and (3). Considering that the different signal transmission paths between different mechanical feet of an underwater multipedal robot will cause communication delays between different mechanical feet. In the case that only some of the robotic feet (followers) can obtain the leader information, a distributed observer and an adaptive neural network control algorithm are designed to ensure that each robotic foot has a bounded trajectory tracking error for the leader. At the same time, considering that in a multi-legged robot system, if the error between the actual motion trajectory and the expected trajectory is too large, it may cause the multi-legged robot to roll over or even become paralyzed, resulting in irreversible consequences. Therefore, the rotation angle of the mechanical foot joints of the underwater multipod robot is limited.
因为S和F是实数矩阵,实数矩阵中元素的值与时间和领航者的状态量无关,当所有的机械足都能获取S和F信息的时候,意味着一部分的机械足可以通过式(3)获得qn+1的值,达到获得领航者的信息的目的;一种常见的方法是利用目标对象的动态矩阵设计相应的观测器,通过式(4)所示的分布式观测器,利用相邻机械足的状态信息对领航者的状态信息进行估计。如果:得到观测器的观测误差ηi-v是有界的,表示为:Because S and F are real number matrices, the value of the elements in the real number matrix has nothing to do with time and the state quantity of the pilot. When all the mechanical feet can obtain the information of S and F, it means that a part of the mechanical feet can pass the formula (3 ) to obtain the value of q n+1 to achieve the purpose of obtaining the information of the leader; a common method is to use the dynamic matrix of the target object to design the corresponding observer, through the distributed observer shown in formula (4), use The state information of the adjacent mechanical feet is used to estimate the state information of the pilot. if: It is obtained that the observation error η i -v of the observer is bounded and expressed as:
其中: in:
U0是小于1的正数,该正数趋近于0,Re为通讯延迟增益矩阵,1n为元素都为1的n为列向量,是第 n个跟随者对领航者的估计误差,是神经操作器,因为S和F是实数矩阵,A为带权的邻接矩阵,实数矩阵中元素的值与时间和领航者的状态量无关,利用目标对象的动态矩阵设计相应的观测器。 U 0 is a positive number less than 1, the positive number tends to 0, R e is the communication delay gain matrix, 1 n is a column vector with all elements of 1, n is a column vector, is the estimated error of the nth follower to the leader, is a neural operator, because S and F are real number matrices, A is a weighted adjacency matrix, and the value of the elements in the real number matrix is independent of time and the state quantity of the leader, and the corresponding observer is designed using the dynamic matrix of the target object.
具体实施方式四:本实施方式对实施方式三所述的一种水下多足机器人系统多足协同控制方法作进一步说明,步骤四所述采用障碍李雅普诺夫函数对步骤二获得的领航者的状态信息进行误差约束;将误差变量限定在规定范围内的具体方法为:Specific Embodiment 4: This embodiment further describes the multi-legged cooperative control method for an underwater multi-legged robot system described in
对机器人机械足关节处的转动角度加以限制,设定时变边界为:kc(t)=[kc1(t),kc2(t),...,kcn(t)]T和限定输出的转动角度的状态量qi(t)的区域为:The rotation angle of the robot foot joint is limited, and the time-varying boundary is set as: k c(t)=[ k c 1 (t), k c 2 (t),..., k c n (t) ] T and The region of the state quantity q i (t) that defines the output rotation angle is:
kci(t)和分别为第i个机械足t时刻期望运动轨迹qri的上、下边界,kcn(t)和分别为第n个机械足t时刻期望运动轨迹qri的上、下边界,qi(t)为t时刻第i条机械足的关节转动角度;R为实数矩阵。 k c i (t) and are the upper and lower boundaries of the expected motion trajectory q ri of the i-th mechanical foot at time t, respectively, k c n (t) and are the upper and lower boundaries of the desired motion trajectory q ri of the nth mechanical foot at time t, respectively, q i (t) is the joint rotation angle of the ith mechanical foot at time t; R is a real matrix.
具体实施方式五:本实施方式对实施方式四所述的一种水下多足机器人系统多足协同控制方法作进一步说明,步骤五所述利用神经网络技术对水下多足机器人系统中的非线性不确定性进行处理,实现对未知参数进行估计的具体方法为:Specific embodiment 5: This embodiment further describes the multi-legged cooperative control method of the underwater multi-legged robot system described in the fourth embodiment. The linear uncertainty is dealt with, and the specific method to estimate the unknown parameters is as follows:
利用式:Use formula:
实现对多足机器人系统的第i条机械足的非线性不确定性量进行补偿,其中,Wi表示理想的加权矩阵,Wi T是理想的加权矩阵Wi的转置,ri是第i个机械足的虚拟控制器,为ri的导数;是激活函数,△i表示逼近误差;且△i是有界的,存在一个正数△Mi使得||△i||≤△Mi;获得水下多足机器人的第i条机械足的的估值:Realization of Nonlinear Uncertainty Quantity for the i-th Mechanical Foot of a Multi-legged Robot System compensation, where Wi represents the ideal weighting matrix, Wi T is the transpose of the ideal weighting matrix Wi , ri is the virtual controller of the ith mechanical foot , is the derivative of ri ; is the activation function, △ i represents the approximation error; and △ i is bounded, there is a positive number △ Mi such that ||△ i ||≤△ Mi ; obtain the ith mechanical foot of the underwater multipod robot Valuation of:
其中,是理想的加权矩阵Wi的估计值。in, is an estimate of the ideal weighting matrix Wi.
具体实施方式六:本实施方式对实施方式四所述的一种水下多足机器人系统多足协同控制方法作进一步说明,本实施方式中,步骤六所述的根据步骤四所述的误差约束处理和步骤五所述的非线性不确定性的处理,获得水下多足机器人控制系统的自适应控制律为:Embodiment 6: This embodiment further describes the multi-legged collaborative control method for an underwater multi-legged robot system described in
其中,α、β和μ均为正数,且α、β和μ均无限趋近于零,K2i是一个对称正定的矩阵,Z2i为虚拟轨迹跟踪误差变量向量,Z2i T是向量Z2i的转置,是矩阵的转置,Z1i是跟随者对领航者的轨迹跟踪误差变量向量,中间变量kai和 kbi分别是跟踪误差变量的上、下边界;其中, Among them, α, β and μ are all positive numbers, and α, β and μ are infinitely close to zero, K 2i is a symmetric positive definite matrix, Z 2i is the virtual trajectory tracking error variable vector, Z 2i T is the vector Z the transpose of 2i , is the matrix The transpose of , Z 1i is the trajectory tracking error variable vector of the follower to the leader, the intermediate variable ka i and kb i are the upper and lower bounds of the tracking error variable, respectively; where,
本实施方式考虑到控制误差对水下多足机器人的影响,使用了一种时变的障碍李雅普诺夫函数确保输出的状态量满足设定的时变的限制要求。考虑到水下多足机器人系统的模型不确定性和未知的动态参数问题,本发明使用反步法的方法提出了一种分布式自适应控制方法。该方法基于数学引理1到4实现;In this embodiment, considering the influence of control errors on the underwater multipedal robot, a time-varying obstacle Lyapunov function is used to ensure that the output state quantity satisfies the set time-varying restriction requirements. Considering the model uncertainty and unknown dynamic parameters of the underwater multi-legged robot system, the present invention proposes a distributed adaptive control method by using the backstepping method. The method is implemented based on
引理1:如果存在一个连续的Lyapunov(李雅普诺夫)函数V(L,t),满足满足其中u为正数,得出L(t)是有界的。Lemma 1: If there is a continuous Lyapunov function V(L,t), satisfying Satisfy in u is a positive number, it is concluded that L(t) is bounded.
引理2:当E是对称正定矩阵时,有不等式:其中λmin表示E的最小特征值,λmax表示E的最大特征值。Lemma 2: When E is a symmetric positive definite matrix, there are inequalities: where λ min represents the minimum eigenvalue of E, and λ max represents the maximum eigenvalue of E.
引理3:对于一个连续可微的方程Ψ(t),如果Ψ(t)满足对于|Ψ(t)|≤Φ,其中Φ为一个正数,对于 是有界的。Lemma 3: For a continuously differentiable equation Ψ(t), if Ψ(t) satisfies for |Ψ(t)|≤Φ, where Φ is a positive number, for is bounded.
引理4:考虑一个正数G∈R,如果x∈R且|x|<|G|,则下述不等式成立: Lemma 4: Consider a positive number G∈R, if x∈R and |x|<|G|, the following inequality holds:
考虑含有模型不确定性和外部扰动的水下多足机器人系统,在水下多足机器人的不同机械足之间存在恒定的通讯延迟的情况下,存在1)、2)和3)成立;Considering the underwater multipedal robot system with model uncertainty and external disturbances, 1), 2) and 3) are established under the condition that there is a constant communication delay between different mechanical legs of the underwater multipedal robot;
1)、外部扰动ωi是有界的,即存在一个正数γ,使得||ωi||≤γ。1) The external disturbance ω i is bounded, that is, there is a positive number γ such that ||ω i ||≤γ.
2)、v和都是有界的,S和F对于所有跟随者都是已知的。2), v and are both bounded, and S and F are known to all followers.
3)、有向图ζ包含一个有向生成树。3), the directed graph ζ contains a directed spanning tree.
首先定义第i个机械足的期望运动轨迹qri:First define the desired motion trajectory q ri of the i-th mechanical foot:
qri=Fηi (7)q ri =Fη i (7)
跟随者对领航者的轨迹跟踪误差变量向量Z1i为:The trajectory tracking error variable vector Z 1i of the follower to the leader is:
Z1i=qi-qri (8)Z 1i = q i -q ri (8)
虚拟轨迹跟踪误差变量向量Z2i为:The virtual trajectory tracking error variable vector Z 2i is:
其中ri为虚拟控制器;where ri is the virtual controller;
跟随者对领航者的轨迹跟踪误差变量向量Z1i的时变边界为:The time-varying boundary of the trajectory tracking error variable vector Z 1i of the follower to the leader is:
kai(t)=qri(t)-kci(t) (10)ka i (t) = q ri (t) - k c i (t) (10)
kai和kbi(t)是跟踪误差变量t时刻的上、下边界,为第i个机械足t时刻的期望运动轨迹的上边界,kci(t)为t时刻第i个机械足的期望运动轨迹的下边界,qri(t)为t时刻第i个机械足的期望运动轨迹;ka i and kb i (t) are the upper and lower bounds of the tracking error variable at time t, is the upper boundary of the expected motion trajectory of the i-th robotic foot at time t, k c i (t) is the lower boundary of the expected motion trajectory of the i-th robotic foot at time t, and q ri (t) is the i-th robotic foot at time t. the desired trajectory of the foot;
其中,Lyapunov(李雅普诺夫)函数V1i(t):where, the Lyapunov function V 1i (t):
其中,kai(t)为t时刻跟踪误差变量上边界,kbi(t)为t时刻跟踪误差变量下边界,h(i) 定义:Among them, ka i (t) is the upper boundary of the tracking error variable at time t, kb i (t) is the lower boundary of the tracking error variable at time t, and h(i) is defined as:
对跟随者对领航者的轨迹跟踪误差变量向量Z1i进行变形,令:Transform the track tracking error variable vector Z 1i of the follower to the leader, let:
将式(14)中代入(12)中可得:Substitute equation (14) into (12) to get:
从式(15)得到V1i(t)在|εi|<1时,是正定的且连续可微的;对V1i(t)求导可得:From equation (15), V 1i (t) is positive definite and continuously differentiable when |ε i |<1; derivation of V 1i (t) can be obtained:
跟踪误差变量上边界kai的导数,为跟踪误差变量下边界kbi的导数; the derivative of the upper bound ka i of the tracking error variable, is the derivative of the lower bound kb i of the tracking error variable;
第i个机械足的虚拟控制器ri为:The virtual controller ri of the i -th robotic foot is:
其中,为:in, for:
确保在和全为0时保持有界,K1=diag[k11,k12,...,k1i,...,k1n]是对称正定的矩阵,k1i为增益矩阵K1中的第i个非0元素,将式(17)和(18)代入(16)中,可得:make sure exist and When all are 0, it remains bounded, K 1 =diag[k 11 ,k 12 ,...,k 1i ,...,k 1n ] is a symmetric positive definite matrix, and k 1i is the ith in the gain matrix K 1 There are non-zero elements, substituting equations (17) and (18) into (16), we can get:
其中,Xi定义为:where Xi is defined as:
且Xi∈X,X=diag[X1,X2,....,Xi,....,Xn];And X i ∈X,X=diag[X 1 ,X 2 ,....,X i ,....,X n ];
利用分布式自适应控制法则,获得自适应控制律:Using the distributed adaptive control law, the adaptive control law is obtained:
其中,α、β和μ均为正数,且α、β和μ均无限趋近于零,K2i是一个对称正定的矩阵,Z2i为虚拟轨迹跟踪误差变量向量,Z2i T是向量Z2i的转置,是矩阵的转置,Z1i是跟随者对领航者的轨迹跟踪误差变量向量,kai和kbi分别是跟踪误差变量的上、下边界;其中, Among them, α, β and μ are all positive numbers, and α, β and μ are infinitely close to zero, K 2i is a symmetric positive definite matrix, Z 2i is the virtual trajectory tracking error variable vector, Z 2i T is the vector Z the transpose of 2i , is the matrix The transpose of , Z 1i is the trajectory tracking error variable vector of the follower to the leader, ka i and kb i are the upper and lower bounds of the tracking error variable, respectively; where,
在分布式观测器(5)和分布式自适应控制律(21)和(22)的作用下辅助变量Z1i最终一致有界且每个机械足和领航者间的跟踪误差有界。同时,输出状态量qi(t)满足时变的输出限制条件,即 Under the action of distributed observer (5) and distributed adaptive control laws (21) and (22), the auxiliary variable Z 1i is eventually uniformly bounded and the tracking error between each robot foot and the pilot is bounded. At the same time, the output state quantity q i (t) satisfies the time-varying output restriction condition, that is,
对1)、2)和3)进行证明:式(9)对t求导有:Prove 1), 2) and 3): Formula (9) has the following derivation with respect to t:
将式(23)代入(1)中整理可得:Substitute equation (23) into (1) to get:
其中,为虚拟轨迹跟踪误差变量向量的Z2i的导数;in, is the derivative of Z 2i of the virtual trajectory tracking error variable vector;
因为Mi(qi),gi(qi)全部未知,在式(1)表示的水下多足机器人系统中存在非线性不确定性。考虑到神经网络对未知非线性函数具有良好的逼近能力,常常用来处理非线性系统中的不确定性问题。Because M i (q i ), All g i (q i ) are unknown, and there are nonlinear uncertainties in the underwater multi-legged robot system represented by equation (1). Considering that the neural network has a good approximation ability to unknown nonlinear functions, it is often used to deal with uncertainties in nonlinear systems.
因此,使用神经网络技术对水下多足机器人系统的非线性不确定性进行自适应补偿,具体方法:Therefore, the nonlinear uncertainty of underwater multi-legged robot system using neural network technology Perform adaptive compensation, the specific method:
其中Wi表示理想的加权矩阵,φi函数是激活函数,△i表示逼近差,△i是有界的,即存在一个正数△Mi使得||△i||≤△Mi,对于水下多足机器人的第i条机械足而言,的估计值写成:where Wi represents the ideal weighting matrix, the φ i function is the activation function, △ i represents the approximation difference, and △ i is bounded, that is , there is a positive number △ Mi such that ||△ i ||≤△ Mi , for underwater For the i-th mechanical foot of a multi-legged robot, The estimate of is written as:
其中,是Wi的估计值矩阵,为矩阵的转置,为激活函数。in, is the estimated value matrix of Wi , is a matrix transpose of , is the activation function.
基于神经网络技术,选择分布式自适应控制律式(21)和(22),障碍李雅普诺夫函数V2i;Based on the neural network technology, the distributed adaptive control laws (21) and (22) are selected, and the obstacle Lyapunov function V 2i is selected;
其中, 为矩阵的转置,Z1i为跟随者对领航者的轨迹跟踪误差向量, Z2i为虚拟轨迹跟踪误差向量,Z2i T为向量Z2i的转置,为的迹。in, is a matrix The transpose of , Z 1i is the track tracking error vector of the follower to the leader, Z 2i is the virtual track tracking error vector, Z 2i T is the transpose of the vector Z 2i , for trace.
对V2i求导,结合半对称性和分布式自适应控制律:和权值估计自适应律:K2i是一个对称正定的矩阵,得到:Derivative with respect to V 2i , combining semi-symmetry and distributed adaptive control law: and weight estimation adaptive law: K 2i is a symmetric positive definite matrix, we get:
其中,φi是激活函数,Z2i T虚拟轨迹跟踪误差矩阵的转置,φi是激活函数,△i是估计误差,是表示是的迹。因为△i和ωi是有界的,故存在一个正数使得:同时得到:where φ i is the activation function, Z 2i T is the transpose of the virtual trajectory tracking error matrix, φ i is the activation function, Δ i is the estimation error, is to indicate Yes trace. Since Δ i and ω i are bounded, there is a positive number makes: Also get:
其中,是||△i+ωi||的上边界,σ为正数,且无限趋近于0;in, is the upper boundary of ||△ i +ω i ||, σ is a positive number, and infinitely approaches 0;
在式(29)中,是一个标量,那么等式成立;In formula (29), is a scalar, then the equation established;
根据矩阵迹的运算性质有:According to the operational properties of the matrix trace, there are:
将式(19)、(30)和(31)代入(29)中可得:Substitute equations (19), (30) and (31) into (29) to get:
λmin(K2i)是对称正定矩阵K2i的最小值,式(32)写成:λ min (K 2i ) is the minimum value of the symmetric positive definite matrix K 2i , and equation (32) is written as:
其中:in:
是Mi的最大值。 is the maximum value of Mi.
根据引理1-4,可知,V2i满足满最终一致有界,对式(33)两侧同时积分可得:According to Lemma 1-4, it can be seen that V 2i satisfies the eventually uniform and bounded condition, and simultaneously integrating both sides of Equation (33) can be obtained:
令κ1>0,υ1>0,得到:Let κ 1 >0, υ 1 >0, we get:
V2i(t)是t时刻障碍李雅普诺夫函数,ρ为小于1的常数,由式(28)可知:V 2i (t) is the obstacle Lyapunov function at time t, and ρ is a constant less than 1. It can be known from equation (28):
V1i≤V2i (38)V 1i ≤V 2i (38)
则有:Then there are:
将式(13)和(14)代入(39)可得:Substitute equations (13) and (14) into (39) to get:
由(7)可知:From (7) we know that:
qi-qn+1=qi-Fηi+Fηi-qn+1=qi-Fηi+F(ηi-v) (41)q i -q n+1 =q i -Fη i +Fη i -q n+1 =q i -Fη i +F(η i -v) (41)
由式(6)、(40)和(41)可得:From equations (6), (40) and (41), we can get:
水下多足机器人的第i条机械足对领航者的跟踪误差是有界的,上边界值如式(42) 所示。The tracking error of the i-th mechanical foot of the underwater multipedal robot to the pilot is bounded, and the upper boundary value is shown in Eq. (42).
由式(4)、(8)、(10)、(11)和式(40)可知:From equations (4), (8), (10), (11) and (40), it can be known that:
由式(43)可知输出状态量qi(t)满足时变的输出限制条件。It can be known from equation (43) that the output state quantity q i (t) satisfies the time-varying output restriction condition.
本发明的特点为:综合考虑了多足机器人系统的不同机械足之间存在恒定的通讯延迟、多足机器人动力学模型存在的广义干扰情况,同时引入一种对数形式的BLF(障碍李雅普诺夫函数)使得系统的轨迹跟踪误差始终满足设定的误差限制要求;仅要求不同机械足之间的通讯拓扑为一般的有向图,只有部分跟随者可以获得领航者的信息即可,避免了信息全局可知带来的通讯负担;研究中选用输入信号源作为虚拟领航者使得领航者的更改更加灵活,满足机器人对于运动灵活性的要求。The characteristics of the invention are: comprehensively consider the existence of constant communication delay between different mechanical feet of the multi-legged robot system and the generalized interference of the dynamic model of the multi-legged robot, and at the same time introduce a logarithmic form of BLF (Barrier Lyapuno function) so that the trajectory tracking error of the system always meets the set error limit requirements; only the communication topology between different mechanical feet is required to be a general directed graph, and only some followers can obtain the information of the leader, avoiding the need for The communication burden brought by the global knowledge of information; the selection of the input signal source as the virtual navigator in the research makes the change of the navigator more flexible and meets the requirements of the robot for motion flexibility.
具体仿真实例Specific simulation examples
首先仿真参数的设定:First set the simulation parameters:
为了验证本发明提出的分布式自适应协同跟踪控制律的有效性。以8足水下多足机器人为例进行仿真实验。由于8足水下多足机器人运动使用的是双4足步态,如图2所示,这样可以保证8足水下多足机器人半数步行足抬离地面时仍能提供四脚支撑。同时因为8足水下多足机器人的结构对称性,可以对8足水下多足机器人一同运动的4条机械足进行研究,由1个两自由度的虚拟领航者和4条两自由度的水下多足机器人机械足(跟随者) 构成的有向通讯网络,其中编号1-4表示图1所示的8足水下多足机器人的四条机械足(跟随者),编号5表示虚拟领航者,通讯拓扑关系如图3所示。In order to verify the effectiveness of the distributed adaptive cooperative tracking control law proposed in the present invention. The simulation experiment is carried out by taking the 8-legged underwater multi-legged robot as an example. Since the 8-legged underwater multi-legged robot uses a bi-quadruped gait, as shown in Figure 2, it can ensure that the 8-legged underwater multi-legged robot can still provide quadruped support when half of its walking feet are lifted off the ground. At the same time, because of the structural symmetry of the 8-legged underwater multi-legged robot, the 4 mechanical feet that move together with the 8-legged underwater multi-legged robot can be studied. The directed communication network composed of the mechanical feet (followers) of the underwater multipod robot, in which the numbers 1-4 represent the four mechanical feet (followers) of the 8-legged underwater multipod robot shown in Figure 1, and the
8足水下多足机器人的第i条机械足的动力学方程可以表示为:The dynamic equation of the i-th mechanical foot of the 8-legged underwater multipod robot can be expressed as:
式中:where:
qi=[qi1,qi2]T (45)q i =[q i1 ,q i2 ] T (45)
其中qi1,qi2分别表示水下多足机器人的机械足两个关节处的旋转角度。Among them, q i1 and q i2 respectively represent the rotation angles of the two joints of the mechanical foot of the underwater multi-legged robot.
其中:Ξi1=Ji1+mi2li1 2,Ξi2=0.25mi2li2 2+Ji2,Ξi3=0.5mi2li1li2,Ξi4=(0.5mi1+mi2)li1,Wherein: Ξ i1 =J i1 +m i2 l i1 2 , Ξ i2 =0.25m i2 l i2 2 +J i2 , Ξ i3 =0.5m i2 l i1 l i2 , Ξ i4 =(0.5m i1 +m i2 )l i1 ,
Ξi5=0.5mi2li2,g=9.8m/s2表示重力加速度。如图4所示,mi1和mi2分别表示机械足关节 2连接处的两个连杆的质量,li1和li2分别表示水下多足机器人的机械足每个的连杆的长度。 Ji1和Ji2表示关节处的转动惯量。其中机械足的具体参数如表1所示:Ξ i5 =0.5m i2 l i2 , g=9.8m/s 2 represents the acceleration of gravity. As shown in Figure 4, m i1 and m i2 respectively represent the mass of the two links at the
表1:机械足的具体参数Table 1: Specific parameters of the mechanical foot
将时变输出的限制设定如下:Set the limits for the time-varying output as follows:
k c(t)=[1.8+15e-0.8t,1.8+15e-0.5t,1.8+15e-0.5t,1.8+15e-0.3t]T (51) k c (t)=[1.8+15e -0.8t ,1.8+15e -0.5t ,1.8+15e -0.5t ,1.8+15e -0.3t ] T (51)
其中追踪误差Z1i的追踪误差的边界值表示为:The boundary value of the tracking error of the tracking error Z 1i is expressed as:
kai(t)=qri(t)-k ci(t) (52)k ai (t) = q ri (t) - k ci (t) (52)
可知:It is known that:
-kai(t)<Z1i(t)<kbi(t) (54)-k ai (t)<Z 1i (t)<k bi (t) (54)
水下多足机器人的机械足的角度设定如下:The angles of the mechanical feet of the underwater multipedal robot are set as follows:
q11(0)=π/5,q12(0)=-π/3,q21(0)=2π/5,q22(0)=-π/6,q31(0)=3π/5,q 11 (0) = π/5, q 12 (0) = -π/3, q 21 (0) = 2π/5, q 22 (0) = -π/6, q 31 (0) = 3π/ 5,
q32(0)=π/6,q41(0)=4π/5,q42(0)=π/3, q 32 (0)=π/6, q 41 (0)=4π/5, q 42 (0)=π/3,
对于第i个跟随者来说(i=1,...,4),神经网络系统的激活方程可以写成:For the ith follower (i=1,...,4), the activation equation of the neural network system can be written as:
φi(z)=[φi1(z),...,φi6(z)]T (55)φ i (z)=[φ i1 (z),...,φ i6 (z)] T (55)
选择高斯方程作为激活函数,其形式为:The Gaussian equation is chosen as the activation function, and its form is:
其中,假设所有的跟随者都用一样的激活方程。cij表示均匀分布在[-5,5]4×[-0.5,0.5]4上的接受域的中心,σij表示高斯方程的宽度,定义σij=2,加权矩阵的初始值设定为 in, Assume that all followers use the same activation equation. c ij represents the center of the receptive field uniformly distributed on [-5,5] 4 ×[-0.5, 0.5] 4 , σ ij represents the width of the Gaussian equation, defines σ ij =2, the weighting matrix The initial value is set to
虚拟领航者的目标轨迹:The target trajectory of the virtual pilot:
其中,q51_amp=π/6,q51_bias=π/2,q52_amp=2π/3,q52_bias=0,ω=0.1π。Wherein, q 51_amp =π/6, q 51_bias =π/2,q 52_amp =2π/3, q 52_bias = 0, ω = 0.1π.
虚拟领航者的状态量q5表示为: The state quantity q5 of the virtual pilot is expressed as:
q5=Fv (60)q 5 =Fv (60)
其中:in:
ω=0.1π (62)ω=0.1π (62)
考虑到8足水下多足机器人在实际工程中的需要,通常需要将自适应控制律τi的振幅加上一个边界限制,从而达到更好的控制效果,使用如下的限制方程对τi进行振幅的限制:Considering the needs of the 8-legged underwater multi-legged robot in practical engineering, it is usually necessary to add a boundary limit to the amplitude of the adaptive control law τ i to achieve a better control effect . Amplitude limit:
其中,τimax是一个正数,选择τimax=50。where τ imax is a positive number, and τ imax =50 is selected.
在本控制算法当中选择通讯延迟的时间为T=0.2s。对控制算法的仿真结果分析:在设计的控制算法中,控制参数选择为k1i=10,K2i=20I2,γ=1,v=10,I2为单位矩阵。仿真的结果如图5~18所示。In this control algorithm, the time of communication delay is selected as T=0.2s. Analysis of the simulation results of the control algorithm: In the designed control algorithm, the control parameters are selected as k 1i =10, K 2i =20I 2 , γ=1, v=10, and I 2 is the unit matrix. The simulation results are shown in Figures 5-18.
图5和图6表示虚拟领航者与各机械足的状态量变化情况,从中可以看到每个机械足在大约5s后可以对领航者进行有效的跟踪。从图7和图8可以看到各机械足的两个关节处对于领航者的轨迹跟踪误差Z1i和Z2i在大约3s后都收敛到0附近的小区域内,且稳定后的Z1i的波动幅度不会超过0.1,Z2i的波动幅度不超过0.05。图8和图9显示各机械足输入的控制律是连续的且波动幅度不超过10,图10~18显示各机械足对领航者的轨迹跟踪误差都满足设定的时变输出限制限制条件。该仿真过程有效的说明了本发明的有效性。Figures 5 and 6 show the changes of the state quantities of the virtual navigator and each mechanical foot, from which it can be seen that each mechanical foot can effectively track the navigator after about 5s. It can be seen from Figure 7 and Figure 8 that the trajectory tracking errors Z 1i and Z 2i for the pilot at the two joints of each mechanical foot converge to a small area near 0 after about 3s, and the fluctuation of Z 1i after stabilization The amplitude will not exceed 0.1, and the Z 2i will not fluctuate more than 0.05. Figures 8 and 9 show that the input control law of each mechanical foot is continuous and the fluctuation range does not exceed 10. Figures 10 to 18 show that the trajectory tracking error of each mechanical foot to the pilot meets the set time-varying output limit constraints. The simulation process effectively demonstrates the effectiveness of the present invention.
虽然本发明所述的实施方式如上,但所述的内容只是为了便于理解本发明而采用的实施方式,并非用以限定本发明。任何本发明所属技术领域内的技术人员,在不脱离本发明所述的精神和范围的前提下,可以在实施的形式上及细节上作任何的修改与变化,但本发明的专利保护范围,仍须以所附的权利要求书所界定的范围为准。Although the embodiments of the present invention are described above, the content described is only an embodiment adopted to facilitate understanding of the present invention, and is not intended to limit the present invention. Any person skilled in the art to which the present invention belongs, without departing from the spirit and scope of the present invention, can make any modifications and changes in the form and details of the implementation, but the scope of patent protection of the present invention, The scope as defined by the appended claims shall still prevail.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910525253.3A CN110134018B (en) | 2019-06-17 | 2019-06-17 | Multi-foot cooperative control method of underwater multi-foot robot system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910525253.3A CN110134018B (en) | 2019-06-17 | 2019-06-17 | Multi-foot cooperative control method of underwater multi-foot robot system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110134018A CN110134018A (en) | 2019-08-16 |
CN110134018B true CN110134018B (en) | 2022-01-18 |
Family
ID=67577836
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910525253.3A Active CN110134018B (en) | 2019-06-17 | 2019-06-17 | Multi-foot cooperative control method of underwater multi-foot robot system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110134018B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110568845B (en) * | 2019-08-26 | 2022-12-16 | 广东工业大学 | A Collision Avoidance Method for Collaborative Robots |
CN111625012B (en) * | 2020-06-09 | 2022-12-06 | 西北工业大学 | A distributed collaborative operation method for multi-space robots |
CN111846009B (en) * | 2020-08-03 | 2022-02-08 | 哈尔滨工程大学 | Multi-foot cooperative fault-tolerant control method for underwater multi-foot bionic crab robot |
CN114648148B (en) * | 2020-12-18 | 2024-11-05 | 广东博智林机器人有限公司 | Robot parameter prediction method, device, storage medium and processor |
CN113342016B (en) * | 2021-06-23 | 2022-05-24 | 湖南大学 | Autonomous underwater robot cooperative control method and system based on dynamic event triggering |
CN114840027B (en) * | 2022-07-01 | 2022-10-18 | 南京理工大学 | Heterogeneous four-rotor aircraft formation attitude fault-tolerant control method |
CN119002281A (en) * | 2024-08-26 | 2024-11-22 | 广东海洋大学 | Multi-robot stipulation limited time quantitative control method based on state observer |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104865829A (en) * | 2015-03-26 | 2015-08-26 | 哈尔滨工业大学 | Distributed adaptive-neural-network continuous tracking control method of multi-robot system |
CN105068427A (en) * | 2015-08-31 | 2015-11-18 | 哈尔滨工业大学 | Finite time robust cooperative tracking control method for multi-robot system |
CN106647271A (en) * | 2016-12-23 | 2017-05-10 | 重庆大学 | Neutral network theory-based non-linear system adaptive proportional integral control method |
CN108594643A (en) * | 2018-04-28 | 2018-09-28 | 重庆大学 | A kind of guaranteed cost control method being limited strict feedback systems for total state |
CN108674521A (en) * | 2018-07-11 | 2018-10-19 | 哈尔滨工程大学 | A kind of underwater anti-silting sunken traveling method of multi-foot robot |
CN108803316A (en) * | 2018-03-09 | 2018-11-13 | 南京航空航天大学 | For the Active Fault-tolerant Control Method of multi-agent system actuator failures |
CN108791560A (en) * | 2018-05-23 | 2018-11-13 | 哈尔滨理工大学 | It is a kind of can coordinated regulation multi-foot robot single leg operation and body translation remote control system and control method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080109115A1 (en) * | 2006-11-03 | 2008-05-08 | Michael Zin Min Lim | Dynamic force controller for multilegged robot |
-
2019
- 2019-06-17 CN CN201910525253.3A patent/CN110134018B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104865829A (en) * | 2015-03-26 | 2015-08-26 | 哈尔滨工业大学 | Distributed adaptive-neural-network continuous tracking control method of multi-robot system |
CN105068427A (en) * | 2015-08-31 | 2015-11-18 | 哈尔滨工业大学 | Finite time robust cooperative tracking control method for multi-robot system |
CN106647271A (en) * | 2016-12-23 | 2017-05-10 | 重庆大学 | Neutral network theory-based non-linear system adaptive proportional integral control method |
CN108803316A (en) * | 2018-03-09 | 2018-11-13 | 南京航空航天大学 | For the Active Fault-tolerant Control Method of multi-agent system actuator failures |
CN108594643A (en) * | 2018-04-28 | 2018-09-28 | 重庆大学 | A kind of guaranteed cost control method being limited strict feedback systems for total state |
CN108791560A (en) * | 2018-05-23 | 2018-11-13 | 哈尔滨理工大学 | It is a kind of can coordinated regulation multi-foot robot single leg operation and body translation remote control system and control method |
CN108674521A (en) * | 2018-07-11 | 2018-10-19 | 哈尔滨工程大学 | A kind of underwater anti-silting sunken traveling method of multi-foot robot |
Non-Patent Citations (3)
Title |
---|
Adaptive neural network tracking control of multi-agent systems with state constraints;Dongyu Li 等;《2017 Chinese Automation Congress (CAC)》;20180101;全文 * |
Distributed Coordinated Tracking Control for Multiple Uncertain Euler–Lagrange Systems With Time-Varying Communication Delays;Yanchao Sun 等;《IEEE》;20190118;全文 * |
多足机器人行走姿态控制方法研究;谢江;《中国优秀博硕士学位论文全文数据库(硕士)信息科技辑》;20180815;第43页 * |
Also Published As
Publication number | Publication date |
---|---|
CN110134018A (en) | 2019-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110134018B (en) | Multi-foot cooperative control method of underwater multi-foot robot system | |
Cao et al. | Event-based adaptive NN fixed-time cooperative formation for multiagent systems | |
Li et al. | Finite-time formation control of under-actuated ships using nonlinear sliding mode control | |
Jin et al. | Adaptive fault-tolerant consensus for a class of leader-following systems using neural network learning strategy | |
Van Cuong et al. | Adaptive trajectory tracking neural network control with robust compensator for robot manipulators | |
Shi et al. | Cooperative control of multi-agent systems with unknown state-dependent controlling effects | |
He et al. | Adaptive neural network control of an uncertain robot with full-state constraints | |
Liu et al. | Adaptive neural output feedback controller design with reduced-order observer for a class of uncertain nonlinear SISO systems | |
Li et al. | Contact-force distribution optimization and control for quadruped robots using both gradient and adaptive neural networks | |
CN108762284B (en) | Spacecraft attitude tracking control method and device based on L PV technology | |
Sun et al. | A novel tracking control approach for unmanned underwater vehicles based on bio-inspired neurodynamics | |
Yu et al. | Adaptive swarm control within saturated input based on nonlinear coupling degree | |
CN111846009B (en) | Multi-foot cooperative fault-tolerant control method for underwater multi-foot bionic crab robot | |
Jin et al. | Adaptive consensus and circuital implementation of a class of faulty multiagent systems | |
Guan et al. | Robust adaptive tracking control for manipulators based on a TSK fuzzy cerebellar model articulation controller | |
Pang et al. | Adaptive sliding mode attitude control of two-wheel mobile robot with an integrated learning-based RBFNN approach | |
Yan et al. | Robust nonlinear model predictive control of a bionic underwater robot with external disturbances | |
Xie et al. | Global trajectory tracking control of underactuated surface vessels with non-diagonal inertial and damping matrices | |
Sun et al. | Distributed adaptive neural network constraint containment control for the benthic autonomous underwater vehicles | |
Lin et al. | Robust adaptive backstepping control for a class of nonlinear systems using recurrent wavelet neural network | |
Lu et al. | Leaderless consensus of ring-networked mobile robots via distributed saturated control | |
Gao et al. | Tracking control of the nodes for the complex dynamical network with the auxiliary links dynamics | |
Chen et al. | Learning control of flexible manipulator with unknown dynamics | |
Wang et al. | Robust predefined-time platoon control of networked vehicles with uncertain disturbances | |
Xie et al. | Low-complexity formation control of marine vehicle system based on prescribed performance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |