CN110119840A - 基于生态动力学筛选湖泊引水方案的方法 - Google Patents
基于生态动力学筛选湖泊引水方案的方法 Download PDFInfo
- Publication number
- CN110119840A CN110119840A CN201910334678.6A CN201910334678A CN110119840A CN 110119840 A CN110119840 A CN 110119840A CN 201910334678 A CN201910334678 A CN 201910334678A CN 110119840 A CN110119840 A CN 110119840A
- Authority
- CN
- China
- Prior art keywords
- lake
- diversion
- water
- chla
- eutrophication
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 19
- 238000012216 screening Methods 0.000 title claims abstract description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 132
- 238000012851 eutrophication Methods 0.000 claims abstract description 28
- 235000015097 nutrients Nutrition 0.000 claims abstract description 22
- 230000001228 trophic effect Effects 0.000 claims abstract description 8
- 235000003715 nutritional status Nutrition 0.000 claims abstract description 7
- 230000008859 change Effects 0.000 claims description 7
- 238000011156 evaluation Methods 0.000 claims description 6
- 238000004088 simulation Methods 0.000 claims description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 3
- 238000013480 data collection Methods 0.000 claims description 3
- 238000009826 distribution Methods 0.000 claims description 3
- 235000016709 nutrition Nutrition 0.000 claims description 3
- 230000035764 nutrition Effects 0.000 claims description 3
- 235000003784 poor nutrition Nutrition 0.000 claims description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 2
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 claims description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 2
- 229930002868 chlorophyll a Natural products 0.000 claims description 2
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 claims description 2
- 229910052760 oxygen Inorganic materials 0.000 claims description 2
- 239000001301 oxygen Substances 0.000 claims description 2
- 229910052698 phosphorus Inorganic materials 0.000 claims description 2
- 239000011574 phosphorus Substances 0.000 claims description 2
- 238000012876 topography Methods 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 6
- 238000011161 development Methods 0.000 abstract description 3
- 230000006872 improvement Effects 0.000 abstract description 2
- 238000000746 purification Methods 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 206010003694 Atrophy Diseases 0.000 description 1
- 230000037444 atrophy Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 230000031068 symbiosis, encompassing mutualism through parasitism Effects 0.000 description 1
- 238000003911 water pollution Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/10—Services
- G06Q50/26—Government or public services
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/152—Water filtration
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Human Resources & Organizations (AREA)
- Economics (AREA)
- General Physics & Mathematics (AREA)
- Tourism & Hospitality (AREA)
- Strategic Management (AREA)
- Marketing (AREA)
- Development Economics (AREA)
- General Business, Economics & Management (AREA)
- Evolutionary Computation (AREA)
- Computer Hardware Design (AREA)
- Entrepreneurship & Innovation (AREA)
- General Engineering & Computer Science (AREA)
- Operations Research (AREA)
- Quality & Reliability (AREA)
- Geometry (AREA)
- Game Theory and Decision Science (AREA)
- Educational Administration (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Primary Health Care (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明公开了一种基于生态动力学筛选湖泊引水方案的方法,该方法首先选取p种引水方案;对受水湖泊进行网格化,应用EFDC软件的水动力模块和水质模块构建湖泊生态动力学模型,对模型参数进行率定和验证;利用该模型模拟得到不同方案引水前后每个网格的Chla浓度,计算每个网格营养状态指数;利用营养状态指数法来评价受水湖泊每个网格的营养化程度;比较不同方案引水前后受水湖泊各级营养状态面积比例的变化,确定湖泊引水方案。本发明以Chla为基准的营养状态指数来评价引水方案对湖泊的改善效果。通过该方法的运用,在众多河湖连通方案中优选出效果最优方案,为河湖连通工作的开展提供参考依据。
Description
技术领域
本发明涉及河湖水生态保护和治理领域,具体涉及一种基于生态动力学筛选湖泊引水方案的方法。
背景技术
城市湖泊是城市的重要水体形态,在抵御洪水、调节径流、改善气候、维持生态平衡等方面发挥着重要作用。近年来,随着城市化进程的加快,我国城市湖泊面临着个数锐减、面积萎缩、水系割裂等重大问题,致使湖泊调蓄功能弱化,自净能力下降,生态功能逐步丧失。目前大部分城市湖泊面临富营养化问题,水质难以达到使用功能的要求。为积极应对湖泊资源和环境的现实问题,迫切需要探索一条经济社会高效发展与湖泊生态持续健康的协同共生之路。
针对我国城市湖泊面临的水环境和水生态问题,国家加大了城市湖泊保护和治理力度,大量开展了截污控污、底泥疏浚等工程,但湖泊水污染问题仍未完全解决。2009年,水利部提出“河湖水系连通”,通过以动制静、以清释污,增强湖泊水体流动性,达到恢复湖泊自净能力、提高水环境容量和改善河湖生态环境的目的。河湖水系连通是提高抵御洪涝灾害能力和水资源统筹调配能力的迫切需要,成为国家江河治理和水生态改善修复的重大需求,对于水资源可持续利用、经济社会高效发展、生态文明水平稳步提高具有重要意义。
目前,河湖水系连通的技术理论和评估方法尚处于探索阶段,对于河湖水系连通理论体系及环境影响还缺乏足够的认识。在现有的河湖水系连通评估研究中,大多是对河湖连通后湖泊水动力或水质改善效果进行评价,很少考虑水生态效应的影响,这种评价方法不能全面地反映河湖连通工程带来的湖泊水环境和水生态改善效益,从而造成河湖连通方案选择的不合理。如何量化水环境和水生态效应,为实施河湖水系连通这一战略提供更可靠的理论及技术支撑,是目前需要进一步探讨的问题。
发明内容
本发明针对现有河湖水系连通评估研究中,较少考虑水生态效应这一问题,提供了一种基于生态动力学筛选湖泊引水方案的方法,
为实现上述目的,本发明所设计一种基于生态动力学筛选湖泊引水方案的方法,包括以下步骤:
1)根据受水湖泊水系现状和河湖连通规划情况,选取m种湖泊引水路线;
2)查阅受水湖泊所在区域同类调水工程引水容积比参考范围(单位:s﹒亿),并勘测受水湖泊的容积(亿m3),引水容积比乘以受水湖泊的容积求得受水湖泊引水流量的范围,然后再受水湖泊引水流量的范围选取n种引水流量;
3)将上述引水路线和引水流量进行排列组合,从中选取p种引水方案;
4)对引水水源和受水湖泊进行实地监测与资料收集,获取受水湖泊模拟所需的数据;
5)采用EFDC软件对受水湖泊进行网格化,设置边界条件和初始条件,通过EFDC软件的水动力模块和水质模块,构建湖泊生态动力学模型;
6)利用受水湖泊水位、流速、水温、DO、TN、TP和Chla相关指标的实测数据,对受水湖泊生态动力学模型的水动力参数和水质参数进行率定和验证,使各指标模拟值和实测值的相对误差小于15%;
7)根据步骤3)中p种引水方案的引水水源水质和引水流量设定边界条件,运用上述构建的受水湖泊生态动力学模型,模拟得到不同引水方案下受水湖泊的流场和水质(包括TN、TP、Chla相关水质指标)浓度时空分布情况;
8)利用受水湖泊生态动力学模型模拟,得到不同引水方案下引水前后的每个网格的Chla浓度,由下述公式计算每个网格营养状态指数;
TLI(Chla)=10[2.5+1.086ln(Chla)]
式中,Chla浓度单位为μg/L,TLI(Chla)为以Chla为参数的营养状态指数;Chla浓度计算得到的综合营养状态指数来反映引水前后湖泊富营养化程度,通过引水前后富营养化面积比例变化情况来作为引水方案优劣的标准;
9)利用上述计算得到的营养状态指数法来评价受水湖泊每个网格的营养化程度;
10)根据受水湖泊每个网格营养状态指数计算结果,由下式计算得到受水湖泊各级营养状态面积比例:
11)比较不同引水方案前后的受水湖泊各级营养状态面积比例的变化,确定湖泊引水方案;
当实施某引水方案后受水湖泊的富营养化水体面积比例大于引水前时,说明该引水方案不可行,
当实施某引水方案后受水湖泊的富营养化水体面积比例小于引水前时,说明方案可行,且引水后富营养化水体面积比例越小,说明湖泊富营养化程度越轻,该引水方案越优。
进一步地,所述步骤4)中,数据包括引水水源和受水湖泊的水温、溶解氧(DO)、总氮(TN)、总磷(TP)、氨氮(NH3-N)、叶绿素a(Chla),以及受水湖泊的水下地形、点源污染、湖泊进出口流量、湖泊水位、湖泊流速。
再进一步地,所述步骤9)中,每个网格的营养化程度评价标准如下:
当0<TLI(Chla)≤30时,营养化程度为贫营养;
当30<TLI(Chla)≤50时,营养化程度为中营养;
当50<TLI(Chla)≤60时,营养化程度为轻度富营养;
当60<TLI(Chla)≤70时,营养化程度为中度富营养;
当70<TLI(Chla)≤100时,营养化程度为重度富营养。
本发明的有益效果:
本发明提出的基于生态动力学的河湖连通方案优选方法,以Chla浓度变化情况来反映引水前后浮游植物的生长变化,通过综合营养状态指数来评价湖泊的富营养化程度。通过该方法的运用,可在众多河湖连通方案中优选出效果最优方案,为河湖连通工作的开展提供一定参考依据。
附图说明
图1为本发明的基于生态动力学的河湖连通方案优选方法的流程示意图。
具体实施方式
下面结合具体实施例对本发明作进一步的详细描述,以便本领域技术人员理解。
如图1所示以某城市湖泊为例,基于生态动力学筛选该湖泊引水方案的方法,具体步骤如下:
1)根据受水湖泊水系现状和河湖连通规划情况,选取2种引水路线,如下:
引水路线A:引水水源1→引水口1→受水湖泊;
引水路线B:引水水源2→引水口2→受水湖泊。
2)经查阅资料,得到同类调水工程引水容积比参考范围为10~60/(s﹒亿),本工程受水湖泊容积为0.85亿m3,由此得到引水流量参考范围为8.5~51m3/s,从中选取4种引水流量,分别为10m3/s、20m3/s、30m3/s、40m3/s。
3)将上述引水路线和引水流量进行排列组合,选取得到4种引水方案,如表1所示;
表1四种湖泊引水方案
4)对引水水源和受水湖泊进行实地监测与资料收集,获取受水湖泊模拟所需的数据;
5)采用EFDC软件对受水湖泊进行网格化,设置边界条件和初始条件,通过EFDC软件的水动力模块和水质模块,构建湖泊生态动力学模型;
6)利用受水湖泊水位、流速、水温、DO、TN、TP和Chla相关指标的实测数据,对受水湖泊生态动力学模型的水动力参数和水质参数进行率定和验证,使各指标模拟值和实测值的相对误差小于15%;
7)根据步骤3)中4种引水方案的引水水源水质和引水流量设定边界条件,运用上述构建的受水湖泊生态动力学模型,模拟得到不同引水方案下受水湖泊的流场和水质(包括TN、TP、Chla相关水质指标)浓度时空分布情况;
8)利用受水湖泊生态动力学模型模拟,得到不同引水方案下引水前后的每个网格的Chla浓度,由下述公式计算每个网格营养状态指数;
TLI(Chla)=10[2.5+1.086ln(Chla)]
式中,Chla浓度单位为μg/L,TLI(Chla)为以Chla为参数的营养状态指数;Chla浓度计算得到的综合营养状态指数来反映引水前后湖泊富营养化程度,通过引水前后富营养化面积比例变化情况来作为引水方案优劣的标准;
9)利用上述计算得到的营养状态指数法来评价受水湖泊每个网格的营养化程度,每个网格的营养化程度评价标准如下:
当0<TLI(Chla)≤30时,营养化程度为贫营养;
当30<TLI(Chla)≤50时,营养化程度为中营养;
当50<TLI(Chla)≤60时,营养化程度为轻度富营养;
当60<TLI(Chla)≤70时,营养化程度为中度富营养;
当70<TLI(Chla)≤100时,营养化程度为重度富营养。
10)根据受水湖泊每个网格营养状态指数计算结果,由下式计算得到受水湖泊各级营养状态面积比例:
11)比较不同引水方案前后的受水湖泊各级营养状态面积比例的变化,
引水前和4种方案引水后湖泊各级营养状态比例结果如表2所示。
表2引水前后湖泊富营养化状态情况
由表2可以看出,引水前湖泊富营养化比例为100%,方案①~④引水后湖泊富营养化比例分别为98.5%、74.4%、69.4%、59.2%,四种方案引水后湖泊富营养化比例均有不同程度的减少,说明这四种方案均可行,其中方案④引水后富营养化水体比例最小,确定方案④为最佳引水方案。
其它未详细说明的部分均为现有技术。尽管上述实施例对本发明做出了详尽的描述,但它仅仅是本发明一部分实施例,而不是全部实施例,人们还可以根据本实施例在不经创造性前提下获得其他实施例,这些实施例都属于本发明保护范围。
Claims (3)
1.一种基于生态动力学筛选湖泊引水方案的方法,其特征在于:包括以下步骤:
1)根据受水湖泊水系现状和河湖连通规划情况,选取m种湖泊引水路线;
2)查阅受水湖泊所在区域同类调水工程引水容积比参考范围,并勘测受水湖泊的容积,引水容积比乘以受水湖泊的容积求得受水湖泊引水流量的范围,然后在受水湖泊引水流量的范围选取n种引水流量;
3)将上述引水路线和引水流量进行排列组合,从中选取p种引水方案;
4)对引水水源和受水湖泊进行实地监测与资料收集,获取受水湖泊模拟所需的数据;
5)采用EFDC软件对受水湖泊进行网格化,设置边界条件和初始条件,通过EFDC软件的水动力模块和水质模块,构建湖泊生态动力学模型;
6)利用受水湖泊水位、流速、水温、DO、TN、TP和Chla相关指标的实测数据,对受水湖泊生态动力学模型的水动力参数和水质参数进行率定和验证,使各指标模拟值和实测值的相对误差小于15%;
7)根据步骤3)中p种引水方案的引水水源水质和引水流量设定边界条件,运用上述构建的受水湖泊生态动力学模型,模拟得到不同引水方案下受水湖泊的流场和水质浓度时空分布情况;
8)利用受水湖泊生态动力学模型模拟,得到不同引水方案下引水前后的每个网格的Chla浓度,由下述公式计算每个网格营养状态指数;
TLI(Chla)=10[2.5+1.086ln(Chla)]
式中,Chla浓度单位为μg/L,TLI(Chla)为以Chla为参数的营养状态指数;Chla浓度计算得到的综合营养状态指数来反映引水前后湖泊富营养化程度,通过引水前后富营养化面积比例变化情况来作为引水方案优劣的标准;
9)利用上述计算得到的营养状态指数法来评价受水湖泊每个网格的营养化程度;
10)根据受水湖泊每个网格营养状态指数计算结果,由下式计算得到受水湖泊各级营养状态面积比例:
11)比较不同引水方案前后的受水湖泊各级营养状态面积比例的变化,确定湖泊引水方案;
当实施某引水方案后受水湖泊的富营养化水体面积比例大于引水前时,说明该引水方案不可行,
当实施某引水方案后受水湖泊的富营养化水体面积比例小于引水前时,说明方案可行,且引水后富营养化水体面积比例越小,说明湖泊富营养化程度越轻,该引水方案越优。
2.根据权利要求1所述基于生态动力学筛选湖泊引水方案的方法,其特征在于:所述步骤4)中,数据包括引水水源和受水湖泊的水温、溶解氧、总氮、总磷、氨氮、叶绿素a,以及受水湖泊的水下地形、点源污染、湖泊进出口流量、湖泊水位、湖泊流速。
3.根据权利要求1所述基于生态动力学筛选湖泊引水方案的方法,其特征在于:所述步骤9)中,每个网格的营养化程度评价标准如下:
当0<TLI(Chla)≤30时,营养化程度为贫营养;
当30<TLI(Chla)≤50时,营养化程度为中营养;
当50<TLI(Chla)≤60时,营养化程度为轻度富营养;
当60<TLI(Chla)≤70时,营养化程度为中度富营养;
当70<TLI(Chla)≤100时,营养化程度为重度富营养。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910334678.6A CN110119840B (zh) | 2019-04-24 | 2019-04-24 | 基于生态动力学筛选湖泊引水方案的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910334678.6A CN110119840B (zh) | 2019-04-24 | 2019-04-24 | 基于生态动力学筛选湖泊引水方案的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110119840A true CN110119840A (zh) | 2019-08-13 |
CN110119840B CN110119840B (zh) | 2021-05-28 |
Family
ID=67521448
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910334678.6A Active CN110119840B (zh) | 2019-04-24 | 2019-04-24 | 基于生态动力学筛选湖泊引水方案的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110119840B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111695784A (zh) * | 2020-05-21 | 2020-09-22 | 河海大学 | 一种针对城市内湖调水引流方案的综合评价方法及系统 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105260820A (zh) * | 2015-09-22 | 2016-01-20 | 北京市水科学技术研究院 | 调水工程受水区水生态系统风险评估方法 |
CN105973207A (zh) * | 2016-05-05 | 2016-09-28 | 云南省环境科学研究院 | 大型浅水湖泊水华集聚水域的补水控藻方法 |
CN107764963A (zh) * | 2017-10-12 | 2018-03-06 | 水利部交通运输部国家能源局南京水利科学研究院 | 一种引水工程湖泊生态影响监控与评估技术方法 |
CN109508507A (zh) * | 2018-12-03 | 2019-03-22 | 河海大学 | 一种利用风向辅助浅水湖泊水环境改善的方法 |
-
2019
- 2019-04-24 CN CN201910334678.6A patent/CN110119840B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105260820A (zh) * | 2015-09-22 | 2016-01-20 | 北京市水科学技术研究院 | 调水工程受水区水生态系统风险评估方法 |
CN105973207A (zh) * | 2016-05-05 | 2016-09-28 | 云南省环境科学研究院 | 大型浅水湖泊水华集聚水域的补水控藻方法 |
CN107764963A (zh) * | 2017-10-12 | 2018-03-06 | 水利部交通运输部国家能源局南京水利科学研究院 | 一种引水工程湖泊生态影响监控与评估技术方法 |
CN109508507A (zh) * | 2018-12-03 | 2019-03-22 | 河海大学 | 一种利用风向辅助浅水湖泊水环境改善的方法 |
Non-Patent Citations (1)
Title |
---|
YANG WEI 等: "Developing a comprehensive evaluation method for Interconnected River System Network assessment: A case study in Tangxun Lake group", 《JOURNAL OF GEOGRAPHICAL SCIENCES》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111695784A (zh) * | 2020-05-21 | 2020-09-22 | 河海大学 | 一种针对城市内湖调水引流方案的综合评价方法及系统 |
CN111695784B (zh) * | 2020-05-21 | 2022-08-19 | 河海大学 | 一种针对城市内湖调水引流方案的综合评价方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN110119840B (zh) | 2021-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tang et al. | Effects of ecological flow release patterns on water quality and ecological restoration of a large shallow lake | |
Wang et al. | Modelling water quality and quantity with the influence of inter-basin water diversion projects and cascade reservoirs in the Middle-lower Hanjiang River | |
Xue et al. | Modeling ocean circulation and biogeochemical variability in the Gulf of Mexico | |
Knowles et al. | Elevational dependence of projected hydrologic changes in the San Francisco estuary and watershed | |
CN107908888A (zh) | 一种感潮河段生态环境需水量计算方法 | |
Dat et al. | Modeling the influence of river discharge and sea level rise on salinity intrusion in Mekong Delta | |
Loáiciga | Long-term climatic change and sustainable ground water resources management | |
CN111027813A (zh) | 海岸带现状生态环境评价及分析方法 | |
CN109544021A (zh) | 一种区域水生态服务价值综合评价方法 | |
Zhang et al. | Spatiotemporal variation and evolutionary analysis of the coupling coordination between urban social-economic development and ecological environments in the Yangtze River Delta cities | |
Wang et al. | Sustainable development evaluation and its obstacle factors of the Weihe River Basin in Shaanxi Province, China | |
Zhu et al. | Spatial distribution and aggregation of human-environment coordination and optimal paths in the Yellow River Delta, China | |
CN110119840A (zh) | 基于生态动力学筛选湖泊引水方案的方法 | |
Xuemei et al. | Analysis of the Spatio-Temporal Evolution of Land Intensive Use and Land Ecological Security in Tianjin from 1980 to 2019 | |
Cossarini et al. | Downscaling experiment for the Venice lagoon. II. Effects of changes in precipitation on biogeochemical properties | |
CN116306361A (zh) | 一种平原河网区农村河流氮拦截能力评估方法 | |
CN116307793A (zh) | 一种基于双评价的城镇开发边界划定方法 | |
Guo et al. | Study on the simulation of reservoir water environment and the optimization of ecological water replenishment effect: Taking Luhun Reservoir as an example | |
Li et al. | Analysis of the spatio-temporal evolution of land intensive use and land ecological security in Tianjin from 1980 to 2019 [J] | |
CHEN et al. | Evaluation of land-use efficiency based on regional scale:—a case study in Zhanjiang, guangdong province | |
Xiao et al. | The impact of extreme precipitation on physical and biogeochemical processes regarding with nutrient dynamics in a semi-closed bay | |
Rana et al. | A Demand-Driven Water Management Framework for Rajshahi City Corporation in Bangladesh | |
Zhang et al. | Quantitative Method of Agricultural Land Environmental Bearing Capacity under Resource Constraint. | |
Lei Sr et al. | Numerical simulation study on water environment of Puzhehei Lake | |
CN114819593B (zh) | 一种确定黄河故道流域生态修复措施的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |