CN110125540A - 一种水导引激光加工工件的方法、系统及其设备 - Google Patents

一种水导引激光加工工件的方法、系统及其设备 Download PDF

Info

Publication number
CN110125540A
CN110125540A CN201910404442.5A CN201910404442A CN110125540A CN 110125540 A CN110125540 A CN 110125540A CN 201910404442 A CN201910404442 A CN 201910404442A CN 110125540 A CN110125540 A CN 110125540A
Authority
CN
China
Prior art keywords
laser beam
water
laser
flow
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910404442.5A
Other languages
English (en)
Inventor
杨立军
丁烨
程柏
李元
李靖怡
徐俊杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201910404442.5A priority Critical patent/CN110125540A/zh
Publication of CN110125540A publication Critical patent/CN110125540A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/146Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor the fluid stream containing a liquid

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

本发明提供了一种水导引激光加工工件的方法、系统及其设备,所述水导引激光加工工件的方法包括:输出激光束;将激光束引导进水流中,形成水射流导引激光束;将所述水射流导引激光束外部包裹气流,形成具有气流保护层的水射流导引激光束;对工件照射具有气流保护层的水射流导引激光束进行激光加工。本发明的有益效果:能够延长在激光加工中水射流导引激光束的稳定工作长度,抑制激光加工过程中产生的热效应的累积,以及防止加工工件中熔渣的堆积和加工区域的水层的淤积。

Description

一种水导引激光加工工件的方法、系统及其设备
技术领域
本发明涉及激光复合加工技术领域,具体而言,涉及一种水导引激光加工工件的方法、系统及其设备。
背景技术
目前激光加工已经广泛应用到常规的工业加工以及微细加工领域中。常用的有连续激光加工、长/短脉冲激光加工(脉宽大于1ms为长脉冲,脉宽在1ns和1ms范围内为短脉冲)和超短脉冲(脉宽在ps和fs量级)激光加工。连续激光加工、长/短脉冲激光加工的设备成本较低,加工效率很高,但是由于显著的热效应,加工区域会不可避免的存在热影响区和再铸层,极大的降低了加工质量,影响被加工区域的后续应用。
相关技术中,通过将短脉冲激光束导引至水流中,形成水射流导引激光束,以此抑制在激光加工过程中产生的热效应的累积,但是却无法保证水射流导引激光束的工作长度,以及处理在加工时,加工区域的水层的淤积。
发明内容
本发明解决的问题是如何能够延长在激光加工中水射流激光束的稳定工作长度,抑制激光加工过程中产生的热效应的累积,以及防止加工工件中熔渣的堆积和加工区域的水层的淤积。
为解决上述问题,本发明提供一种包括以下步骤:
输出激光束;
将激光束引导进水流中,形成水射流导引激光束;
将所述水射流导引激光束外部包裹气流,形成具有气流保护层的水射流导引激光束;
对工件照射具有气流保护层的水射流导引激光束进行激光加工。
通过在水射流导引激光束形成后,为水射流导引激光束外部均匀包裹一层气流保护层,以此能够抑制水射流导引激光束对空气的卷吸,从而能够有效地延长了水射流导引激光束的稳定工作长度,使得更有利于工件的加工,使得加工效果更好,同时气流保护层可以吹散加工区域淤积的水层,进一步冲刷和冷却加工区域,抑制加工过程中热影响区和再铸层的形成,提高工件的加工质量。
可选地,所述输出激光束具体包括以下步骤:
输出空间截面能量分布为高斯分布的激光束;
对所述高斯分布的激光束进行扩束;
将扩束后的激光束聚焦,并进行光路在空间上的柔性转换;
将光路转换后的空间散射激光束转变为空间平行激光束;
将空间截面能量分布为高斯分布的空间平行激光束转变为贝塞尔分布的激光束;
将贝塞尔分布的激光束聚焦后输出。
通过将激光束的直径扩大,能够使得在后续的激光束传导过程中,能够将激光束聚焦,并使聚焦后的光斑直径更小,以降低激光在通过光纤进行远距离柔性传输时,短脉冲激光束与光纤的耦合难度,以此便于短脉冲激光束的传导,有利于工件的加工,同时,将空间截面能量分布为高斯分布的空间平行激光束转变为贝塞尔分布的激光束,并聚焦后输出,以此利用贝塞尔分布的激光束进行加工,更有利于加工工件,使得加工的精确度更高。
可选地,所述的水导引激光加工工件的方法,还包括,获取水流与激光束的同轴情况,在水流的轴线与激光束的轴线偏离的情况下,使水流的轴线与激光束的轴线相对移动,直至水流与激光束的同轴,以此在激光加工过程中,通过水流与激光束同轴,能够更好的保证加工过程中的加工精确性。
可选地,所述获取水流与激光束的同轴情况包括:
将激光束与连续可见指示光束合成同轴光束,并引导进水流中形成所述水射流导引激光束;
获取水射流导引激光束中水流与激光束的光学信号;
根据光学信号判定水流的轴线是否与激光束的轴线同轴。
在对水射流导引激光束进行观测时,根据可见光的反射光,即可更方便的进行观测,同时可见光的光束与激光束的轴线相同,观测可见光光束的轴线即可判定同轴情况,以此便于进行同轴调整。
可选地,所述获取水射流导引激光束中水流与激光束的光学信号包括:
衰减并过滤反射光中的无效光学信号;
将过滤后的光学信号放大成像。
可以更加直观的观测水射流导引激光束中同轴光束与水流的同轴信息,即激光束与水流的同轴信息,并且操作人员能够更方便的基于观测结果调节激光束与水流的相对位置,在不同轴的情况下,能够更准确的调节激光束或水流的路线,使其轴线重合。
可选地,所述使水流的轴线与激光束的轴线相对移动包括:
移动所述水流的流动路线,使所述水流的轴线靠近所述激光束的轴线,直至轴线重合,或,
移动所述激光束的光路,使所述激光束的光路轴线靠近所述水流的轴线,直至轴线重合。
本发明还提出了一种,水导引激光加工工件的系统,包括:
激光发生装置:用于输出激光束;
水流供给装置:用于将激光束引导进水流中,形成水射流导引激光束;
气流供给装置:用于将气流均匀包裹于所述水射流导引激光束外部,形成具有气流保护层的水射流导引激光束;
工作台:用于安装待加工工件;
其中,对工件照射具有气流保护层的水射流导引激光束进行激光加工。
可选地,所述激光发生装置包括:
短脉冲激光器:用于输出空间截面能量分布为高斯分布的激光束;
激光扩束镜:用于对所述高斯分布的激光束进行扩束;
光纤聚焦镜:用于将扩束后的激光束聚焦;
光路转接模块;用于将扩束后的激光束的光路在空间上进行柔性转换;
激光准直镜:用于将光路转换后的空间散射激光束转变为空间平行激光束;
光束整形模块:用于将空间截面能量分布为高斯分布的空间平行激光束转变为贝塞尔分布的激光束,并将贝塞尔分布的激光束聚焦后输出。
可选地,所述的水导引激光加工工件的系统还包括:
同轴观测模块:用于获取水流与激光束的同轴情况;
同轴调整模块:用于在水流的轴线与激光束的轴线偏离的情况下,使水流的轴线与激光束的轴线相对移动,直至水流与激光束的同轴。
上述水导引激光加工工件的系统具有本发明中水导引激光加工工件的方法相同的有益效果,在此不再赘述。
本发明还提出了一种水导引激光加工工件的设备,包括上述的水导引激光加工工件的系统;以及
控制器,用于控制所述水导引激光加工工件的系统实现如上述的水导引激光加工工件的方法。
上述水导引激光加工工件的设备具有本发明中水导引激光加工工件的方法相同的有益效果,在此不再赘述。
附图说明
图1为本发明中水导引激光加工工件的方法的流程图;
图2为本发明中水导引激光加工工件的系统结构框图一;
图3为本发明中水导引激光加工工件的系统结构框图二;
图4为本发明所述的水导引激光发生装置的整体结构剖视图;
图5为本发明所述的水射流导引激光束发生装置爆炸等二轴测视图;
图6为本发明所述的水射流导引激光束发生装置爆炸正视图;
图7为本发明所述的水射流导引激光束发生装置中气腔构件俯视图;
图8为图7中M-M向局部剖视图;
图9为本发明所述的水射流导引激光束发生装置中气腔构件等二轴侧视图;
图10为气腔构件中气体通道与水流激光通道结构示意图。
附图标记说明:
1-激光发生装置;2-水冷机;3-短脉冲激光器;5-激光扩束镜;6-光纤聚焦镜;7-光路转接模块;8-激光准直镜;10-合束器;11-同轴观测模块;12-连续可见指示光源;13-同轴调整模块;14-光束整形模块;15-装置主体;1501-上端盖;1502-透光玻璃;1503-环形水腔构件密封圈;1504-水腔构件;1505-上端盖弹簧垫圈;1506-上端盖紧定螺栓;1507-射流喷嘴;1508-喷嘴轴侧密封圈;1509-环形气腔构件密封圈;1510-气腔构件;1511-环形气腔构件紧定螺栓;1512-下端盖;1513-下端盖紧定螺栓;1514-水腔;1515-气腔;1516-进水口;1517-进气口;1518-激光入口;1519-水流激光入口;1520-水流激光通道;1521-水射流导引激光束出口;1522-气体通道;19-工作台;20-水流供给装置;21-气流供给装置。
具体实施方式
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
参照图1所示,本发明提出了一种水导引激光加工工件的方法,包括以下步骤:
S1输出激光束;
S2将激光束引导进水流中,形成水射流导引激光束;
S3将所述水射流导引激光束外部包裹气流,形成具有气流保护层的水射流导引激光束;
S4对工件照射具有气流保护层的水射流导引激光束进行激光加工。
在相关技术中,通过将短脉冲激光束导引至水流中,形成水射流导引激光束,并利用有水流包裹的激光束进行扫描加工工件,以此在激光束加工工件时,能够通过水流对加工区域进行降温处理,以此抑制在激光加工过程中产生的热效应的累积,但是当将激光导入水流中后,形成的水射流导引激光束容易与空气产生卷吸效应,从而无法保证水射流导引激光束的工作长度,同时在加工工件时,通常情况下需要将空间的被加工区域与水射流导引激光束对应,并且使水射流导引激光束的工作长度合适,才能够达到较好的加工效果,获得质量较好的工件。
对此,本发明提出一种水导引激光加工工件的方法,其通过在水射流导引激光束形成后,为水射流导引激光束外部均匀包裹一层气流保护层,以此能够抑制水射流导引激光束对空气的卷吸,从而能够有效地延长了水射流导引激光束的稳定工作长度,使得更有利于工件的加工,使得加工效果更好,同时气流保护层可以吹散加工区域淤积的水层,进一步冲刷和冷却加工区域,抑制加工过程中热影响区和再铸层的形成,提高工件的加工精度和质量。
其中,所述输出激光束具体包括以下步骤:
S101输出空间截面能量分布为高斯分布的激光束;
S102对所述高斯分布的激光束进行扩束;
S103将扩束后的激光束聚焦,并进行光路在空间上的柔性转换;
S104将光路转换后的空间散射激光束转变为空间平行激光束;
S105将空间截面能量分布为高斯分布的空间平行激光束转变为贝塞尔分布的激光束;
S106将贝塞尔分布的激光束聚焦后输出。
在步骤S101中,输出的激光束的波长范围可从紫外波段延伸到近红外波段,不限定于某个特殊数值,具体的选用根据工件的物理性质决定;其输出脉宽可从1ns上升到1ms,根据实际加工要求决定,但不限定于某个特殊数值;其重复频率根据实际加工要求决定,但不限定于某个特殊数值。
例如加工金属材料,当对加工效率要求较高,加工质量要求一般时,波长可选用近红外波段,脉宽可选用100ns至1ms,频率可选用1kHz至10kHz;当对加工效率要求一般,加工质量要求较高时,波长可选用紫外至800nm波段,优先选用515nm至532nm,脉宽可选用1ns至100ns,频率可选用10kHz至100kHz。例如加工硅等半导体脆性材料,当对加工效率要求较高,加工质量要求一般时,波长可选用近红外波段,脉宽可选用100ns至500ns,频率可选用5kHz至50kHz;当对加工效率要求一般,加工质量要求较高时,波长可选用紫外至800nm波段,优先选用515nm至532nm,脉宽可选用1ns至100ns,频率可选用50kHz至300kHz。例如加工蓝宝石等透明且硬度较高的材料,当对加工效率要求较高,加工质量要求一般时,波长选用515nm至532nm,脉宽选用100ns至500ns,频率选用10kHz至50kHz;当对加工效率要求一般,加工质量要求较高时,波长选用紫外至532nm波段,脉宽选用1ns至100ns,频率选用50kHz至300kHz。例如加工陶瓷等绝缘、导热性差且硬度较高的材料,当对加工效率要求较高,加工质量要求一般时,波长选用532nm至近红外波段,脉宽选用500ns至1ms,频率选用1kHz至10kHz;当对加工效率要求一般,加工质量要求较高时,波长选用515nm至532nm,脉宽选用100ns至500ns,频率选用10kHz至50kHz。
在步骤S102中通过将激光束的直径扩大,能够使得在后续的激光束传导过程中,能够将激光束聚焦,并使聚焦后的光斑直径更小,以降低激光在通过光纤进行远距离柔性传输时,短脉冲激光束与光纤的耦合难度,以此便于短脉冲激光束的传导,有利于工件的加工。
其中,为了使输出的激光束的参数更有利于加工工件,可将空间截面能量分布为高斯分布的空间平行激光束转变为贝塞尔分布的激光束,并聚焦后输出,以此利用贝塞尔分布的激光束进行加工,更有利于加工工件,使得加工的精确度更高。
在本发明的一个可选的实施例中,在将激光束引导进水流中,形成水射流导引激光束时,还包括,获取水流与激光束的同轴情况,在水流的轴线与激光束的轴线偏离的情况下,使水流的轴线与激光束的轴线相对移动,直至水流与激光束的同轴。
为了使能够对工件进行更精确加工,需要将用于加工的具有气流保护层的水射流导引激光束中水流的轴线与激光束的轴线同轴,以确保精密加工,以此,在形成水射流导引激光束时,还需将水流与位于其中的激光束调整为同轴,即水流与激光束的轴线重合,其中具体包括观察以获取水流与激光束的同轴情况,和在观察到水流与激光束的轴线偏离时,对水流或激光束的路线进行调整,以使水流与激光束的轴线相对靠近,直至轴线重合。
其具体的,所述使水流的轴线与激光束的轴线相对移动包括:移动所述水流的流动路线,使所述水流的轴线靠近所述激光束的轴线,直至轴线重合,或,移动所述激光束的光路,使所述激光束的光路轴线靠近所述水流的轴线,直至轴线重合,通常情况下根据发射激光束和水流的装置进行选择性的调整。
具体的获取水流与激光束的同轴情况包括:
S5将激光束与连续可见指示光束合成同轴光束,并引导进水流中形成所述水射流导引激光束;
S6获取水射流导引激光束中水流与激光束的光学信号;
S7根据光学信号判定水流的轴线是否与激光束的轴线同轴。
由于激光在多数情况下无法直接观测,在其导入水流中形成水射流导引激光束时,难以观测其中的轴线位置,因此,在本实施例中,在激光束导入水流中前,先将激光束与一连续可见指示光源发射的连续可见指示光束合成,使最后发射出一可见的光束,该光束中包括激光束与可见光束,以此再将同轴光束引导进水流中,形成所述水射流导引激光束,以此在对该水射流导引激光束进行观测时,根据可见指示光束对水流照射的反射光,即可更方便的进行观测,同时,只需判断可见指示光束的轴线与水流轴线是否相同,从而判断水流轴线是否与激光束的轴线是否相同,其中,可通过光学探测设备观测包括有同轴光束的水射流导引激光束的光学信号,在本实施例中,获取水射流导引激光束中水流与激光束的光学信号包括:S601衰减并过滤反射光中的无效光学信号;S602将过滤后的光学信号放大成像,以此可以更加直观的观测水射流导引激光束中同轴光束与水流的同轴信息,即激光束与水流的同轴信息,并且操作人员能够更方便的基于观测结果调节激光束与水流的相对位置,在不同轴的情况下,能够更准确的调节激光束或水流的路线,使其轴线重合。
参照图2所示,本发明还提出了一种水导引激光加工工件的系统,包括:激光发生装置1:用于输出激光束;水流供给装置20:用于将激光束引导进水流中,形成水射流导引激光束;气流供给装置21:用于将气流均匀包裹于所述水射流导引激光束外部,形成具有气流保护层的水射流导引激光束;工作台19:用于安装待加工工件;其中,对工件照射具有气流保护层的水射流导引激光束进行激光加工。
本实施例所述的一种水导引激光加工工件的系统,通过水流供给装置20将激光束导入水流中,在用于加工的激光束表面覆盖水流,形成水射流导引激光束,以此通过激光束对工件进行加工时,水流能够起到冷却加工区域的效果抑制热效应,避免在加工区域形成热影响区和再铸层,以此极大的提高了加工质量。
同时,通过气流供给装置21能够在水射流导引激光束外部表面形成气流保护层,以此通过其流保护层抑制水射流导引激光束对空气的卷吸,从而能够有效地延长了水射流导引激光束的稳定工作长度,使得更有利于工件的加工,使得加工效果更好,同时气流保护层可以吹散加工区域淤积的水层,进一步冲刷和冷却加工区域,抑制加工过程中热影响区和再铸层的形成,提高工件的加工质量。
在本发明的一个可选实施例中,参照图3所示,所述激光发生装置1包括:短脉冲激光器3:用于输出空间截面能量分布为高斯分布的激光束;激光扩束镜5:用于对所述高斯分布的激光束进行扩束;光纤聚焦镜6:用于将扩束后的激光束聚焦;光路转接模块7;用于将扩束后的激光束的光路在空间上进行柔性转换;激光准直镜8:用于将光路转换后的空间散射激光束转变为空间平行激光束;光束整形模块14:用于将空间截面能量分布为高斯分布的空间平行激光束转变为贝塞尔分布的激光束,并将贝塞尔分布的激光束聚焦后输出。
其中短脉冲激光器3输出的激光束的波长范围可从紫外波段延伸到近红外波段,不限定于某个特殊数值,具体的选用根据工件的物理性质决定;其输出脉宽可从1ns上升到1ms,根据实际加工要求决定,但不限定于某个特殊数值;其重复频率根据实际加工要求决定,但不限定于某个特殊数值。
例如加工金属材料,当对加工效率要求较高,加工质量要求一般时,波长可选用近红外波段,脉宽可选用100ns至1ms,频率可选用1kHz至10kHz;当对加工效率要求一般,加工质量要求较高时,波长可选用紫外至800nm波段,优先选用515nm至532nm,脉宽可选用1ns至100ns,频率可选用10kHz至100kHz。例如加工硅等半导体脆性材料,当对加工效率要求较高,加工质量要求一般时,波长可选用近红外波段,脉宽可选用100ns至500ns,频率可选用5kHz至50kHz;当对加工效率要求一般,加工质量要求较高时,波长可选用紫外至800nm波段,优先选用515nm至532nm,脉宽可选用1ns至100ns,频率可选用50kHz至300kHz。例如加工蓝宝石等透明且硬度较高的材料,当对加工效率要求较高,加工质量要求一般时,波长选用515nm至532nm,脉宽选用100ns至500ns,频率选用10kHz至50kHz;当对加工效率要求一般,加工质量要求较高时,波长选用紫外至532nm波段,脉宽选用1ns至100ns,频率选用50kHz至300kHz。例如加工陶瓷等绝缘、导热性差且硬度较高的材料,当对加工效率要求较高,加工质量要求一般时,波长选用532nm至近红外波段,脉宽选用500ns至1ms,频率选用1kHz至10kHz;当对加工效率要求一般,加工质量要求较高时,波长选用515nm至532nm,脉宽选用100ns至500ns,频率选用10kHz至50kHz。
其中,在通过短脉冲激光器3输出激光之前,可在系统中设置水冷机2,通过水冷机2对短脉冲激光器3充分冷却后,在启动短脉冲激光器3输出激光,以此能够保证短脉冲激光器3稳定连续地输出短脉冲激光束。
激光扩束镜5用于将短脉冲激光器3输出的激光束的光斑直径扩大,使得在后续激光束传导中,经由光纤聚焦镜6聚焦后的激光束光斑直径更小,降低聚焦后的激光束与光路转接模块7中的石英光纤前端的耦合难度。其工作波段与短脉冲激光器3的输出波段保持一致,其尺寸、扩束倍数根据实际加工要求决定,但不限定于某个特殊数值。
光纤聚焦镜6,用于将经过扩束的激光束导引至光路转接模块7中的石英光纤中。其工作波段与短脉冲激光器3的输出波段保持一致,其尺寸、焦距根据实际加工要求决定,但不限定于某个特殊数值。
光路转接模块7用于实现激光束的光路在空间上进行柔性转换,具体的其包括石英光纤,石英光纤的两端可采用光纤耦合座进行固定设置,石英光纤的工作波段与短脉冲激光器3的输出波段保持一致,其纤芯直径、包层厚度、长度、模数根据实际加工要求决定,但不限定于某个特殊数值。
激光准直镜8,用于将光路转接模块7中石英光纤输出的空间散射激光束转变为空间平行激光束。其工作波段与短脉冲激光器3的输出波段保持一致,其对焦距离、数值孔径根据实际加工要求决定,但不限定于某个特殊数值。
其中,通过光束整形模块14将高斯分布的激光束转换为贝塞尔分布的激光束,更有利于对工件进行激光加工,具体的,光束整形模块14包含轴锥镜组和消色差聚焦镜,轴锥镜组可以将平行入射的空间截面能量分布为高斯分布的激光束转变为平行出射的空间截面能量分布为贝塞尔分布的激光束,使激光束更适合于加工;消色差聚焦镜可以消除光路转换过程中激光束产生的色差,并对平行出射的贝塞尔分布的激光束进行聚焦,使其焦平面与射流喷嘴表面重合,其光束整形模块14的工作波段与短脉冲激光器3的输出波段保持一致。
其中,为了使激光束在系统中进行更好的传输,可在短脉冲激光器3与激光扩束镜5以及激光准直镜8之后的连接光路上设置反射镜组,以对激光束进行传输引导。
在本发明的一个可选实施例中,所述的水导引激光加工工件的系统包括,同轴观测模块11:用于获取水流与激光束的同轴情况;同轴调整模块13:用于在水流的轴线与激光束的轴线偏离的情况下,使水流的轴线与激光束的轴线相对移动,直至水流与激光束的同轴。
在本实施例中,为了使能够对工件进行更精确加工,需要将用于加工的具有气流保护层的水射流导引激光束中水流的轴线与激光束的轴线同轴,以确保精密加工,以此,在系统中设置有同轴观测模块11用于观测激光束与水流的同轴情况,对此,设置了同轴调整模块13,用于调整水流的流动路线,在水流的轴线与激光束的轴线偏离的情况下,使水流的轴线与激光束的轴线相对移动,直至水流与激光束的同轴以保证较好的加工质量。
其中,参照图3为了方便同轴观测模块11对同轴情况进行观测,设置有合束器10,用于将所述激光准直镜8输出的激光束与连续可见指示光源12输出的连续可见指示光束合成为同轴光束,以此通过连续可见指示光与激光束合成的光束共同导引进水流中形成水射流导引激光束,根据可见指示光束与激光束同轴,且由于光束的可见性,能够更好的将激光束的轴线与水流的轴线进行观测对比。
在本发明的一个可选实施例中,通过一水导引激光发生装置实现所述水流供给装置20和气流供给装置21的功能,即通过水导引激光发生装置实现,将激光束引导进水流中,形成水射流导引激光束,以及,将气流均匀包裹于所述水射流导引激光束外部,形成具有气流保护层的水射流导引激光束,
具体的,参照图4-6所示,一种水导引激光发生装置,包括;装置主体15,所述装置主体15内设置有水腔1514和气腔1515,所述水腔1514连通有进水口1516,适于从所述进水口1516导入水流;所述气腔1515连通有进气口1517,适于从所述进气口1517导入气流;所述装置主体15具有激光入口1518和水流激光入口1519;所述水流激光入口1519通过水流激光通道1520连接有水射流导引激光束出口1521,所述水流激光入口1519处设置有射流喷嘴1507,所述射流喷嘴1507与所述水腔1514连通;所述气腔1515与所述水流激光通道1520连通;所述激光入口1518、射流喷嘴1507、水射流导引激光束出口1521均位于同一激光光路上。
在本实施例中,水腔1514通过进水口1516可连接供水模块,其中供水模块可包括高压水泵以使通过对进水口1516对水腔1516进行供水,其中为使所供给的水流不影响加工质量,可将高压水泵连接高压水过滤管路,将水流过滤后导入水腔1516,其中水腔1516连通射流喷嘴1507,通过射流喷嘴1507可将水腔1516中的水喷出,形成水射流,其中射流喷嘴1507设置于水流激光入口1519处,使射流喷嘴1507位于激光的光路上,以此使从激光入口1518进入的激光引导入射流喷嘴1507射出的水射流中,形成水射流导引激光束,可选的,射流喷嘴1507的轴线与激光束的轴线重合,以使喷出的水射流导引激光束中水射流与激光同轴,已达到较好的加工效果,能够更好的对加工进行控制,通过水射流导引激光束对工件进行加工,能够在激光对工件进行加工时,水流能够起到冷却加工区域的效果抑制热效应,避免在加工区域形成热影响区和再铸层,以此极大的提高了加工质量。
其中,输出水流的水压根据加工要求决定,但不限定于某个特殊数值,如加工硅等脆性材料,输出水压选用5MPa至20MPa;如加工金属等非脆性材料,输出水压选用20MPa至50MPa。高压水过滤管路可以将高压水泵输出的水流中的颗粒、气泡等污染项充分过滤,形成洁净的水流,防止这些污染项影响水射流导引激光束的稳定性进而影响加工质量。其过滤极限根据射流喷嘴1507的中心射流孔的直径决定,一般不大于10μm,但不限定于某个特殊数值。
同时,在本发明中,激光引导入所述射流喷嘴1507喷出的水射流中形成水射流导引激光束后,水射流导引激光束在水流激光通道1520中流动,并最终通过水射流导引激光束出口1521流出,以对工件进行加工,其中,水流激光通道1520连通有气腔1515,气腔1515连通有进气口1517,并从进气口1517处导入气流,其中进气口可通过气管连接有供气模块,供气模块包括气泵,以向进气口1517中供气,为使所述气流不影响加工工件的质量,可通过气泵连接气体过滤管路后导入洁净气流,以此在水射流导引激光束在水流激光通道1520中流动时,气腔1515可想水流激光通道1520中导入气流,以使在水射流导引激光束的外部形成气流保护层,最终形成具有气流保护层的水射流导引激光束并从水射流导引激光束出口1521流出,并对工件进行加工,以此在加工时,通过气流保护层能够抑制水射流导引激光束对空气的卷吸,从而能够有效地延长了水射流导引激光束的稳定工作长度,同时气流保护层可以吹散加工区域淤积的水层,进一步冲刷和冷却加工区域,抑制加工过程中热影响区和再铸层的形成。
其中,供气模块输出的气流的气体,不限于某个特殊气体,但是其动力粘度必须低于空气,且物理性质十分稳定,不易燃易爆。其输出气压根据供水模块的输出水压决定,一般不超过5MPa,但不限定于某个特殊数值,气体过滤管路可以将气泵输出的气流中的颗粒等污染项充分过滤,形成洁净的气流,防止这些污染项影响具有气流保护层的水射流导引激光束的稳定性,以此保证加工质量。
在本发明的一个可选实施例中,如图4、5和6所示,所述装置主体15包括上端盖1501和水腔构件1504,所述激光入口1518和进水口1516均位于所述上端盖1501上,所述水流激光入口1519位于所述水腔构件1504上;所述上端盖1501与所述水腔构件1504连接,并与所述水腔构件1504之间形成所述水腔1514,以此便于激光以及水流的导入,结构简单,且密封性好。
在本实施例中,上端盖1501上设置进水口1516,并通过水管与供水模块连接,以进行装置主体15的供水,同时激光入口1518位于上端盖1501顶部,以导入激光束,上端盖1501与水腔构件1504连接,具体的上端盖1501位于水腔构件1504上部,水腔构件1504为环形,其与上端盖1501之间形成所述水腔,可选的,上端盖1501通过上端盖弹簧垫圈1505和上端盖紧定螺栓1506与环形的水腔构件1504固连,以此形成密闭的环形水腔1514,在水腔构件1504与上端盖1501之间设置有环形水腔构件密封圈1503,可以防止水腔1514内部的高压水从上端盖1501和水腔构件1504中间渗出,进一步提升密封效果。
在本发明的一个可选实施例中,所述装置主体15包括气腔构件1510,所述水流激光通道1520位于所述气腔构件1510内,所述气腔构件1510内设置有气体通道1522,所述气体通道1522两端分别连接所述水流激光通道1520和所述气腔1515,所述进气口1517位于所述水腔构件1504上;所述气腔构件1510与所述水腔构件1504连接,并与所述水腔构件1504之间形成有所述气腔1515,以此便于气流的导入,以及气流均匀覆盖于所述水流激光通道1520内水射流导引激光束的表面,能够更便捷的形成具有稳定的气流保护层的水射流导引激光束。
在本实施例中,进气口1517位于水腔构件1504上,并可通过气管连接供气模块,以接收从供气模块输入的洁净气体,水腔构件1504位于气腔构件1510上端,对应的气腔构件1510与水腔构件1504均为环形构件,以此两者之间构成环形气腔1515,水流激光通道1520位于所述气腔构件1510内,并竖直设置,具体的水流激光入口1519位于气腔构件1510上端,以此使射流喷嘴1507固定于环形的气腔构件1510上部,射流喷嘴1507射出的水射流在水流激光通道1520中流通,可选的,气腔构件1510通过环形气腔构件紧定螺栓1511与水腔构件1504固连,并且在气腔构件1510与水腔构件1504之间设置有喷嘴轴侧密封圈1508和环形气腔构件密封圈1509,以使气腔构件1510与水腔构件1504进一步密封,防止水腔1514内部的高压水和气流从气腔构件1510和水腔构件1504中间渗出。
参照图7-10所示,其中,所述气体通道1522为多个,所述气体通道1522与所述水流激光通道1520的径向之间形成有锐角,以使进入水流激光通道1520的气流方向为所述水流的切向,在本实施例中气体通道1522为多个,且均匀设置于气腔构件1510内,气体通道1522的出气口连接水流激光通道1520,气体通道1522的进气口连接环形的气腔1515,气体通道1522的进气口位于气腔构件1510的侧壁的,参照图10所示,气体通道1522与水流激光通道1520均为长条形状,其中气体通道1522与所述水流激光通道1520的径向之间形成有锐角,如图中β夹角,以使进入水流激光通道1520的气流方向为所述水流的切向,相较于气流直接沿水流的截面径向进入,能够防止从气腔1515持续摄入的气流对水射流导引激光束产生较大的剪切力,保证在水射流导引激光束外部形成稳定、均匀、致密的环形气流保护层,尽可能延长水射流导引激光束的稳定工作长度。
在本发明的一个可选的实施例中,所述装置主体包括下端盖1512,所述下端盖1512与所述气腔构件1510固定连接,所述水射流导引激光束出口1521位于所述下端盖1512上,下端盖1512能够与气腔构件1510之间起到密封效果,可选的,下端盖1512与气腔构件1510之间通过下端盖紧定螺栓1513固连,以使更进一步的提高密封效果,防止外部空气进入,从而保证洁净气流在内部充分旋转并均匀包裹水射流导引激光束,防止外部空气影响气流保护层的形成,进而确保在水射流导引激光束外部形成稳定、均匀、致密的环形气流保护层,进一步地提高加工质量。
在本发明的一个可选的实施例中,所述激光入口1518和所述水流激光入口1519分别对应设置于所述水腔1514两侧,所述激光入口1518与所述水腔1514之间设置有透光玻璃1502,以此使激光的光路路线为激光入口1518至水腔1514至水流激光入口1519,由于激光能够穿过透光玻璃,而水流无法穿过,通过透光玻璃的1502设置能够防止水腔1514中的高压水流从激光入口1518中渗出,影响加工。
本发明还提出了一种水导引激光加工工件的设备,包括上述的水导引激光加工工件的系统;以及控制器,用于控制所述水导引激光加工工件的系统实现如上述的水导引激光加工工件的方法。本发明所述的水导引激光加工工件的设备,通过在用于加工的激光束表面覆盖水流,形成水射流导引激光束,以此通过激光束对工件进行加工时,水流能够起到冷却加工区域的效果抑制热效应,避免在加工区域形成热影响区和再铸层,以此极大的提高了加工质量;同时,能够在水射流导引激光束表面形成气流保护层,以此通过其流保护层抑制水射流导引激光束对空气的卷吸,从而能够有效地延长了水射流导引激光束的稳定工作长度,使得更有利于工件的加工,使得加工效果更好,同时气流保护层可以吹散加工区域淤积的水层,进一步冲刷和冷却加工区域,抑制加工过程中热影响区和再铸层的形成,提高工件的加工质量。
虽然本公开披露如上,但本公开的保护范围并非仅限于此。本领域技术人员,在不脱离本公开的精神和范围的前提下,可进行各种变更与修改,这些变更与修改均将落入本发明的保护范围。

Claims (10)

1.一种水导引激光加工工件的方法,其特征在于,包括以下步骤:
输出激光束;
将激光束引导进水流中,形成水射流导引激光束;
将所述水射流导引激光束外部包裹气流,形成具有气流保护层的水射流导引激光束;
对工件照射具有气流保护层的水射流导引激光束进行激光加工。
2.根据权利要求1所述的水导引激光加工工件的方法,其特征在于,所述输出激光束具体包括以下步骤:
输出空间截面能量分布为高斯分布的激光束;
对所述高斯分布的激光束进行扩束;
将扩束后的激光束聚焦,并进行光路在空间上的柔性转换;
将光路转换后的空间散射激光束转变为空间平行激光束;
将空间截面能量分布为高斯分布的空间平行激光束转变为贝塞尔分布的激光束;
将贝塞尔分布的激光束聚焦后输出。
3.根据权利要求1或2所述的水导引激光加工工件的方法,其特征在于,还包括,获取水流与激光束的同轴情况,在水流的轴线与激光束的轴线偏离的情况下,使水流的轴线与激光束的轴线相对移动,直至水流与激光束的同轴。
4.根据权利要求3所述的水导引激光加工工件的方法,其特征在于,所述获取水流与激光束的同轴情况包括:
将激光束与连续可见指示光束合成同轴光束,并引导进水流中形成所述水射流导引激光束;
获取水射流导引激光束中水流与激光束的光学信号;
根据光学信号判定水流的轴线是否与激光束的轴线同轴。
5.根据权利要求4所述的水导引激光加工工件的方法,其特征在于,所述获取水射流导引激光束中水流与激光束的光学信号包括:
衰减并过滤反射光中的无效光学信号;
将过滤后的光学信号放大成像。
6.根据权利要求3所述的水导引激光加工工件的方法,其特征在于,所述使水流的轴线与激光束的轴线相对移动包括:
移动所述水流的流动路线,使所述水流的轴线靠近所述激光束的轴线,直至轴线重合,或,
移动所述激光束的光路,使所述激光束的光路轴线靠近所述水流的轴线,直至轴线重合。
7.一种水导引激光加工工件的系统,其特征在于,包括:
激光发生装置(1):用于输出激光束;
水流供给装置(20):用于将激光束引导进水流中,形成水射流导引激光束;
气流供给装置(21):将气流均匀包裹于所述水射流导引激光束外部,形成具有气流保护层的水射流导引激光束;
工作台(19):用于安装待加工工件;
其中,对工件照射具有气流保护层的水射流导引激光束进行激光加工。
8.根据权利要求7所述的水导引激光加工工件的系统,其特征在于,所述激光发生装置(1)包括:
短脉冲激光器(3):用于输出空间截面能量分布为高斯分布的激光束;
激光扩束镜(5):用于对所述高斯分布的激光束进行扩束;
光纤聚焦镜(6):用于将扩束后的激光束聚焦;
光路转接模块(7);用于将扩束后的激光束的光路在空间上进行柔性转换;
激光准直镜(8):用于将光路转换后的空间散射激光束转变为空间平行激光束;
光束整形模块(14):用于将空间截面能量分布为高斯分布的空间平行激光束转变为贝塞尔分布的激光束,并将贝塞尔分布的激光束聚焦后输出。
9.根据权利要求7所述的水导引激光加工工件的系统,其特征在于,包括:
同轴观测模块(11):用于获取水流与激光束的同轴情况;
同轴调整模块(13):用于在水流的轴线与激光束的轴线偏离的情况下,使水流的轴线与激光束的轴线相对移动,直至水流与激光束的同轴。
10.一种水导引激光加工工件的设备,其特征在于,包括权利要求7-9任一所述的水导引激光加工工件的系统;以及
控制器,用于控制所述水导引激光加工工件的系统实现如权利要求1-6任一项所述的水导引激光加工工件的方法。
CN201910404442.5A 2019-05-15 2019-05-15 一种水导引激光加工工件的方法、系统及其设备 Pending CN110125540A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910404442.5A CN110125540A (zh) 2019-05-15 2019-05-15 一种水导引激光加工工件的方法、系统及其设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910404442.5A CN110125540A (zh) 2019-05-15 2019-05-15 一种水导引激光加工工件的方法、系统及其设备

Publications (1)

Publication Number Publication Date
CN110125540A true CN110125540A (zh) 2019-08-16

Family

ID=67574366

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910404442.5A Pending CN110125540A (zh) 2019-05-15 2019-05-15 一种水导引激光加工工件的方法、系统及其设备

Country Status (1)

Country Link
CN (1) CN110125540A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111408837A (zh) * 2020-04-28 2020-07-14 桂林电子科技大学 高功率激光束高效耦合水导激光结构及方法
CN112605528A (zh) * 2020-12-09 2021-04-06 淮阴工学院 一种微纳结构激光成形装置及成形方法
CN114043073A (zh) * 2021-11-18 2022-02-15 哈尔滨工业大学 一种基于声学信号实时监测的水助激光加工系统及方法
CN116727844A (zh) * 2023-06-21 2023-09-12 北京工业大学 一种水导激光水射流稳定增强耦合装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101508060A (zh) * 2009-03-20 2009-08-19 厦门大学 微激光束精密加工光学装置
CN106825921A (zh) * 2016-11-17 2017-06-13 雅芳股份公司 激光加工材料时保持工件表面没有液体积聚的系统及方法
CN107876976A (zh) * 2017-12-20 2018-04-06 华中科技大学 液膜射流导引激光加工装置
CN108031986A (zh) * 2017-12-29 2018-05-15 苏州德龙激光股份有限公司 基于超短脉冲水导激光加工金刚石的装置及其方法
KR20180070981A (ko) * 2016-12-19 2018-06-27 에이티아이 주식회사 레이저 가공 장치
CN108247201A (zh) * 2018-01-17 2018-07-06 哈尔滨工业大学 一种高压水束发生装置及具有该装置的水导激光系统
CN108581196A (zh) * 2018-04-27 2018-09-28 中国科学院宁波材料技术与工程研究所 水导激光加工装置及其应用、激光加工系统及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101508060A (zh) * 2009-03-20 2009-08-19 厦门大学 微激光束精密加工光学装置
CN106825921A (zh) * 2016-11-17 2017-06-13 雅芳股份公司 激光加工材料时保持工件表面没有液体积聚的系统及方法
KR20180070981A (ko) * 2016-12-19 2018-06-27 에이티아이 주식회사 레이저 가공 장치
CN107876976A (zh) * 2017-12-20 2018-04-06 华中科技大学 液膜射流导引激光加工装置
CN108031986A (zh) * 2017-12-29 2018-05-15 苏州德龙激光股份有限公司 基于超短脉冲水导激光加工金刚石的装置及其方法
CN108247201A (zh) * 2018-01-17 2018-07-06 哈尔滨工业大学 一种高压水束发生装置及具有该装置的水导激光系统
CN108581196A (zh) * 2018-04-27 2018-09-28 中国科学院宁波材料技术与工程研究所 水导激光加工装置及其应用、激光加工系统及方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111408837A (zh) * 2020-04-28 2020-07-14 桂林电子科技大学 高功率激光束高效耦合水导激光结构及方法
CN112605528A (zh) * 2020-12-09 2021-04-06 淮阴工学院 一种微纳结构激光成形装置及成形方法
CN114043073A (zh) * 2021-11-18 2022-02-15 哈尔滨工业大学 一种基于声学信号实时监测的水助激光加工系统及方法
CN116727844A (zh) * 2023-06-21 2023-09-12 北京工业大学 一种水导激光水射流稳定增强耦合装置
CN116727844B (zh) * 2023-06-21 2024-02-23 北京工业大学 一种水导激光水射流稳定增强耦合装置

Similar Documents

Publication Publication Date Title
CN110125540A (zh) 一种水导引激光加工工件的方法、系统及其设备
US5902499A (en) Method and apparatus for machining material with a liquid-guided laser beam
JP5147445B2 (ja) 噴流液柱内に導かれたレーザー光によるレーザー加工装置
Liu et al. Overview on the development and critical issues of water jet guided laser machining technology
CN108247201B (zh) 一种高压水束发生装置及具有该装置的水导激光系统
CN102369080A (zh) 激光加工装置
US11225696B2 (en) Delivery device usable in laser peening operation, and associated method
TW201443415A (zh) 用於減少熱效應的雷射取樣方法
CN106735871A (zh) 液体辅助激光加工方法与装置
US20060096965A1 (en) Nose-piece for a laser-beam drilling or machining head
CN110125532A (zh) 一种水导引激光加工工件的方法、系统及其设备
CN101227998A (zh) 混合激光加工装置
Oh et al. Effect of nozzle types on the laser cutting performance for 60-mm-thick stainless steel
CN103358028A (zh) 水射流激光刻划脆性材料超薄片的方法及系统
CN113751900A (zh) 一种水导激光打孔系统及方法
CN110142502A (zh) 水导引激光发生装置、水导引激光加工系统及其加工方法
Oh et al. Underwater laser cutting of thick stainless steel blocks using single and dual nozzles
CN107457482A (zh) 一种阵列式光波导液体射流装置及方法
CN219004922U (zh) 一种水导激光加工系统
CN207723690U (zh) 一种高压水束发生装置及具有该装置的水导激光系统
CN113634880B (zh) 一种多光束水导激光加工装置与加工系统
CN106541213A (zh) 一种水射流与激光耦合木材切割方法
CN107285647A (zh) 一种光纤表面加工装置
Schmidt et al. Realization and first time operation of a high-power laser-water-jet system
CN108581196A (zh) 水导激光加工装置及其应用、激光加工系统及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190816