CN110129286B - Recombinant infectious bursal disease virus strain and preparation method thereof - Google Patents

Recombinant infectious bursal disease virus strain and preparation method thereof Download PDF

Info

Publication number
CN110129286B
CN110129286B CN201910496396.6A CN201910496396A CN110129286B CN 110129286 B CN110129286 B CN 110129286B CN 201910496396 A CN201910496396 A CN 201910496396A CN 110129286 B CN110129286 B CN 110129286B
Authority
CN
China
Prior art keywords
bursal disease
infectious bursal
disease virus
recombinant
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910496396.6A
Other languages
Chinese (zh)
Other versions
CN110129286A (en
Inventor
韦平
陈果
何秀苗
姬忠华
赵增志
张誉文
王威威
黄宇
磨美兰
韦天超
黄腾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangxi University
Original Assignee
Guangxi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangxi University filed Critical Guangxi University
Priority to CN201910496396.6A priority Critical patent/CN110129286B/en
Publication of CN110129286A publication Critical patent/CN110129286A/en
Application granted granted Critical
Publication of CN110129286B publication Critical patent/CN110129286B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/55Medicinal preparations containing antigens or antibodies characterised by the host/recipient, e.g. newborn with maternal antibodies
    • A61K2039/552Veterinary vaccine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2720/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsRNA viruses
    • C12N2720/00011Details
    • C12N2720/10011Birnaviridae
    • C12N2720/10021Viruses as such, e.g. new isolates, mutants or their genomic sequences
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2720/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsRNA viruses
    • C12N2720/00011Details
    • C12N2720/10011Birnaviridae
    • C12N2720/10022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2720/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsRNA viruses
    • C12N2720/00011Details
    • C12N2720/10011Birnaviridae
    • C12N2720/10034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Virology (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mycology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention discloses a recombinant infectious bursal disease virus strain and a preparation method thereof. The invention provides a recombinant infectious bursal disease virus, which is obtained by replacing RNA capable of being translated to obtain a VP1 protein N-terminal structural domain in chicken infectious bursal disease virus with RNA shown in the 112 th to 612 th sites from the 5' end of a sequence 7 in a sequence table. The recombinant infectious bursal disease virus strain does not contain any exogenous gene, has the same size with the infectious bursal disease virus genome reported in the prior art, and has biological safety. The recombinant infectious bursal disease virus strain provided by the invention can be used as a vaccine candidate strain for vaccine research and development.

Description

Recombinant infectious bursal disease virus strain and preparation method thereof
Technical Field
The invention relates to a recombinant infectious bursal disease virus strain and a preparation method thereof.
Background
Infectious Bursal Disease (IBD) is an acute, highly contagious Infectious Disease that harms young chickens caused by IBDV. IBDV mainly attacks lymphoid tissues of chickens, in particular the bursa of Fabricius, the central immune organ, where the proliferation of the virus causes depletion of B-lymphocytes, thus causing immunosuppression of the chickens. Especially early infections in chicks can cause very severe and long-term immunosuppression. Immunosuppression by IBD can cause necrotic dermatitis, inclusion body hepatitis-anemia syndrome, escherichia coli infection and immune failure in chickens. IBDV has two serotypes, serogroup I and serogroup II. Of these, only serous type I IBDV is pathogenic to chickens. The epidemic strains in the early stage of IBD are mainly classical strains, and because of the extremely strong IBDV variation characteristics, the epidemics of very virulent strains and variant strains of IBDV have appeared all over the world since the eighties of the last century. IBDV has been mutated to change its antigenic and virulence properties, and IBD continues to be prevalent despite the extensive use of traditional live and inactivated vaccines.
IBDV belongs to the genus Avian Birnaviridae (Avian Birnaviridae) of the Birnaviridae family (Birnaviridae), whose genome consists of A, B two-segment double-stranded RNA (dsRNA). Segment A contains two Open Reading Frames (ORFs), wherein ORF1 encodes three viral proteins, VP2, VP3 and VP 4; ORF2 encodes the viral protein VP 5. The B-segment contains only one ORF, encoding the viral protein VP 1. The VP2 protein is the main structural protein and protective antigen of IBDV and is capable of inducing the production of neutralizing antibodies. The VP1 protein exists in two forms, one exists in the form of RdRp during virus replication; another VP1, which binds to the genome in mature virions, connects the A-segment and the B-segment of the genome, exists as structural proteins, and is covalently linked to the viral genome is called VPg. Studies have shown that the VP1 protein can also influence the virulence of IBDV.
Conventional researches on viruses and other living matters are started from ' traits ' -genes ' and used for researching the characteristics of genetic materials and the occurrence and development rules of the living matters. This is classical (forward) genetics. Classical genetics has originated in the pea test of mendelian, the father of modern genetics. The reverse genetic engineering starts with "gene" - "character", and is the direct research on the genetic material of life material. In 1996, Mundt E et al successfully rescued IBDV, which was the first report on the rescue of serotype I IBDV. Since the first time that Mundt E and the like used reverse genetic manipulation technology to research IBDV in 1996, the research on various aspects related to gene function, pathogenic mechanism, immunosuppressive mechanism and the like of IBDV was carried out by constructing IBDV genome full-length cDNA and carrying out mutation, deletion or substitution on IBDV genome. The study of IBDV by reverse genetic manipulation has become a choice and focus of more and more researchers.
Disclosure of Invention
The invention aims to provide a recombinant infectious bursal disease virus strain and a preparation method thereof.
The invention firstly provides a recombinant infectious bursal disease virus, which is obtained by replacing RNA capable of being translated to obtain a VP1 protein N-terminal structural domain in the chicken infectious bursal disease virus with RNA shown in the 112 th to 612 th sites from the 5' end of a sequence 7 in a sequence table.
The chicken infectious bursal disease virus can be specifically an infectious bursal disease virus NN1172 strain.
The RNA sequence of the recombinant infectious bursal disease virus genome segment A is shown as a sequence 6 in a sequence table.
The RNA sequence of the recombinant infectious bursal disease virus genome B segment is shown as a sequence 7 in a sequence table.
The invention also protects a recombinant infectious bursal disease virus, which is obtained by cotransfecting the vector A containing the specific segment A and the vector B containing the specific segment B into chick embryo fibroblast and rescuing the chick embryo fibroblast by using a reverse genetics technology;
the specific fragment A comprises cDNA corresponding to a chicken infectious bursal disease virus genome A segment;
the specific fragment B comprises cDNA corresponding to a chicken infectious bursal disease virus genome B segment;
the B segment of the virus genome comprises a cDNA segment which codes for the N-terminal structural domain of infectious bursal disease virus VP1 protein, and the segment is shown as the sequence 5 from the 170 th to the 670 th position of the 5' end.
The cDNA corresponding to the chicken infectious bursal disease virus genome B segment is shown as 59-2885 bits from the 5' end of the sequence 5 in the sequence table.
The cDNA corresponding to the genome A segment of the infectious bursal disease virus is shown as the 59 th-3318 th site from the 5' end of the sequence 3 of the sequence table.
The specific fragment A sequentially has a coding sequence of hammerhead nuclease HamRz, cDNA corresponding to the chicken infectious bursal disease virus genome A segment and a coding sequence of hepatitis delta virus ribozyme HdvRz from 5 'end to 3' end.
The specific fragment B is sequentially provided with a coding sequence of hammerhead nuclease HamRz, cDNA corresponding to the chicken infectious bursal disease virus genome B segment and a coding sequence of hepatitis delta virus ribozyme HdvRz from 5 'end to 3' end.
The coding sequence of hammerhead nuclease Hamrz is shown as 1st to 58 th from 5 'end of a sequence 3 in a sequence table or is shown as 1st to 58 th from 5' end of a sequence 5 in the sequence table.
The coding sequence of the hepatitis delta virus ribozyme Hdvrz is shown as 3319 to 3406 th site from 5 'end of a sequence 3 of a sequence table or is shown as 2886 to 2973 th site from 5' end of the sequence 5 of the sequence table.
The specific fragment A is shown as a sequence 3 in a sequence table.
The specific fragment B is shown as a sequence 5 in a sequence table.
The vector A is a recombinant expression vector obtained by inserting DNA molecules shown in a sequence 3 in a sequence table between EcoR V enzyme cutting sites of a eukaryotic expression vector pVAX 1.
The vector B is a recombinant expression vector obtained by inserting DNA molecules shown in a sequence 5 in a sequence table between EcoR V enzyme cutting sites of a eukaryotic expression vector pVAX 1.
In the method, when the co-transfection is carried out, the mass ratio of the vector A to the vector B is 1: 1.
in the method, cells are harvested 24h after cotransfection, and the recombinant virus solution is obtained after repeated freeze thawing for 3 times.
The recombinant virus liquid can be inoculated to chick embryos for passage to obtain the recombinant virus capable of being stably passed.
The recombinant virus can be inoculated to chick embryos for passage through a chick embryo chorioallantoic membrane approach.
The generation method comprises the following steps: selecting 9-day-old SPF (specific pathogen free) chick embryos, illuminating the eggs with an egg illuminating lamp, drawing a circle at a position without blood vessels on the side surface of an air chamber of the chick embryos by using a pencil to serve as a mark of a punching position, disinfecting the positions of the air hole mark and the air chamber of the chick embryos by using iodine, and then disinfecting by using 75% alcohol. The chick embryo is placed on a superclean workbench, small holes are respectively punched at the marked punching position and the upper part of the chick embryo air chamber by using ophthalmological forceps, the small holes at the upper part of the chick embryo air chamber are sucked by using an ear sucking ball, and an artificial air chamber is formed on the side surface of the chick embryo. 0.2mL of virus liquid is inoculated in the artificial air chamber at the side of the chick embryo. Culturing chick embryo in a 37 deg.C incubator for 96h, harvesting chick embryo chorioallantoic membrane, grinding to obtain virus liquid, and continuously passaging for 3 times to obtain virus liquid.
The invention also protects the application of any recombinant infectious bursal disease virus in the preparation of infectious bursal disease virus vaccines.
The invention also protects the recombinant infectious bursal disease virus in the preparation of a product for preventing and/or treating the infectious bursal disease virus.
The invention also protects an infectious bursal disease virus vaccine, and the active component of the infectious bursal disease virus vaccine is the recombinant infectious bursal disease virus.
The invention also protects a product, the active component of which is any one of the recombinant infectious bursal disease virus; the product is used for preventing and/or treating infectious bursal disease virus.
The invention provides a recombinant infectious bursal disease virus strain, which is obtained by carrying out gene recombination on an infectious bursal disease virus strain obtained by domestic separation by utilizing a reverse genetics operation technology. The genome of the recombinant infectious bursal disease virus strain provided by the invention is mainly derived from an infectious bursal disease virus strain separated from domestic chicken flocks, and part of genes are derived from an infectious bursal disease virus vaccine strain (B87), so that the recombinant infectious bursal disease virus strain serving as a vaccine candidate strain is more suitable for preventing domestic infectious bursal disease epidemic chicken flocks. The recombinant infectious bursal disease virus strain does not contain any exogenous gene, has the same size with the infectious bursal disease virus genome reported in the prior art, and has biological safety. The recombinant infectious bursal disease virus strain provided by the invention can be used as a vaccine candidate strain for vaccine research and development.
Drawings
FIG. 1 is a schematic diagram of a method for amplifying the A-segment and the B-segment of the genome of strain NN 1172.
FIG. 2 shows the results of the electrophoretic identification of the steps in example 1.
FIG. 3 is a schematic diagram of a method for constructing a vector for expressing the A-segment and the B-segment of the genome of strain NN 1172.
FIG. 4 is a schematic diagram showing an alternative method of gene sequence of the B segment part of NN1172 genome.
FIG. 5 is a graph of the in vivo replication kinetics of the virus.
Detailed Description
The following examples are given to facilitate a better understanding of the invention, but do not limit the invention. The experimental procedures in the following examples are conventional unless otherwise specified. The test materials used in the following examples were purchased from a conventional biochemical reagent store unless otherwise specified. The quantitative tests in the following examples, all set up three replicates and the results averaged.
Infectious bursal disease virus strain NN 1172: reference documents: jizhouhua, Jiangwei, Jiapeng billow, old fruit, Zhao Zeo Zhi, zhuyanwen, He xiu Miao, Weiping, immune protection test of different IBD vaccines against infection of IBDV virulent strain NN1172 [ J ]. Heilongjiang animal husbandry and veterinary, 2017(18):157 + 159+298 ]; the public is available from Guangxi university.
Eukaryotic expression vector pVAX 1: sammer Feishale science and technology (China) Co., Ltd., Cat number: and V26020.
Infectious bursal disease live vaccine (strain B87): china veterinary microbial strain preservation management center, strain preservation number CVCCAV 140.
9-day-old SPF chick embryos: beijing Meiliya Viton laboratory animal technology Co.
21-day-old three-yellow chicken: guangxi Zhu's farming-grazing company, Inc.
Example 1 acquisition of A-segment and B-segment of genome of infectious bursal disease Virus NN1172 Strain
A schematic diagram of the method for amplifying the A-segment and the B-segment of the genome of strain NN1172 is shown in FIG. 1.
The primers used in this example are shown in Table 1.
TABLE 1
Figure BDA0002088733050000041
1. Total RNA of the infectious bursal disease virus NN1172 strain is extracted and is reversely transcribed into cDNA.
2. The cDNA obtained in step 1 was used as a template, and PCR amplification was carried out using a primer pair consisting of primer A1-F and primer A1-R to obtain a genomic fragment A1 of 1441bp in size (lane 1 of FIG. 2).
3. Using the cDNA obtained in step 1 as a template, PCR amplification was performed using a primer pair consisting of primer A2-F and primer A2-R to obtain a genomic fragment A2 of 1840bp in size (lane 2 of FIG. 2).
4. The cDNA obtained in step 1 was used as a template, and PCR amplification was performed using a primer pair consisting of a primer B1-F and a primer B1-R to obtain a genomic fragment B1 (lane 4 of FIG. 2) of 1364bp in size.
5. The cDNA obtained in step 1 was used as a template, and PCR amplification was carried out using a primer pair consisting of the primer B2-F and the primer B2-R to obtain a 1484bp genomic fragment B2 (lane 5 of FIG. 2).
6. The genomic fragment A1 obtained in step 2 and the genomic fragment A2 obtained in step 3 were subjected to fusion PCR using a primer pair consisting of primer A1-F and primer A2-R to obtain a genomic A segment of 3260bp in size (lane 3 of FIG. 2).
7. The genomic fragment B1 obtained in step 4 and the genomic fragment B2 obtained in step 5 were subjected to fusion PCR using a primer pair consisting of primers B1-F and B2-R to obtain a 2827bp genomic B segment (lane 6 of FIG. 2).
The genome A segment is shown as a sequence 1 in a sequence table after sequencing (wherein, the 1st to 1441 th positions from the 5' end are genome segment A1, the 1421 st to 3260 th positions are genome segment A2, and the 1421 st to 1441 th positions are consensus segments of A1 and A2).
And sequencing to obtain the genome B segment shown as a sequence 2 in the sequence table (wherein, the 1st to the 1364 th positions from the 5' end are genome segment B1, the 1344 th to the 2827 th positions are genome segment B2, and the 1344 th to the 1364 th positions are consensus segments of B1 and B2).
Example 2 construction of vectors for expressing A-segment and B-segment of genome of NN1172 Strain
A schematic diagram of the construction of vectors for expressing the A-segment and B-segment of the genome of strain NN1172 is shown in FIG. 3.
Inserting DNA molecules shown in a sequence 3 in a sequence table among EcoR V enzyme cutting sites of a eukaryotic expression vector pVAX1 to obtain a recombinant expression vector pVAX1-NN 1172A.
In the sequence 3 of the sequence table, the 1st to 58 th positions from the 5' end are coding sequences of hammerhead nuclease HamRz, the 59 th to 3318 th positions are genome A segments of NN1172 strains, and the 3319 th to 3406 th positions are coding sequences of hepatitis delta virus ribozyme HdvRz.
Inserting DNA molecules shown in a sequence 4 in a sequence table between EcoR V enzyme cutting sites of a eukaryotic expression vector pVAX1 to obtain a recombinant expression vector pVAX1-NN 1172B.
In the sequence 4 of the sequence table, the 1st to 58 th positions from the 5' end are coding sequences of hammerhead nuclease HamRz, the 59 th to 2885 th positions are genome B segments of NN1172 strains, and the 2886 th to 2973 th positions are coding sequences of hepatitis delta virus ribozyme HdvRz.
Example 3 replacement of partial Gene sequences of the B segment of the NN1172 genome
A schematic representation of an alternative gene sequence to the B segment of the NN1172 genome is shown in FIG. 4.
1. A B87 genome B segment BI gene fragment is amplified from an infectious bursal disease live vaccine (B87 strain), and is shown as the 170 th to 670 th sites from the 5' end of a sequence 5 of a sequence table.
2. The B87 genome B segment BI gene fragment obtained in the step 1 is used for replacing a partial sequence of the NN1172 strain genome B segment in the recombinant expression vector pVAX1-NN1172B obtained in the example 2 to obtain a recombinant expression vector pVAX1-NN 1172B-delta BI.
Through sequencing verification, the recombinant expression vector pVAX1-NN 1172B-delta B I is a recombinant expression vector obtained by inserting DNA molecules shown in a sequence 5 in a sequence table among EcoR V enzyme cutting sites of a eukaryotic expression vector pVAX 1.
In the sequence 5 of the sequence table, the 1st to 58 th positions from the 5' end are the coding sequence of hammerhead nuclease Hamrz, the 59 th to 2885 th positions are the replaced infectious bursal disease virus genome B segment (wherein, the 170 th to 670 th positions are B I gene segments), and the 2886 th to 2973 th positions are the coding sequence of hepatitis D virus ribozyme Hdvrz.
The BI gene fragment encodes the N-terminal domain of the VP1 protein.
Example 4 rescue of recombinant viral strain rNN1172- Δ BI
Preparation of chicken embryo fibroblast
1. Selecting 9-day-old SPF chick embryos, and disinfecting the chick embryos by using iodine tincture and alcohol.
2. After step 1 was completed, the chick embryo air chamber was opened with tweezers, the chick embryos were gently picked up into a sterile dish, and a few drops of Phosphate Buffered Saline (PBS) were added to keep the embryo bodies moist.
3. And (3) after the step 2 is finished, removing internal organs, limbs and heads of the chick embryos, washing the chick embryos for 2 times by PBS, sufficiently shearing the chick embryos by sharp-pointed scissors to a crushed mud sample, and washing the chick embryos for 2-3 times by PBS to remove red blood cells.
4. After completion of step 3, the washed tissue fragments were aspirated into a cell vial, digested for 5min at 37 ℃ in 2mL of PBS containing 0.25% pancreatin, and the supernatant carefully discarded.
5. And (4) after the step 4 is finished, adding 5mL of DMEM medium containing 5% newborn calf serum, slightly blowing and beating the digested tissue blocks to fully release the cells, sucking cell supernatants of the cells, filtering the cell supernatants by 6 layers of medical gauze, and centrifuging the mixed liquid of the filtered cells and the culture medium for 5min at the speed of 800 r/min.
6. After completion of step 5, the centrifuged supernatant was discarded, and an appropriate amount of 5% newborn bovine serum DMEM medium was added to resuspend the cells at 1 × 106Cell counts/mL 6 well cell culture plates were plated with 2mL of cell suspension per well.
7. The cells are cultured in a cell culture box with the temperature of 37 ℃ and the CO2 content of 5 percent, and the cells grow into a monolayer after being cultured for 24 hours.
Second, rescue of recombinant viruses
1. By using
Figure BDA0002088733050000061
2000 transfection reagent 500. mu.g of the recombinant expression vector pVAX1-NN1172A prepared in example 2 and 500. mu.g of the recombinant expression vector pVAX1-NN1172B- Δ BI prepared in example 3 were co-transfected into the primary chicken embryo fibroblasts prepared in step one, and after transfection, the cells were harvested 24h, and after repeated freeze-thawing for 3 times, a virus solution was obtained.
2. Taking 0.2mL of virus solution prepared in the step 1, and inoculating 9-day-old SPF chick embryos through a chick embryo chorioallantoic membrane approach, wherein the specific method comprises the following steps: selecting 9-day-old SPF (specific pathogen free) chick embryos, illuminating the eggs with an egg illuminating lamp, drawing a circle at a position without blood vessels on the side surface of an air chamber of the chick embryos by using a pencil to serve as a mark of a punching position, disinfecting the positions of the air hole mark and the air chamber of the chick embryos by using iodine, and then disinfecting by using 75% alcohol. The chick embryo is placed on a superclean workbench, small holes are respectively punched at the marked punching position and the upper part of the chick embryo air chamber by using ophthalmological forceps, the small holes at the upper part of the chick embryo air chamber are sucked by using an ear sucking ball, and an artificial air chamber is formed on the side surface of the chick embryo. 0.2mL of virus liquid is inoculated in the artificial air chamber at the side of the chick embryo.
3. After the step 2 is completed, the chick embryos are placed in a 37 ℃ incubator for 96h, chick embryo chorioallantoic membranes are harvested, virus liquid is obtained by grinding and is continuously passaged for 3 times, and the recombinant virus rNN 1172-delta B I is obtained.
4. Total RNA from recombinant virus rNN 1172-. DELTA.BII was extracted and reverse transcribed to cDNA.
5. And (3) sequencing the genome A segment and the genome B segment in the cDNA obtained in the step (4), wherein the sequencing result shows that the genome A segment is shown as 59 th to 3318 th from the 5 'end of the sequence 3 in the sequence table, and the genome B segment is shown as 59 th to 2885 th from the 5' end of the sequence 5 in the sequence table.
In recombinant viruses, the corresponding segment of the genomic B segment has been replaced with a segment of the BI gene.
The RNA sequence of the recombinant virus genome segment A is shown as a sequence 6 in a sequence table.
The RNA sequence of the recombinant virus genome B segment is shown as a sequence 7 in a sequence table.
Example 4 biological Properties of recombinant Virus rNN1172- Δ BI
One, rNN 1172-Delta B I of recombinant virus and ELD of wild strain NN117250Measurement of
And (3) virus to be detected: recombinant virus rNN1172- Δ BI and wild strain NN 1172.
1. Diluting virus solution to be tested by 10 times with PBS, selecting 10 times-2~10-76 dilutions were used to inoculate 9-day-old SPF chick embryos via the chorioallantoic membrane route (see method described in example 3), 5 embryos per dilution, and 0.2mL virus solution per embryo. Meanwhile, 2 SPF embryos of 9 days old were inoculated with 0.2mL of PBS, respectively, and used as a control group.
2. After the step 1 is finished, the inoculated chick embryos are placed in a 37 ℃ incubator for culture, the chick embryos are observed for 2 times every day and continuously observed for 7 days, the chick embryos which die within 24 hours are removed, and the chick embryo median lethal dose (ELD) is carried out according to the Reed-Muench method50) Determination of log ELD50The logarithm of the virus dilution + distance ratio x logarithm of the dilution factor higher than 50%.
The results show that ELD of recombinant virus rNN 1172-. DELTA.BI50Is 10-5.16ELD500.2mL of ELD of wild strain NN117250Is 10-6.25/0.2mL。
SPF chick embryos inoculated with recombinant strain rNN 1172-delta B I show typical symptoms of infectious bursal disease virus infection, severe embryo hemorrhage and ELD50Is 10-5.16ELD500.2mL, less than wild strain NN1172ELD50
Second, the replication capacity of recombinant virus rNN 1172-delta B I in chicken
1. The 21-day-old three-yellow chickens were randomly divided into 3 groups of 15 chickens each, and each group was kept in isolation.
2. The experiments were carried out in three groups:
experimental group (recombinant virus rNN1172- Δ bi): the virus is attacked by a dropping route, and the virus attacking dose of each chicken is 0.2mL of recombinant virus rNN 1172-delta B I virus liquid (10)4ELD50)。
Experimental group (wild strain NN 1172): the oral administration is used for counteracting toxic substance, and each chicken counteracts toxic substanceThe dosage is 0.2mL wild strain NN1172 virus liquid (10)4ELD50)。
Control group: each chicken had a 0.2mL aliquot of sterile PBS.
After the challenge, the mental state of the chicken flocks is observed and recorded every day until 7 days after the challenge. 5 chickens were killed at each group 3, 5, 7 days after infection, and bursal tissue was collected. Placing the bursa of Fabricius collected 3, 5 and 7 days after the toxicity attack in 2mL of EP tubes, adding 2 sterile steel balls into each EP tube, shaking the EP tubes in an electric shaker until the bursa of Fabricius becomes homogenate, centrifuging at 12000r/min for 5min, taking out the supernatant, and extracting total RNA.
3. And (3) taking the total RNA obtained in the step (2), and detecting the virus load by adopting a real-time fluorescent quantitative PCR method.
(1) The PrimeScript 1st Strand cDNA Synthesis kit (Takara, Japan) was used to reverse transcribe RNA into cDNA using IBDV-R (5'-CCCTGCCTGACCACCACTT-3') as primer, the detailed procedure was performed according to the instructions.
(2) And (2) carrying out qRT-PCR by using the cDNA obtained in the step (1) as a template.
The reaction system was 20. mu.l, and included 10. mu.l of 2 XSSYBR Premix Ex Taq (Takara, Japan), 2. mu.l of template cDNA (20-100ng), 0.4. mu.l (10. mu.M) of each of the forward primer (IBDV-F:5'-ACCGGCACCGACAACCTTA-3') and the reverse primer (IBDV-R), and 7.2. mu.l of water (nuclease-free).
The qRT-PCR reaction was carried out at iQ TM5 Multi color Real-Time PCR Detection System (Bio-Rad, Hercules, Calif., USA), the specific procedure was: 30s at 1.95 ℃; (ii) 39 cycles of 2.94 ℃ for 30s, 56 ℃ for 15s, 72 ℃ for 30s, fluorescence being detected at the end of each cycle; 3. the dissolution curve analysis was from 55 ℃ to 95 ℃ at 0.2 ℃/s.
And averaging the obtained results, calculating the virus load, and drawing an in vivo replication kinetic curve of the virus.
The results are shown in FIG. 5 and Table 2.
The results show that recombinant strain rNN1172- Δ BI is less replication competent in chickens than wild strain NN 1172.
TABLE 2
Figure BDA0002088733050000081
Thirdly, the pathogenicity of the recombinant virus rNN 1172-delta B I to chicken
1. The 21-day-old three-yellow chickens were randomly divided into 3 groups of 10 chickens each, and each group was separately raised.
2. The experiments were carried out in three groups:
experimental group (recombinant virus rNN1172- Δ bi): the virus is attacked by a dropping route, and the virus attacking dose of each chicken is 0.2mL of recombinant virus rNN 1172-delta B I virus liquid (10)4ELD50)。
Experimental group (wild strain NN 1172): the virus is attacked by a dropping way, and the virus attacking dose of each chicken is 0.2mL wild strain NN1172 virus liquid (10)4ELD50)。
Control group: each chicken had a 0.2mL aliquot of sterile PBS.
And observing and recording the mental state of the chicken flocks every day after the challenge, and counting the mortality rate after 7 days after the challenge.
The results are shown in Table 3.
The results showed that recombinant strain rNN1172- Δ BI did not cause death of experimental chicks, while wild strain NN1172 caused death of 30% of experimental chicks. The recombinant strain rNN 1172-delta B I has obviously lower toxicity to chickens than the wild strain NN 1172.
TABLE 3
Figure BDA0002088733050000091
Sequence listing
<110> Guangxi university
<120> recombinant infectious bursal disease virus strain and preparation method thereof
<160> 7
<170> SIPOSequenceListing 1.0
<210> 1
<211> 3260
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 1
ggatacgatc ggtctgaccc cgggggagtc actcggggac aggccgacaa ggccctgttc 60
caggttggaa ctcctccttc tacagtacta tcattgatgg ttagtagaga tcagacaaac 120
gatcgcagcg atgacaaacc tgcaagatca aacccaacag attgttccgt tcatacggag 180
ccttctgatg ccaacaaccg gaccggcgtc cattccggac gacaccctag agaagcacac 240
tctcaggtca gagacctcga cctacaattt gactgtgggg gacacagggt cagggctaat 300
tgtctttttc cctggtttcc ctggctcaat tgtgggtgct cactacacac tgcagagcaa 360
tgggaactac aagttcgatc agatgctcct gactgcccag aacctaccgg ccagctacaa 420
ctactgcagg ctagtgagtc ggagtctcac agtgaggtca agcacactcc ctggtggcgt 480
ttatgcatta aacggaacca taaacgccgt gaccttccaa ggaagcctga gtgaactgac 540
agatgttagc tacaatgggt tgatgtctgc aacggccaac atcaacgaca aaattgggaa 600
cgtcctagta ggggaagggg taactgtcct aagcttgccc acatcatatg atctggggta 660
tgtgagactc ggtgacccca ttcccgctat agggcttgac ccaaagatgg tagcaacatg 720
tgacagcagt gacaggccca gagtctacac cataactgca gccaatgatt accaattctc 780
atcacagtac caagcaggtg gagtgacaat tacactgttc tcagcaaaca tcgatgccat 840
tacaagcctc agcatcgggg gggaactcgt gtttcaaaca agcgtccaag gccttatact 900
gggcgctacc atctacctta taggcttcga tgggactgcg gtaatcacca gagctgtggc 960
cgcaaacaat gggctaacgg ccggcactga caaccttatg ccattcaata ttgtgatacc 1020
gaccagcgag ataacccagc caatcacatc catcaaactg gagatagtta cctccaaaag 1080
tggtggtcag gcgggggatc agatgtcatg gtcagcaagt gggagcctag cggtgacgat 1140
ccacggcggc aactatccag gggccctccg tcccgtcaca ctagtagcct acgaaagagt 1200
ggctacagga tctgtcgtta cggtcgctgg ggtgagcaac ttcgagctga tcccaaatcc 1260
tgaactagca aagaacctga tcacagaata cggccgattt gacccaggag ccatgaacta 1320
cacaaaattg atactgagtg agagggaccg tcttggcatc aagaccgtat ggccaacaag 1380
ggagtacact gactttcgcg agtacttcat ggaggtggcc gacctcaact ctcccctgaa 1440
gattgcagga gcatttggct tcaaagacat aattcgggcc ttaaggagga tagctgtgcc 1500
ggtggtctcc acactgttcc cacccgccgc tcctctggcc catgcaattg gggaaggtgt 1560
agactatctt ctgggcgacg aggcacaggc tgcttcagga actgctcgag ccgcgtcagg 1620
aaaagcaaga gctgcctcag gccgcataag gcagctaacc ctcgccgccg acaaggggta 1680
cgaggtagtc gcgaatctgt ttcaggtgcc ccagaatcct gtagtcgacg ggattctcgc 1740
ttcacctggg atactccgcg gcgcacacaa cctcgactgc gtgctgagag agggtgccac 1800
gctattccct gtggtcatca ccacagtgga agatgccatg acacccaaag cactgaacag 1860
caaaatgttt gctgtcattg aaggcgtgcg agaagacctc caacctccat ctcaaagagg 1920
atccttcata cgaactctct ccggacatag agtctatgga tatgctccag atggggtact 1980
tccactggag actgggagag attacaccgt ggtcccaata gatgatgtct gggacgacag 2040
cattatgctg tccaaagacc ccatacctcc tattgtggga aacagcggga acctcgccat 2100
agcttacatg gatgtgtttc gacccaaagt ccccatccat gtagccatga cgggagccct 2160
caacgcctat ggcgagattg agaatgtgag ctttagaagc accaagctcg ccactgcaca 2220
ccgacttggc ctcaagttgg ctggtcccgg cgcatttgac gtgaacaccg ggtccaactg 2280
ggcgacgttc atcaaacgtt ttcctcacaa tccacgcgac tgggacaggc tcccctacct 2340
aaaccttcca taccttccgc ccactgcagg acgccagtac gacctggcta tggccgcctc 2400
agagttcaag gagacccccg aactcgagag cgctgtcaga gccatggaag cagcagccaa 2460
cgtggaccca ctgttccaat ccgcgctcag cgtgttcatg tggctggaag agaatgggat 2520
tgtgaccgac atggccaact tcgcactcag cgacccgaac gcccatcgga tgcgcaactt 2580
tctcgcaaac gcaccacaag caggcagcaa gtcgcaaaga gccaagtacg ggacggcagg 2640
ctacggagta gaggcccggg gccccactcc agaggaagca cagagggaaa aagacacacg 2700
gatctcaaag aagatggaga ccatgggcat ctactttgca acaccagaat gggtagcact 2760
caatgggcac cgggggccaa gccccggcca gctaaagtac tggcagaaca cacgagaaat 2820
acctgatcca aacgaggact acctagacta cgtgcatgca gagaagagcc ggttggcatc 2880
agaagaacaa atcctaaggg cagctacgtc gatctacggg gctccaggac aggctgagcc 2940
accccaggcc ttcatagacg aagtcgccaa agtctatgaa atcaaccatg ggcgtggccc 3000
caaccaagag cagatgaaag atctgctcct gactgcgatg gagatgaagc atcgcaatcc 3060
caggcgggct ccaccaaagc ccaagccaaa acccaatgtt ccaacgcaga gaccccctgg 3120
tcggctgggc cgctggatca gggccgtctc tgatgaggac cttgagtgag gctcctggga 3180
gtctcccgac accacccgcg caggcgtgga caccaattcg gccatacaac atcccaaatt 3240
ggatccgttc gcgggtcccc 3260
<210> 2
<211> 2827
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 2
ggatacgatg ggtctgaccc tctgggagtc acgaattaac gtggctacta ggggtgacac 60
ccaccgctag ctgccacgtt agtggctcct cttcttgatg attctgccac catgagtgac 120
gtattcaaca gtccacaggc gcgaagcaaa atatcagcag cgtttggcat aaagcccaca 180
gctggacagg atgtggaaga actcttgatc cccaaggtct gggttccacc tgaggaccca 240
ctggcaagcc ccagtcgact tgccaaattc ctcagagaaa acggctacaa gattttgcag 300
ccgcggtctc tacccgagaa tgaggagtat gagaccgacc agatacttcc agacctagca 360
tggatgcgac agatagaggg ggcagttctg aagcccacct tgtctctccc cattggtgac 420
caagagtact tcccaaagta ttacccaact catcgcccga gcaaggagaa gcccaatgcg 480
tacccaccag acattgcatt actcaagcag atgatctacc tatttctcca gcttccggaa 540
gccacagagg gcctgaagga tgaagtgacc ctcctaactc aaaatatacg agacaaggcc 600
tacggaagtg ggacctacat ggggcaagcg accagacttg ttgccatgaa agaggttgcc 660
actgggagaa atccaaacaa ggatcctcta aaacttgggt acacttttga gagcatcgcg 720
cagttgcttg acatcaccct accagttggc ccacctggtg aggatgacaa gccctgggtg 780
ccactcacaa gagtgccgtc aaggatgcta gtgctgacgg gagacgtaga tggggacttt 840
gaggttgagg attacctccc gaaaatcaac ctcaagtcat caagtggact accatatgta 900
ggtcgcacta agggggaaac aattggcgag atgatagcca tctcaaacca attcctccgg 960
gagctatcag cgctgctgaa gcaaggtgca gggaccaaag ggtcaaacaa gaagaagcta 1020
ctcagcatgc tcagtgacta ttggtactta tcatgcgggc ttttgtttcc gaaggctgaa 1080
cggtatgaca aaagcacatg gcttaccaag acccggaaca tatggtcagc tccatccccg 1140
actcacctca tgatctccat gatcacctgg cccgtgatgt ccaacagccc taacaacgtg 1200
ttgaatattg aagggtgccc gtcactctac aagtttaacc cgtttagggg aggactaaat 1260
aggatcgttg agtggatact tgctccggaa gaacccaagg cccttgtata tgcagataac 1320
atatacatcg tccactctaa cacgtggtac tcaattgacc tagaaaaggg ggaggccaac 1380
tgcacacgtc aacacatgca ggcggctatg tactacatcc tcactagagg gtggtcagac 1440
aatggtgacc ccatgtttaa ccagacatgg gctacctttg ccatgaacat tgcccctgct 1500
ctagttgtgg actcctcgtg tctgataatg aacctgcaaa tcaagaccta tggtcaaggc 1560
agtgggaacg cagccacatt catcaacaac catctcttga gcaccctggt gcttgatcag 1620
tggaacttga tgaaacaacc cagcccagac agcgaggagt tcaagtcaat tgaggacaag 1680
ctaggtatta acttcaagat cgagaggtca attgatgaca tcaggggcaa gctaagacag 1740
cttgtccccc ttgcacaacc agggtatctg agtggaggag tcgaaccaga acactccagc 1800
ccaactgttg agcttgacct gctaggctgg tcagcaacat acagcaaaga tcttgggatc 1860
tatgtgcctg tacttgacaa ggaacgccta ttctgctcgg ctgcgtatcc caaaggggtc 1920
gagaacaaga gtctcaagtc caaagttggg atcgagcaag catacaaggt agttaggtat 1980
gaggcgttga gactggtagg tggttggaac tatccactcc tgaacaaagc ttgcaagaac 2040
aacgcaagcg ctgctcggcg gcatttggag gccaaggggt tcccactcga cgagttccta 2100
gccgagtggt ctgagctgtc agaattcggc gaggcctttg aaggcttcaa cataaagctg 2160
accgtaacac cagagatcct tgccgaactg aacaagccag tacccccaaa accccccaat 2220
gtcaacagac cagtcaacac cggaggtcta aaggctgtca gcaacgccct aaagaccggc 2280
cgctacagga atgaagccgg actgagtggc ctcgtccttc tagccacagc caggagccga 2340
ctgcaagacg cagtaaaggc caaagcagag gccgagaaac tccacaagtc caagccagac 2400
gaccccgatg cagactggtt tgaaagatcc gaaactctgt ctgaccttct ggagaaagcc 2460
gacatagcca gcaaggtcgc acactcagca ctcgtggaaa caagcgacgc tcttgaggcg 2520
gttcagtcaa cctctgtgta tactcccaaa tacccggagg tcaagaaccc acagaccgcc 2580
tccaaccccg ttgtcgggct ccacctgccc gccaagagag ccaccggtgt ccaggccgct 2640
cttctcggag caggaacgag caggccaatg gggatggagg ccccaacacg gtccaagaac 2700
gccgtaaaaa tggccaaaag gcggcaacgc caaaaggaga gccgccaata gccatgatgg 2760
gaaccactca agaagaggac actaacccca gaccccgtat ccccggcctt cgcctgcggg 2820
ggccccc 2827
<210> 3
<211> 3406
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 3
tgttaagcgt ctgatgagtc cgtgaggacg aaactatagg aaaggaattc ctatagtcgg 60
atacgatcgg tctgaccccg ggggagtcac tcggggacag gccgacaagg ccctgttcca 120
ggttggaact cctccttcta cagtactatc attgatggtt agtagagatc agacaaacga 180
tcgcagcgat gacaaacctg caagatcaaa cccaacagat tgttccgttc atacggagcc 240
ttctgatgcc aacaaccgga ccggcgtcca ttccggacga caccctagag aagcacactc 300
tcaggtcaga gacctcgacc tacaatttga ctgtggggga cacagggtca gggctaattg 360
tctttttccc tggtttccct ggctcaattg tgggtgctca ctacacactg cagagcaatg 420
ggaactacaa gttcgatcag atgctcctga ctgcccagaa cctaccggcc agctacaact 480
actgcaggct agtgagtcgg agtctcacag tgaggtcaag cacactccct ggtggcgttt 540
atgcattaaa cggaaccata aacgccgtga ccttccaagg aagcctgagt gaactgacag 600
atgttagcta caatgggttg atgtctgcaa cggccaacat caacgacaaa attgggaacg 660
tcctagtagg ggaaggggta actgtcctaa gcttgcccac atcatatgat ctggggtatg 720
tgagactcgg tgaccccatt cccgctatag ggcttgaccc aaagatggta gcaacatgtg 780
acagcagtga caggcccaga gtctacacca taactgcagc caatgattac caattctcat 840
cacagtacca agcaggtgga gtgacaatta cactgttctc agcaaacatc gatgccatta 900
caagcctcag catcgggggg gaactcgtgt ttcaaacaag cgtccaaggc cttatactgg 960
gcgctaccat ctaccttata ggcttcgatg ggactgcggt aatcaccaga gctgtggccg 1020
caaacaatgg gctaacggcc ggcactgaca accttatgcc attcaatatt gtgataccga 1080
ccagcgagat aacccagcca atcacatcca tcaaactgga gatagttacc tccaaaagtg 1140
gtggtcaggc gggggatcag atgtcatggt cagcaagtgg gagcctagcg gtgacgatcc 1200
acggcggcaa ctatccaggg gccctccgtc ccgtcacact agtagcctac gaaagagtgg 1260
ctacaggatc tgtcgttacg gtcgctgggg tgagcaactt cgagctgatc ccaaatcctg 1320
aactagcaaa gaacctgatc acagaatacg gccgatttga cccaggagcc atgaactaca 1380
caaaattgat actgagtgag agggaccgtc ttggcatcaa gaccgtatgg ccaacaaggg 1440
agtacactga ctttcgcgag tacttcatgg aggtggccga cctcaactct cccctgaaga 1500
ttgcaggagc atttggcttc aaagacataa ttcgggcctt aaggaggata gctgtgccgg 1560
tggtctccac actgttccca cccgccgctc ctctggccca tgcaattggg gaaggtgtag 1620
actatcttct gggcgacgag gcacaggctg cttcaggaac tgctcgagcc gcgtcaggaa 1680
aagcaagagc tgcctcaggc cgcataaggc agctaaccct cgccgccgac aaggggtacg 1740
aggtagtcgc gaatctgttt caggtgcccc agaatcctgt agtcgacggg attctcgctt 1800
cacctgggat actccgcggc gcacacaacc tcgactgcgt gctgagagag ggtgccacgc 1860
tattccctgt ggtcatcacc acagtggaag atgccatgac acccaaagca ctgaacagca 1920
aaatgtttgc tgtcattgaa ggcgtgcgag aagacctcca acctccatct caaagaggat 1980
ccttcatacg aactctctcc ggacatagag tctatggata tgctccagat ggggtacttc 2040
cactggagac tgggagagat tacaccgtgg tcccaataga tgatgtctgg gacgacagca 2100
ttatgctgtc caaagacccc atacctccta ttgtgggaaa cagcgggaac ctcgccatag 2160
cttacatgga tgtgtttcga cccaaagtcc ccatccatgt agccatgacg ggagccctca 2220
acgcctatgg cgagattgag aatgtgagct ttagaagcac caagctcgcc actgcacacc 2280
gacttggcct caagttggct ggtcccggcg catttgacgt gaacaccggg tccaactggg 2340
cgacgttcat caaacgtttt cctcacaatc cacgcgactg ggacaggctc ccctacctaa 2400
accttccata ccttccgccc actgcaggac gccagtacga cctggctatg gccgcctcag 2460
agttcaagga gacccccgaa ctcgagagcg ctgtcagagc catggaagca gcagccaacg 2520
tggacccact gttccaatcc gcgctcagcg tgttcatgtg gctggaagag aatgggattg 2580
tgaccgacat ggccaacttc gcactcagcg acccgaacgc ccatcggatg cgcaactttc 2640
tcgcaaacgc accacaagca ggcagcaagt cgcaaagagc caagtacggg acggcaggct 2700
acggagtaga ggcccggggc cccactccag aggaagcaca gagggaaaaa gacacacgga 2760
tctcaaagaa gatggagacc atgggcatct actttgcaac accagaatgg gtagcactca 2820
atgggcaccg ggggccaagc cccggccagc taaagtactg gcagaacaca cgagaaatac 2880
ctgatccaaa cgaggactac ctagactacg tgcatgcaga gaagagccgg ttggcatcag 2940
aagaacaaat cctaagggca gctacgtcga tctacggggc tccaggacag gctgagccac 3000
cccaggcctt catagacgaa gtcgccaaag tctatgaaat caaccatggg cgtggcccca 3060
accaagagca gatgaaagat ctgctcctga ctgcgatgga gatgaagcat cgcaatccca 3120
ggcgggctcc accaaagccc aagccaaaac ccaatgttcc aacgcagaga ccccctggtc 3180
ggctgggccg ctggatcagg gccgtctctg atgaggacct tgagtgaggc tcctgggagt 3240
ctcccgacac cacccgcgca ggcgtggaca ccaattcggc catacaacat cccaaattgg 3300
atccgttcgc gggtccccgg gtcggcatgg catctccacc tcctcgcggt ccgacctggg 3360
catccgaagg aggacgcacg tccactcgga tggctaaggg agggcg 3406
<210> 4
<211> 2973
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 4
tgttaagcgt ctgatgagtc cgtgaggacg aaactatagg aaaggaattc ctatagtcgg 60
atacgatggg tctgaccctc tgggagtcac gaattaacgt ggctactagg ggtgacaccc 120
accgctagct gccacgttag tggctcctct tcttgatgat tctgccacca tgagtgacgt 180
attcaacagt ccacaggcgc gaagcaaaat atcagcagcg tttggcataa agcccacagc 240
tggacaggat gtggaagaac tcttgatccc caaggtctgg gttccacctg aggacccact 300
ggcaagcccc agtcgacttg ccaaattcct cagagaaaac ggctacaaga ttttgcagcc 360
gcggtctcta cccgagaatg aggagtatga gaccgaccag atacttccag acctagcatg 420
gatgcgacag atagaggggg cagttctgaa gcccaccttg tctctcccca ttggtgacca 480
agagtacttc ccaaagtatt acccaactca tcgcccgagc aaggagaagc ccaatgcgta 540
cccaccagac attgcattac tcaagcagat gatctaccta tttctccagc ttccggaagc 600
cacagagggc ctgaaggatg aagtgaccct cctaactcaa aatatacgag acaaggccta 660
cggaagtggg acctacatgg ggcaagcgac cagacttgtt gccatgaaag aggttgccac 720
tgggagaaat ccaaacaagg atcctctaaa acttgggtac acttttgaga gcatcgcgca 780
gttgcttgac atcaccctac cagttggccc acctggtgag gatgacaagc cctgggtgcc 840
actcacaaga gtgccgtcaa ggatgctagt gctgacggga gacgtagatg gggactttga 900
ggttgaggat tacctcccga aaatcaacct caagtcatca agtggactac catatgtagg 960
tcgcactaag ggggaaacaa ttggcgagat gatagccatc tcaaaccaat tcctccggga 1020
gctatcagcg ctgctgaagc aaggtgcagg gaccaaaggg tcaaacaaga agaagctact 1080
cagcatgctc agtgactatt ggtacttatc atgcgggctt ttgtttccga aggctgaacg 1140
gtatgacaaa agcacatggc ttaccaagac ccggaacata tggtcagctc catccccgac 1200
tcacctcatg atctccatga tcacctggcc cgtgatgtcc aacagcccta acaacgtgtt 1260
gaatattgaa gggtgcccgt cactctacaa gtttaacccg tttaggggag gactaaatag 1320
gatcgttgag tggatacttg ctccggaaga acccaaggcc cttgtatatg cagataacat 1380
atacatcgtc cactctaaca cgtggtactc aattgaccta gaaaaggggg aggccaactg 1440
cacacgtcaa cacatgcagg cggctatgta ctacatcctc actagagggt ggtcagacaa 1500
tggtgacccc atgtttaacc agacatgggc tacctttgcc atgaacattg cccctgctct 1560
agttgtggac tcctcgtgtc tgataatgaa cctgcaaatc aagacctatg gtcaaggcag 1620
tgggaacgca gccacattca tcaacaacca tctcttgagc accctggtgc ttgatcagtg 1680
gaacttgatg aaacaaccca gcccagacag cgaggagttc aagtcaattg aggacaagct 1740
aggtattaac ttcaagatcg agaggtcaat tgatgacatc aggggcaagc taagacagct 1800
tgtccccctt gcacaaccag ggtatctgag tggaggagtc gaaccagaac actccagccc 1860
aactgttgag cttgacctgc taggctggtc agcaacatac agcaaagatc ttgggatcta 1920
tgtgcctgta cttgacaagg aacgcctatt ctgctcggct gcgtatccca aaggggtcga 1980
gaacaagagt ctcaagtcca aagttgggat cgagcaagca tacaaggtag ttaggtatga 2040
ggcgttgaga ctggtaggtg gttggaacta tccactcctg aacaaagctt gcaagaacaa 2100
cgcaagcgct gctcggcggc atttggaggc caaggggttc ccactcgacg agttcctagc 2160
cgagtggtct gagctgtcag aattcggcga ggcctttgaa ggcttcaaca taaagctgac 2220
cgtaacacca gagatccttg ccgaactgaa caagccagta cccccaaaac cccccaatgt 2280
caacagacca gtcaacaccg gaggtctaaa ggctgtcagc aacgccctaa agaccggccg 2340
ctacaggaat gaagccggac tgagtggcct cgtccttcta gccacagcca ggagccgact 2400
gcaagacgca gtaaaggcca aagcagaggc cgagaaactc cacaagtcca agccagacga 2460
ccccgatgca gactggtttg aaagatccga aactctgtct gaccttctgg agaaagccga 2520
catagccagc aaggtcgcac actcagcact cgtggaaaca agcgacgctc ttgaggcggt 2580
tcagtcaacc tctgtgtata ctcccaaata cccggaggtc aagaacccac agaccgcctc 2640
caaccccgtt gtcgggctcc acctgcccgc caagagagcc accggtgtcc aggccgctct 2700
tctcggagca ggaacgagca ggccaatggg gatggaggcc ccaacacggt ccaagaacgc 2760
cgtaaaaatg gccaaaaggc ggcaacgcca aaaggagagc cgccaatagc catgatggga 2820
accactcaag aagaggacac taaccccaga ccccgtatcc ccggccttcg cctgcggggg 2880
cccccgggtc ggcatggcat ctccacctcc tcgcggtccg acctgggcat ccgaaggagg 2940
acgcacgtcc actcggatgg ctaagggagg gcg 2973
<210> 5
<211> 2973
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 5
tgttaagcgt ctgatgagtc cgtgaggacg aaactatagg aaaggaattc ctatagtcgg 60
atacgatggg tctgaccctc tgggagtcac gaattaacgt ggctactagg ggtgacaccc 120
accgctagct gccacgttag tggctcctct tcttgatgat tctgccacca tgagtgacat 180
tttcaacagt ccacaggcgc gaagcacgat ctcagcagcg ttcggcataa agcctactgc 240
tggacaagac gtggaagaac tcttgatccc taaagtttgg gtgccacctg aggatccgct 300
tgccagccct agtcgactgg caaagttcct cagagagaac ggctacaaag ttttgcagcc 360
gcggtctctg cccgagaatg aggagtatga gaccgaccaa atactcccag acttagcatg 420
gatgcgacag atagaagggg ctgttttaaa acccactcta tctctcccta ttggagatca 480
ggagtacttc ccaaagtact acccaacaca tcgccctagc aaggagaagc ccaatgcgta 540
cccgccagac atcgcactac tcaagcagat gatttacctg tttctccagg ttccagaggc 600
caacgagggc ctaaaggatg aagtaaccct cttgacccaa aacataaggg acaaggccta 660
tggaagtggg acctacatgg ggcaagcgac cagacttgtt gccatgaaag aggttgccac 720
tgggagaaat ccaaacaagg atcctctaaa acttgggtac acttttgaga gcatcgcgca 780
gttgcttgac atcaccctac cagttggccc acctggtgag gatgacaagc cctgggtgcc 840
actcacaaga gtgccgtcaa ggatgctagt gctgacggga gacgtagatg gggactttga 900
ggttgaggat tacctcccga aaatcaacct caagtcatca agtggactac catatgtagg 960
tcgcactaag ggggaaacaa ttggcgagat gatagccatc tcaaaccaat tcctccggga 1020
gctatcagcg ctgctgaagc aaggtgcagg gaccaaaggg tcaaacaaga agaagctact 1080
cagcatgctc agtgactatt ggtacttatc atgcgggctt ttgtttccga aggctgaacg 1140
gtatgacaaa agcacatggc ttaccaagac ccggaacata tggtcagctc catccccgac 1200
tcacctcatg atctccatga tcacctggcc cgtgatgtcc aacagcccta acaacgtgtt 1260
gaatattgaa gggtgcccgt cactctacaa gtttaacccg tttaggggag gactaaatag 1320
gatcgttgag tggatacttg ctccggaaga acccaaggcc cttgtatatg cagataacat 1380
atacatcgtc cactctaaca cgtggtactc aattgaccta gaaaaggggg aggccaactg 1440
cacacgtcaa cacatgcagg cggctatgta ctacatcctc actagagggt ggtcagacaa 1500
tggtgacccc atgtttaacc agacatgggc tacctttgcc atgaacattg cccctgctct 1560
agttgtggac tcctcgtgtc tgataatgaa cctgcaaatc aagacctatg gtcaaggcag 1620
tgggaacgca gccacattca tcaacaacca tctcttgagc accctggtgc ttgatcagtg 1680
gaacttgatg aaacaaccca gcccagacag cgaggagttc aagtcaattg aggacaagct 1740
aggtattaac ttcaagatcg agaggtcaat tgatgacatc aggggcaagc taagacagct 1800
tgtccccctt gcacaaccag ggtatctgag tggaggagtc gaaccagaac actccagccc 1860
aactgttgag cttgacctgc taggctggtc agcaacatac agcaaagatc ttgggatcta 1920
tgtgcctgta cttgacaagg aacgcctatt ctgctcggct gcgtatccca aaggggtcga 1980
gaacaagagt ctcaagtcca aagttgggat cgagcaagca tacaaggtag ttaggtatga 2040
ggcgttgaga ctggtaggtg gttggaacta tccactcctg aacaaagctt gcaagaacaa 2100
cgcaagcgct gctcggcggc atttggaggc caaggggttc ccactcgacg agttcctagc 2160
cgagtggtct gagctgtcag aattcggcga ggcctttgaa ggcttcaaca taaagctgac 2220
cgtaacacca gagatccttg ccgaactgaa caagccagta cccccaaaac cccccaatgt 2280
caacagacca gtcaacaccg gaggtctaaa ggctgtcagc aacgccctaa agaccggccg 2340
ctacaggaat gaagccggac tgagtggcct cgtccttcta gccacagcca ggagccgact 2400
gcaagacgca gtaaaggcca aagcagaggc cgagaaactc cacaagtcca agccagacga 2460
ccccgatgca gactggtttg aaagatccga aactctgtct gaccttctgg agaaagccga 2520
catagccagc aaggtcgcac actcagcact cgtggaaaca agcgacgctc ttgaggcggt 2580
tcagtcaacc tctgtgtata ctcccaaata cccggaggtc aagaacccac agaccgcctc 2640
caaccccgtt gtcgggctcc acctgcccgc caagagagcc accggtgtcc aggccgctct 2700
tctcggagca ggaacgagca ggccaatggg gatggaggcc ccaacacggt ccaagaacgc 2760
cgtaaaaatg gccaaaaggc ggcaacgcca aaaggagagc cgccaatagc catgatggga 2820
accactcaag aagaggacac taaccccaga ccccgtatcc ccggccttcg cctgcggggg 2880
cccccgggtc ggcatggcat ctccacctcc tcgcggtccg acctgggcat ccgaaggagg 2940
acgcacgtcc actcggatgg ctaagggagg gcg 2973
<210> 6
<211> 3260
<212> RNA
<213> Artificial Sequence (Artificial Sequence)
<400> 6
ccuaugcuag ccagacuggg gcccccucag ugagccccug uccggcuguu ccgggacaag 60
guccaaccuu gaggaggaag augucaugau aguaacuacc aaucaucucu agucuguuug 120
cuagcgucgc uacuguuugg acguucuagu uuggguuguc uaacaaggca aguaugccuc 180
ggaagacuac gguuguuggc cuggccgcag guaaggccug cugugggauc ucuucgugug 240
agaguccagu cucuggagcu ggauguuaaa cugacacccc cuguguccca gucccgauua 300
acagaaaaag ggaccaaagg gaccgaguua acacccacga gugaugugug acgucucguu 360
acccuugaug uucaagcuag ucuacgagga cugacggguc uuggauggcc ggucgauguu 420
gaugacgucc gaucacucag ccucagagug ucacuccagu ucgugugagg gaccaccgca 480
aauacguaau uugccuuggu auuugcggca cuggaagguu ccuucggacu cacuugacug 540
ucuacaaucg auguuaccca acuacagacg uugccgguug uaguugcugu uuuaacccuu 600
gcaggaucau ccccuucccc auugacagga uucgaacggg uguaguauac uagaccccau 660
acacucugag ccacuggggu aagggcgaua ucccgaacug gguuucuacc aucguuguac 720
acugucguca cuguccgggu cucagaugug guauugacgu cgguuacuaa ugguuaagag 780
uagugucaug guucguccac cucacuguua augugacaag agucguuugu agcuacggua 840
auguucggag ucguagcccc cccuugagca caaaguuugu ucgcagguuc cggaauauga 900
cccgcgaugg uagauggaau auccgaagcu acccugacgc cauuaguggu cucgacaccg 960
gcguuuguua cccgauugcc ggccgugacu guuggaauac gguaaguuau aacacuaugg 1020
cuggucgcuc uauugggucg guuaguguag guaguuugac cucuaucaau ggagguuuuc 1080
accaccaguc cgcccccuag ucuacaguac cagucguuca cccucggauc gccacugcua 1140
ggugccgccg uugauagguc cccgggaggc agggcagugu gaucaucgga ugcuuucuca 1200
ccgauguccu agacagcaau gccagcgacc ccacucguug aagcucgacu aggguuuagg 1260
acuugaucgu uucuuggacu agugucuuau gccggcuaaa cuggguccuc gguacuugau 1320
guguuuuaac uaugacucac ucucccuggc agaaccguag uucuggcaua ccgguuguuc 1380
ccucauguga cugaaagcgc ucaugaagua ccuccaccgg cuggaguuga gaggggacuu 1440
cuaacguccu cguaaaccga aguuucugua uuaagcccgg aauuccuccu aucgacacgg 1500
ccaccagagg ugugacaagg gugggcggcg aggagaccgg guacguuaac cccuuccaca 1560
ucugauagaa gacccgcugc uccguguccg acgaaguccu ugacgagcuc ggcgcagucc 1620
uuuucguucu cgacggaguc cggcguauuc cgucgauugg gagcggcggc uguuccccau 1680
gcuccaucag cgcuuagaca aaguccacgg ggucuuagga caucagcugc ccuaagagcg 1740
aaguggaccc uaugaggcgc cgcguguguu ggagcugacg cacgacucuc ucccacggug 1800
cgauaaggga caccaguagu ggugucaccu ucuacgguac uguggguuuc gugacuuguc 1860
guuuuacaaa cgacaguaac uuccgcacgc ucuucuggag guuggaggua gaguuucucc 1920
uaggaaguau gcuugagaga ggccuguauc ucagauaccu auacgagguc uaccccauga 1980
aggugaccuc ugacccucuc uaauguggca ccaggguuau cuacuacaga cccugcuguc 2040
guaauacgac agguuucugg gguauggagg auaacacccu uugucgcccu uggagcggua 2100
ucgaauguac cuacacaaag cuggguuuca gggguaggua caucgguacu gcccucggga 2160
guugcggaua ccgcucuaac ucuuacacuc gaaaucuucg ugguucgagc ggugacgugu 2220
ggcugaaccg gaguucaacc gaccagggcc gcguaaacug cacuuguggc ccagguugac 2280
ccgcugcaag uaguuugcaa aaggaguguu aggugcgcug acccuguccg aggggaugga 2340
uuuggaaggu auggaaggcg ggugacgucc ugcggucaug cuggaccgau accggcggag 2400
ucucaaguuc cucugggggc uugagcucuc gcgacagucu cgguaccuuc gucgucgguu 2460
gcaccugggu gacaagguua ggcgcgaguc gcacaaguac accgaccuuc ucuuacccua 2520
acacuggcug uaccgguuga agcgugaguc gcugggcuug cggguagccu acgcguugaa 2580
agagcguuug cgugguguuc guccgucguu cagcguuucu cgguucaugc ccugccgucc 2640
gaugccucau cuccgggccc cggggugagg ucuccuucgu gucucccuuu uucugugugc 2700
cuagaguuuc uucuaccucu gguacccgua gaugaaacgu uguggucuua cccaucguga 2760
guuacccgug gcccccgguu cggggccggu cgauuucaug accgucuugu gugcucuuua 2820
uggacuaggu uugcuccuga uggaucugau gcacguacgu cucuucucgg ccaaccguag 2880
ucuucuuguu uaggauuccc gucgaugcag cuagaugccc cgagguccug uccgacucgg 2940
ugggguccgg aaguaucugc uucagcgguu ucagauacuu uaguugguac ccgcaccggg 3000
guugguucuc gucuacuuuc uagacgagga cugacgcuac cucuacuucg uagcguuagg 3060
guccgcccga ggugguuucg gguucgguuu uggguuacaa gguugcgucu cugggggacc 3120
agccgacccg gcgaccuagu cccggcagag acuacuccug gaacucacuc cgaggacccu 3180
cagagggcug uggugggcgc guccgcaccu gugguuaagc cgguauguug uaggguuuaa 3240
ccuaggcaag cgcccagggg 3260
<210> 7
<211> 2827
<212> RNA
<213> Artificial Sequence (Artificial Sequence)
<400> 7
ccuaugcuac ccagacuggg agacccucag ugcuuaauug caccgaugau ccccacugug 60
gguggcgauc gacggugcaa ucaccgagga gaagaacuac uaagacggug guacucacug 120
uaaaaguugu cagguguccg cgcuucgugc uagagucguc gcaagccgua uuucggauga 180
cgaccuguuc ugcaccuucu ugagaacuag ggauuucaaa cccacggugg acuccuaggc 240
gaacggucgg gaucagcuga ccguuucaag gagucucucu ugccgauguu ucaaaacguc 300
ggcgccagag acgggcucuu acuccucaua cucuggcugg uuuaugaggg ucugaaucgu 360
accuacgcug ucuaucuucc ccgacaaaau uuugggugag auagagaggg auaaccucua 420
guccucauga aggguuucau gauggguugu guagcgggau cguuccucuu cggguuacgc 480
augggcgguc uguagcguga ugaguucguc uacuaaaugg acaaagaggu ccaaggucuc 540
cgguugcucc cggauuuccu acuucauugg gagaacuggg uuuuguauuc ccuguuccgg 600
auaccuucac ccuggaugua ccccguucgc uggucugaac aacgguacuu ucuccaacgg 660
ugacccucuu uagguuuguu ccuaggagau uuugaaccca ugugaaaacu cucguagcgc 720
gucaacgaac uguaguggga uggucaaccg gguggaccac uccuacuguu cgggacccac 780
ggugaguguu cucacggcag uuccuacgau cacgacugcc cucugcaucu accccugaaa 840
cuccaacucc uaauggaggg cuuuuaguug gaguucagua guucaccuga ugguauacau 900
ccagcgugau ucccccuuug uuaaccgcuc uacuaucggu agaguuuggu uaaggaggcc 960
cucgauaguc gcgacgacuu cguuccacgu cccugguuuc ccaguuuguu cuucuucgau 1020
gagucguacg agucacugau aaccaugaau aguacgcccg aaaacaaagg cuuccgacuu 1080
gccauacugu uuucguguac cgaaugguuc ugggccuugu auaccagucg agguaggggc 1140
ugaguggagu acuagaggua cuaguggacc gggcacuaca gguugucggg auuguugcac 1200
aacuuauaac uucccacggg cagugagaug uucaaauugg gcaaaucccc uccugauuua 1260
uccuagcaac ucaccuauga acgaggccuu cuuggguucc gggaacauau acgucuauug 1320
uauauguagc aggugagauu gugcaccaug aguuaacugg aucuuuuccc ccuccgguug 1380
acgugugcag uuguguacgu ccgccgauac augauguagg agugaucucc caccagucug 1440
uuaccacugg gguacaaauu ggucuguacc cgauggaaac gguacuugua acggggacga 1500
gaucaacacc ugaggagcac agacuauuac uuggacguuu aguucuggau accaguuccg 1560
ucacccuugc gucgguguaa guaguuguug guagagaacu cgugggacca cgaacuaguc 1620
accuugaacu acuuuguugg gucgggucug ucgcuccuca aguucaguua acuccuguuc 1680
gauccauaau ugaaguucua gcucuccagu uaacuacugu aguccccguu cgauucuguc 1740
gaacaggggg aacguguugg ucccauagac ucaccuccuc agcuuggucu ugugaggucg 1800
gguugacaac ucgaacugga cgauccgacc agucguugua ugucguuucu agaacccuag 1860
auacacggac augaacuguu ccuugcggau aagacgagcc gacgcauagg guuuccccag 1920
cucuuguucu cagaguucag guuucaaccc uagcucguuc guauguucca ucaauccaua 1980
cuccgcaacu cugaccaucc accaaccuug auaggugagg acuuguuucg aacguucuug 2040
uugcguucgc gacgagccgc cguaaaccuc cgguucccca agggugagcu gcucaaggau 2100
cggcucacca gacucgacag ucuuaagccg cuccggaaac uuccgaaguu guauuucgac 2160
uggcauugug gucucuagga acggcuugac uuguucgguc auggggguuu ugggggguua 2220
caguugucug gucaguugug gccuccagau uuccgacagu cguugcggga uuucuggccg 2280
gcgauguccu uacuucggcc ugacucaccg gagcaggaag aucggugucg guccucggcu 2340
gacguucugc gucauuuccg guuucgucuc cggcucuuug agguguucag guucggucug 2400
cuggggcuac gucugaccaa acuuucuagg cuuugagaca gacuggaaga ccucuuucgg 2460
cuguaucggu cguuccagcg ugugagucgu gagcaccuuu guucgcugcg agaacuccgc 2520
caagucaguu ggagacacau augaggguuu augggccucc aguucuuggg ugucuggcgg 2580
agguuggggc aacagcccga gguggacggg cgguucucuc gguggccaca gguccggcga 2640
gaagagccuc guccuugcuc guccgguuac cccuaccucc gggguugugc cagguucuug 2700
cggcauuuuu accgguuuuc cgccguugcg guuuuccucu cggcgguuau cgguacuacc 2760
cuuggugagu ucuucuccug ugauuggggu cuggggcaua ggggccggaa gcggacgccc 2820
ccggggg 2827

Claims (7)

1. A recombinant infectious bursal disease virus is a recombinant virus obtained by replacing RNA capable of being translated to obtain a VP1 protein N-terminal structural domain in chicken infectious bursal disease virus with RNA shown from 112 th to 612 th site of 5' end of a sequence 7 in a sequence table;
the chicken infectious bursal disease virus is an infectious bursal disease virus NN1172 strain.
2. A recombinant infectious bursal disease virus is prepared by cotransfecting chicken embryo fibroblast with a vector A containing a specific fragment A and a vector B containing a specific fragment B, and rescuing the obtained recombinant virus by using a reverse genetics technology;
the specific fragment A comprises cDNA corresponding to a chicken infectious bursal disease virus genome A segment;
the specific fragment B comprises cDNA corresponding to a chicken infectious bursal disease virus genome B segment;
the cDNA corresponding to the chicken infectious bursal disease virus genome B segment is shown as 59-2885 bits from the 5' end of the sequence 5 in the sequence table;
the cDNA corresponding to the genome A segment of the infectious bursal disease virus is shown as the 59 th-3318 th site from the 5' end of the sequence 3 of the sequence table.
3. The recombinant infectious bursal disease virus of claim 2, wherein:
the specific fragment A sequentially has a coding sequence of hammerhead nuclease HamRz, cDNA corresponding to the chicken infectious bursal disease virus genome A segment and a coding sequence of hepatitis delta virus ribozyme HdvRz from the 5 'end to the 3' end;
the specific fragment B is sequentially provided with a coding sequence of hammerhead nuclease HamRz, cDNA corresponding to the chicken infectious bursal disease virus genome B segment and a coding sequence of hepatitis delta virus ribozyme HdvRz from 5 'end to 3' end.
4. Use of a recombinant infectious bursal disease virus of claim 1 or 2 for the preparation of an infectious bursal disease virus vaccine.
5. Use of a recombinant infectious bursal disease virus of claim 1 or 2 for the preparation of a product for the prevention and/or treatment of infectious bursal disease virus.
6. An infectious bursal disease virus vaccine, the active ingredient of which is the recombinant infectious bursal disease virus of claim 1 or 2.
7. A product comprising as an active ingredient the recombinant infectious bursal disease virus of claim 1 or; the product is used for preventing and/or treating infectious bursal disease virus.
CN201910496396.6A 2019-06-10 2019-06-10 Recombinant infectious bursal disease virus strain and preparation method thereof Active CN110129286B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910496396.6A CN110129286B (en) 2019-06-10 2019-06-10 Recombinant infectious bursal disease virus strain and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910496396.6A CN110129286B (en) 2019-06-10 2019-06-10 Recombinant infectious bursal disease virus strain and preparation method thereof

Publications (2)

Publication Number Publication Date
CN110129286A CN110129286A (en) 2019-08-16
CN110129286B true CN110129286B (en) 2021-04-13

Family

ID=67580758

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910496396.6A Active CN110129286B (en) 2019-06-10 2019-06-10 Recombinant infectious bursal disease virus strain and preparation method thereof

Country Status (1)

Country Link
CN (1) CN110129286B (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101475943B (en) * 2009-01-16 2011-10-26 中国疾病预防控制中心病毒病预防控制所 Rabies viruses CTN strain complete genome infectious cDNA cloning, and preparation and use thereof
CN103981202B (en) * 2014-06-11 2016-03-09 青岛农业大学 A kind of method building canine distemper virus reverse genetics system
CN106046172B (en) * 2016-06-06 2020-01-10 广西大学 Infectious bursal disease virus recombinant fusion protein VP2-VP1, and preparation method and application thereof
CN108929864B (en) * 2018-07-19 2021-03-23 浙江农林大学 Attenuated virus for preventing chicken infectious bursal disease and application

Also Published As

Publication number Publication date
CN110129286A (en) 2019-08-16

Similar Documents

Publication Publication Date Title
RU2519210C2 (en) Vaccines containing genetic variants of canine parvovirus
CN107815441A (en) A kind of II type Pseudorabies virus attenuated strain and its preparation method and application
CN104513827A (en) Porcine epizootic diarrhea virus strain, attenuated vaccine strain thereof and application thereof
CN106947746B (en) LDL-T plants of infectious bronchitis of chicken attenuated vaccine strain and its application
CN108660116B (en) Novel goose astrovirus capable of causing gosling gout and application thereof
CN113198011B (en) Duck adenovirus type 3 strain inactivated vaccine and application thereof
CN109868262B (en) Canine distemper attenuated strain and application thereof
CN104152416A (en) Pseudorabies virus gene-deleted attenuated strain as well as preparation method and application thereof
CN113491767A (en) Triple inactivated vaccine for duck circovirus disease, novel duck reovirus disease and duck viral hepatitis and preparation method thereof
CN113564133B (en) Coxsackie virus A16 type strain and immunogenic composition and application thereof
CN106282132A (en) The low virulent strain of Pseudorabies virus variant and application thereof
CN112500458B (en) Novel variant subunit vaccine of chicken infectious bursal disease virus, preparation method and application thereof
CN112280750B (en) Novel goose astrovirus with cross-species transmission capability and application thereof
CN112341539B (en) Yolk antibody for preventing and treating novel goose astrovirus with cross-species transmission capability and preparation method thereof
CN105802920A (en) Infectious bursal disease virus strain A11 and application thereof
CN111773383B (en) O-type foot-and-mouth disease subunit vaccine and preparation method and application thereof
CN110129286B (en) Recombinant infectious bursal disease virus strain and preparation method thereof
CN109867713B (en) Canine distemper genetic engineering subunit vaccine
CN113278595B (en) Duck adenovirus type 3 strain, duck adenovirus egg yolk antibody, and preparation methods and application thereof
CN114891753B (en) Novel duck reovirus passaging attenuated strain and application thereof
CN113564132B (en) Coxsackie virus A16 type strain and application thereof
CN114107226A (en) Recombinant avian adenovirus type 4 live vector vaccine strain for expressing vvIBDV-VP2 protein, and construction method and application thereof
Wei et al. The isolation and characterization of Duck astrovirus type‐1 remerging in China
CN109504664B (en) III type duck hepatitis A virus chicken embryonated attenuated strain and application thereof
CN112546215A (en) Inactivated vaccine for avian adenovirus serotype 4, and preparation method and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant