CN110132678A - 氧敏性油气储层岩心流动实验样品预处理方法 - Google Patents

氧敏性油气储层岩心流动实验样品预处理方法 Download PDF

Info

Publication number
CN110132678A
CN110132678A CN201910474469.1A CN201910474469A CN110132678A CN 110132678 A CN110132678 A CN 110132678A CN 201910474469 A CN201910474469 A CN 201910474469A CN 110132678 A CN110132678 A CN 110132678A
Authority
CN
China
Prior art keywords
oxygen
rock core
core
reservoir
gas reservoir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910474469.1A
Other languages
English (en)
Inventor
游利军
周洋
康毅力
李相臣
许成元
陈明君
程秋洋
豆联栋
徐洁明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Petroleum University
Original Assignee
Southwest Petroleum University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Petroleum University filed Critical Southwest Petroleum University
Priority to CN201910474469.1A priority Critical patent/CN110132678A/zh
Publication of CN110132678A publication Critical patent/CN110132678A/zh
Pending legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/082Investigating permeability by forcing a fluid through a sample
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • G01N2001/2873Cutting or cleaving

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Dispersion Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Remote Sensing (AREA)
  • Fluid Mechanics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

本发明涉及一种氧敏性油气储层岩心流动实验样品预处理方法。针对还原环境下形成的非常规油气资源,考虑其富含有机质、黄铁矿和磷酸盐矿物等缺氧环境沉积产物,创新性地提出了氧敏性油气储层的概念。而在油气开采过程中,部分入井流体具有一定氧化性,却未考虑入井工作液中氧化性物质造成的影响。本发明的样品预处理方法,能够避免样品遭受氧化性物质的损害和实验过程中氧化性物质对实验数据的影响,确保实验结果的准确性。

Description

氧敏性油气储层岩心流动实验样品预处理方法
技术领域
本发明涉及石油天然气勘探开发技术领域,具体涉及一种氧敏性油气储层岩心流动实验样品预处理方法。
背景技术
油气勘探开发地质对象逐渐转移到致密油气藏、页岩油气藏、煤层气藏等非常规油气藏。非常规油气资源是还原环境下烃源岩层生成的油气滞留或经过短距离运移而聚集成藏。这些储层作为生烃层,其岩石是富含有机质、大量生成油气与排出油气的烃源岩,通常在深水缺氧的还原环境下沉积,称为氧敏性储层。这类储层岩石富含有机质,富含有机质页岩层中普遍含有黄铁矿和磷酸盐矿物等缺氧环境沉积的产物。这些还原环境产物易被氧化,造成矿物转化、释放固相微粒,改变孔隙结构,损害储层。
在钻井完井过程中,常在工作液和注入流体中加入氧化剂和各种杀菌剂防止细菌损害;增产改造过程中,常用过硫酸氨作为破胶剂。岩心流动实验过程中,实验用流体通常没有进行除氧处理,尽管游离气一般在水中的溶解度并不高,但是氧气仍有少量溶解于水中,常温常压下,纯水溶解氧约9mg/L。
然而,针对油气储层岩心流动实验,现有行业标准中仅考虑常规“五敏”,即速敏、水敏、盐敏、碱敏和酸敏,以及有效应力、温度变化引起的应力敏感性和温度敏感性,未考虑入井工作液中氧化性物质造成的影响。
发明内容
本发明提出了一种氧敏性油气储层岩心流动实验样品预处理方法,以解决现有岩心流动实验方法中,实验用流体未进行除氧处理,导致岩样中矿物转化、释放固相微粒、孔隙结构改变,从而影响实验准确性的问题。
为解决以上问题,本发明提供以下技术方案。
一种氧敏性油气储层岩心流体敏感性实验的样品预处理方法,其特征在于包括如下步骤:
S1:选取待测试氧敏性油气储层新钻取的全直径岩心或密封保存的全直径岩心;
S2:配制KCl水溶液:反复将KCl水溶液抽真空,监测该水溶液的氧化还原电位(Eh),并持续加入有机还原剂丙酮肟,直至KCl水溶液Eh值低于-20mV;
S3:用S2中溶液沿着储层层理方向在S1中全直径岩心上钻取小岩心柱塞,并用S2中KCl溶液切割岩心,钻取切割的岩心放入真空干燥皿中抽真空保存或真空密封保存待开展岩心流动实验使用;
S4:配制岩心驱替实验流体,实验气体要不含氧气,实验液体用真空泵进行抽出液体中溶解氧气;
S5:用实验流体在实验围压温度下驱替岩心一段时间,测试渗透率,直至岩心渗透率变化率小于5%;
S6:进行岩心流动实验。
综上所述,本发明具有以下优点:
(1)针对还原环境下形成的非常规油气资源,考虑其富含有机质、黄铁矿和磷酸盐矿物等缺氧环境沉积的产物,创新性地提出了氧敏性油气储层的概念。
(2)采用本发明的样品预处理方法,能够避免岩样遭受氧化性物质的损害。
(3)采用本发明的实验流体预处理方法,能够避免实验过程中氧化性物质影响实验数据,确保实验结果的准确性。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍。对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的方法流程图。
具体实施方式
下面结合实施例对本发明的技术方案进行详细阐述。
实施例中所使用的试剂均为分析纯。
依据本发明方法对渝东南龙马溪组页岩储层岩心流动实验样品预处理给出如下一个具体实施例:
(1)选取密封保存的渝东南龙马溪组页岩岩样;
(2)利用蒸馏水配制含5.5%KCl的模拟地层水,测得Eh值为293.5mV;
(3)按照模拟地层水体积:丙酮肟质量=100mL:1.7g的比例,在模拟地层水中加入丙酮肟,摇匀后配制成含1.7%丙酮肟的模拟地层水。避免一次配制过多,不利保存;
(4)对模拟地层水进行抽真空处理;
(5)用模拟地层水驱替岩样。驱替持续约5h,渗透率由初始的0.395mD,降低至0.041mD,在结束实验前的两组渗透率测试,渗透率变化率为-0.85%,渗透率基本稳定。
(6)开展岩心流动实验。

Claims (2)

1.一种氧敏性油气储层岩心流体敏感性实验的样品预处理方法,其特征在于包括如下步骤:
S1:选取待测试氧敏性油气储层新钻取的全直径岩心或密封保存的全直径岩心;
S2:配制KCl水溶液:反复将KCl水溶液抽真空,监测该水溶液的氧化还原电位(Eh),并持续加入有机还原剂丙酮肟,直至KCl水溶液Eh值低于-20mV;
S3:用S2中溶液沿着储层层理方向在S1中全直径岩心上钻取小岩心柱塞,并用S2中KCl溶液切割岩心,钻取切割的岩心放入真空干燥皿中抽真空保存或真空密封保存待开展岩心流动实验使用;
S4:配制岩心驱替实验流体,实验气体要不含氧气,实验液体用真空泵进行抽出液体中溶解氧气;
S5:用实验流体在实验围压温度下驱替岩心一段时间,测试渗透率,直至岩心渗透率变化率小于5%;
S6:进行岩心流动实验。
2.根据权利要求1所述的一种氧敏性油气储层岩心流体敏感性实验的样品预处理方法,其特征在于:氧敏性指在油气井作业过程中,具有氧化性的入井工作液与储层矿物组分不配伍,改变储层氧化还原环境,导致储层孔隙结构与物性发生变化的性质。
CN201910474469.1A 2019-06-03 2019-06-03 氧敏性油气储层岩心流动实验样品预处理方法 Pending CN110132678A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910474469.1A CN110132678A (zh) 2019-06-03 2019-06-03 氧敏性油气储层岩心流动实验样品预处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910474469.1A CN110132678A (zh) 2019-06-03 2019-06-03 氧敏性油气储层岩心流动实验样品预处理方法

Publications (1)

Publication Number Publication Date
CN110132678A true CN110132678A (zh) 2019-08-16

Family

ID=67579822

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910474469.1A Pending CN110132678A (zh) 2019-06-03 2019-06-03 氧敏性油气储层岩心流动实验样品预处理方法

Country Status (1)

Country Link
CN (1) CN110132678A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113671596A (zh) * 2020-08-26 2021-11-19 中国石油大学(北京) 细菌损害油气层建模方法、损害程度时空演化4d定量与智能诊断方法及其系统

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101984217A (zh) * 2010-03-22 2011-03-09 中国石油集团川庆钻探工程有限公司工程技术研究院 一种裂缝性储层损害评价的岩心预处理方法
CN103808640A (zh) * 2012-11-13 2014-05-21 张红梅 岩心损害后渗透率的测定方法
CN103837453A (zh) * 2012-11-24 2014-06-04 唐静 用于岩心伤害实验的方法
CN103837394A (zh) * 2012-11-24 2014-06-04 唐静 一种岩心的预处理方法
WO2016179593A1 (en) * 2015-05-07 2016-11-10 The Uab Research Foundation Full immersion pressure-pulse decay
CN108088874A (zh) * 2017-12-12 2018-05-29 西南石油大学 一种黑色页岩可溶盐的浸取方法
CN108240951A (zh) * 2016-12-23 2018-07-03 中国石油天然气股份有限公司 致密砂岩气储层敏感性评价试验方法
CN109490162A (zh) * 2018-10-25 2019-03-19 广东石油化工学院 考虑应力敏感条件下的致密油藏毛细管压力计算方法
CN109580454A (zh) * 2019-01-05 2019-04-05 中国海洋石油集团有限公司 一种用压力振荡法测试致密储层流体敏感性的方法
CN109751031A (zh) * 2019-01-15 2019-05-14 西南石油大学 一种页岩气井水力压裂后环境友好持续改造方法
CN109946436A (zh) * 2019-04-15 2019-06-28 西南石油大学 一种兼顾基块与裂缝的裂缝性致密气层工作液损害评价方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101984217A (zh) * 2010-03-22 2011-03-09 中国石油集团川庆钻探工程有限公司工程技术研究院 一种裂缝性储层损害评价的岩心预处理方法
CN103808640A (zh) * 2012-11-13 2014-05-21 张红梅 岩心损害后渗透率的测定方法
CN103837453A (zh) * 2012-11-24 2014-06-04 唐静 用于岩心伤害实验的方法
CN103837394A (zh) * 2012-11-24 2014-06-04 唐静 一种岩心的预处理方法
WO2016179593A1 (en) * 2015-05-07 2016-11-10 The Uab Research Foundation Full immersion pressure-pulse decay
CN108240951A (zh) * 2016-12-23 2018-07-03 中国石油天然气股份有限公司 致密砂岩气储层敏感性评价试验方法
CN108088874A (zh) * 2017-12-12 2018-05-29 西南石油大学 一种黑色页岩可溶盐的浸取方法
CN109490162A (zh) * 2018-10-25 2019-03-19 广东石油化工学院 考虑应力敏感条件下的致密油藏毛细管压力计算方法
CN109580454A (zh) * 2019-01-05 2019-04-05 中国海洋石油集团有限公司 一种用压力振荡法测试致密储层流体敏感性的方法
CN109751031A (zh) * 2019-01-15 2019-05-14 西南石油大学 一种页岩气井水力压裂后环境友好持续改造方法
CN109946436A (zh) * 2019-04-15 2019-06-28 西南石油大学 一种兼顾基块与裂缝的裂缝性致密气层工作液损害评价方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113671596A (zh) * 2020-08-26 2021-11-19 中国石油大学(北京) 细菌损害油气层建模方法、损害程度时空演化4d定量与智能诊断方法及其系统
CN113671596B (zh) * 2020-08-26 2022-05-17 中国石油大学(北京) 细菌损害油气层建模方法、损害程度时空演化4d定量与智能诊断方法及其系统

Similar Documents

Publication Publication Date Title
Rathmell et al. Reservoir waterflood residual oil saturation from laboratory tests
Bobek et al. Reservoir rock wettability-its significance and evaluation
Alvarez et al. Improving oil recovery in the wolfcamp reservoir by soaking/flowback production schedule with surfactant additives
US10018023B2 (en) Method of microbially assisted water alternating gas injection as a means of enhanced oil recovery by supplementing the immiscible water injection cycle with nutrients to improve oil release in oil-containing rock formations
CN105201493B (zh) 一种识别水驱油藏储层非均质性的双示踪剂方法
CN105067794A (zh) 测试页岩储层水敏感性、盐敏感性及碱敏感性的方法
Machel et al. Diagenesis of the Devonian Southesk-Cairn Carbonate Complex, Alberta, Canada: marine cementation, burial dolomitization, thermochemical sulfate reduction, anhydritization, and squeegee fluid flow
CN105298487A (zh) 一种煤储层中气液两相渗流贾敏效应模拟试验方法
CN108414385A (zh) 评价页岩油二氧化碳吞吐采收率的装置及方法
CN108661613A (zh) 一种注水开发油藏的増注方法
CN106194164A (zh) 边底水油藏开发岩心实验模拟方法及装置
CN110132678A (zh) 氧敏性油气储层岩心流动实验样品预处理方法
US9650561B2 (en) Method of biological permeability modification of oil reservoirs using resident microorganisms and nutrient supplementation
CN105067793A (zh) 测试页岩储层酸敏性的方法
CN109667574A (zh) 一种多段压裂用金属离子示踪剂及其应用
Hartvig et al. Use of a New Class of Partitioning Tracers to Assess EOR and IOR Potential in the Bockstedt Field
CN106680147A (zh) 卤代醇作为注水化学示踪剂在油田中的应用
He et al. Influence of sand production damage in unconsolidated sandstone reservoirs on pore structure characteristics and oil recovery at the microscopic scale
Hao et al. Application of numerical simulation in low permeability reservoirs considering viscosity
CN1049719C (zh) 用普通取心-测试资料求水淹油层饱和度的方法
Song et al. A new method to determine wettability of tight sandstone: Water imbibition evaporation rate ratio measurements
Gladkov Development of a new well-killing fluid based on oil-wetting agent Ng-1 for polymineral low-permeable reservoirs
Li et al. The law and mechanism of the sample size effect of imbibition oil recovery of tight sedimentary tuff
CN113153278A (zh) 多段压裂产状剖面示踪监测及解释方法
El-hoshoudy et al. APPLICATION OF ACRYLAMIDE POLYMER GRAFTED WITH SiO 2 NANOPARTICLES IN ENHANCED OIL RECOVERY-DESIGN PROJECT.

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190816