CN110119724A - A kind of finger vein identification method - Google Patents
A kind of finger vein identification method Download PDFInfo
- Publication number
- CN110119724A CN110119724A CN201910417207.1A CN201910417207A CN110119724A CN 110119724 A CN110119724 A CN 110119724A CN 201910417207 A CN201910417207 A CN 201910417207A CN 110119724 A CN110119724 A CN 110119724A
- Authority
- CN
- China
- Prior art keywords
- image
- finger vein
- vein
- finger
- identification method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 210000003462 vein Anatomy 0.000 title claims abstract description 62
- 238000000034 method Methods 0.000 title claims abstract description 21
- 238000001914 filtration Methods 0.000 claims abstract description 6
- 238000001514 detection method Methods 0.000 claims abstract description 4
- 238000010606 normalization Methods 0.000 claims abstract description 4
- 239000000284 extract Substances 0.000 claims abstract description 3
- 238000009499 grossing Methods 0.000 claims abstract 2
- 230000009466 transformation Effects 0.000 claims abstract 2
- 238000000605 extraction Methods 0.000 claims description 8
- 238000004364 calculation method Methods 0.000 claims description 3
- 238000005452 bending Methods 0.000 claims 1
- 238000003708 edge detection Methods 0.000 claims 1
- 230000008030 elimination Effects 0.000 claims 1
- 238000003379 elimination reaction Methods 0.000 claims 1
- 230000002708 enhancing effect Effects 0.000 claims 1
- 238000005286 illumination Methods 0.000 claims 1
- 230000004927 fusion Effects 0.000 abstract description 2
- 230000010339 dilation Effects 0.000 abstract 1
- 238000007781 pre-processing Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 230000036544 posture Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/25—Determination of region of interest [ROI] or a volume of interest [VOI]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/26—Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion
- G06V10/267—Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion by performing operations on regions, e.g. growing, shrinking or watersheds
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/30—Noise filtering
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/34—Smoothing or thinning of the pattern; Morphological operations; Skeletonisation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/14—Vascular patterns
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- Collating Specific Patterns (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
本发明涉及一种指静脉识别方法,包括如下步骤:S1、对高清摄像头采集的图像进行ROI定位;S2、对图像不同部分进行灰度归一化处理;S3、对图像进行均值滤波、高斯滤波消除噪声;S4、使用曲率检测判断纹路中心位置;S5、通过gamma变换增强灰度图的对比度;S6、使用基于索引表的细化算法来判断边缘像素点;S7、将提取指静脉骨架进行融合、膨胀、平滑处理。通过模板匹配、Hu不变矩、改进的Zernike矩,进行指静脉识别。尤其在图像采集不清晰的条件下,该方法具有较强的抗干扰能力和较高精度的识别能力。
The invention relates to a finger vein identification method, comprising the following steps: S1, performing ROI positioning on an image collected by a high-definition camera; S2, performing grayscale normalization processing on different parts of the image; S3, performing mean filtering and Gauss filtering on the image Eliminate noise; S4, use curvature detection to determine the center position of the texture; S5, enhance the contrast of the grayscale image through gamma transformation; S6, use the refinement algorithm based on the index table to determine the edge pixels; S7, extract the finger vein skeleton for fusion , Dilation, Smoothing. Finger vein recognition is performed by template matching, Hu invariant moments, and improved Zernike moments. Especially under the condition of unclear image acquisition, the method has strong anti-interference ability and high-precision recognition ability.
Description
技术领域technical field
本发明属于图像处理与生物识别技术领域,尤其涉及一种指静脉。识别方法。The invention belongs to the technical field of image processing and biometric identification, and in particular relates to a finger vein. recognition methods.
背景技术Background technique
指静脉识别是运用人体的生物特征识别个人身份的一种技术。现阶段生物识别技术主要依靠指纹识别与虹膜识别,而这两种属于采集人体的体表信息特征,容易被盗取和模仿。而指静脉识别技术作为新一代人体特征识别技术,由于其活体性、唯一性,从途径上防止了个人信息特征被盗取的情况。同时也避免了因为其他环境因素所带来的影响。Finger vein recognition is a technology that uses human biometrics to identify individuals. At this stage, biometric identification technology mainly relies on fingerprint identification and iris identification, and these two types of body surface information are collected from the human body, which are easy to be stolen and imitated. Finger vein recognition technology, as a new generation of human body feature recognition technology, prevents personal information features from being stolen due to its liveness and uniqueness. At the same time, it also avoids the impact of other environmental factors.
指静脉识别设备在识别过程中,因核心部件(光源、滤光片、摄像头)无法精确定位导致采集到的原始指静脉图像清晰度较低;识别算法的性能容易受到图像旋转、平移以及噪声的影响。During the identification process of finger vein identification equipment, the original finger vein images collected are of low definition due to the inability to accurately locate the core components (light source, filter, camera); the performance of the identification algorithm is easily affected by image rotation, translation and noise. influences.
因此,一种针对原始图像进行预处理,有效抑制图像旋转、平移给识别精度带来影响的指静脉识别算法亟待被研发。Therefore, a finger vein recognition algorithm that preprocesses the original image and effectively suppresses the influence of image rotation and translation on the recognition accuracy needs to be developed urgently.
发明内容SUMMARY OF THE INVENTION
本发明提供了一种指静脉识别方法。The present invention provides a finger vein identification method.
指静脉识别方法主要包括四部分,图像预处理、指静脉特征提取生成匹配模板、指静脉算法识别。Finger vein identification method mainly includes four parts, image preprocessing, finger vein feature extraction to generate matching template, and finger vein algorithm identification.
图像预处理部分由图像灰度化、ROI区域提取、线性归一化、均值滤波、高斯滤波等部分组成。采用Sobel算子提取ROI区域,通过线性滤波对灰度图进行去噪、平滑处理。The image preprocessing part consists of image grayscale, ROI region extraction, linear normalization, mean filter, Gaussian filter and so on. The ROI area is extracted by the Sobel operator, and the grayscale image is denoised and smoothed by linear filtering.
特征提取是图像预处理之后的灰度图中提取到清晰的指静脉纹路、骨架、最后生成注册模板。本发明采用曲率检测的方法,检测指静脉图像中灰度变化的极值点,从较复杂的背景中提取出指静脉纹路;之后通过Gamma变化对图像质量进行增强,使用OTSU阈值分割法,将灰度图二值化,;通过邻域检测的方法,将二值化之后的较粗的脉络进行细化,提取指静脉骨架。最后通过旋转融合、膨胀等方法对指静脉骨架进行处理,生成用于匹配的指静脉模板Feature extraction is to extract clear finger vein patterns and skeletons from the grayscale image after image preprocessing, and finally generate a registration template. The invention adopts the method of curvature detection to detect the extreme point of grayscale change in the finger vein image, and extracts the finger vein pattern from the more complex background; then the image quality is enhanced by the change of Gamma, and the OTSU threshold segmentation method is used to separate the The grayscale image is binarized, and through the method of neighborhood detection, the thicker veins after binarization are refined, and the finger vein skeleton is extracted. Finally, the finger vein skeleton is processed by rotation fusion, expansion and other methods to generate a finger vein template for matching.
指静脉算法识别部分包括模板匹配、Hu不变矩、改进的Zernike矩匹配三部分。模板匹配因其处理速度快等优点,作为匹配算法的重要组成部分。当图像采集质量较高时,可以直接进行识别,提高识别效率。当模板匹配不能准确的进行识别时,通过对比计算采集的指静脉图像与指静脉库中样本的七阶Hu矩进行识别。进一步地,通过计算指静脉图像的改进Zernike七阶矩,可以弥补Hu在高阶因旋转带来的识别困难。The identification part of finger vein algorithm includes template matching, Hu invariant moment and improved Zernike moment matching. Template matching is an important part of the matching algorithm because of its fast processing speed. When the image acquisition quality is high, the recognition can be performed directly to improve the recognition efficiency. When the template matching cannot accurately identify, the seventh-order Hu moments of the collected finger vein images and the samples in the finger vein library are compared and calculated for identification. Further, by calculating the improved Zernike seventh-order moment of the finger vein image, it can make up for the difficulty of Hu's recognition in high order due to rotation.
当模板匹配、Hu矩、Zernike矩三种识别函数中的任意一种匹配度高于阈值则判定匹配成功。When the matching degree of any one of the three recognition functions of template matching, Hu moment and Zernike moment is higher than the threshold, it is determined that the matching is successful.
与现有技术相比,本发明的有益效果如下:Compared with the prior art, the beneficial effects of the present invention are as follows:
本发明可以实现对指静脉的高精度采集,解决了识别过程中存在图像旋转、平移所带来的识别困难。采集了50个人的150个指静脉样本,在手指旋转最大为左右角度为30°的情况下。识别情况如下表。The invention can realize the high-precision acquisition of the finger vein, and solve the identification difficulty caused by image rotation and translation in the identification process. 150 finger vein samples were collected from 50 individuals, under the condition that the finger rotates at a maximum left-right angle of 30°. The identifications are listed in the table below.
本发明的优点在于,在指静脉识别的过程中,由于手指放入的姿势不同、光照不同。很难保证同一个体在指静脉录入时采集的模板和匹配时提取的有效信息是一致的。大多数都会发生旋转、偏移。这给高精度识别带来了不小的挑战。基于此本发明提出了一种改进的Zernike矩识别算法,以此来更好的表征指静脉纹路的全局特征,提高识别精度。The advantage of the present invention lies in that, in the process of finger vein identification, due to the different postures and lighting of the fingers. It is difficult to ensure that the template collected by the same individual during finger vein entry is consistent with the valid information extracted during matching. Most of them will be rotated and offset. This brings a lot of challenges to high-precision recognition. Based on this, the present invention proposes an improved Zernike moment recognition algorithm, so as to better characterize the global features of finger vein patterns and improve the recognition accuracy.
附图说明Description of drawings
图1为本发明指静脉图像特征提取流程图Fig. 1 is the flow chart of finger vein image feature extraction according to the present invention
图2为本发明指静脉识别算法流程图Fig. 2 is the flow chart of the finger vein recognition algorithm of the present invention
具体实施方式Detailed ways
本发明提供了一种识别精准的人体指静脉识别方法。The invention provides a method for identifying human finger veins with accurate identification.
下面对本发明的具体实施方式进行描述,以便本技术领域的技术人员理解本发明。The specific embodiments of the present invention are described below so that those skilled in the art can understand the present invention.
参考图1,图1为指静脉识别算法的一个实施例的特征提取流程图;如图一所示,该提取方法包括步骤S1至步骤S7。Referring to FIG. 1 , FIG. 1 is a flowchart of feature extraction of an embodiment of a finger vein recognition algorithm; as shown in FIG. 1 , the extraction method includes steps S1 to S7 .
在步骤S1中,获取当前采集的指静脉图像,通过计算灰度图水平方向的梯度,来检测垂直方向上的边缘,通过计算灰度图垂直方向的梯度,来检测水平方向上的边缘;In step S1, the currently collected finger vein image is obtained, the edge in the vertical direction is detected by calculating the gradient in the horizontal direction of the grayscale image, and the edge in the horizontal direction is detected by calculating the gradient in the vertical direction of the grayscale image;
在步骤S2中,其有效信息的灰度值更加集中,有效区间跨度小于0-255,采用公式进行线性归一化处理;In step S2, the gray value of its effective information is more concentrated, and the effective interval span is less than 0-255, using the formula Perform linear normalization;
在步骤S3中,采用公式进行均值滤波,高斯滤波采用公式In step S3, the formula Perform mean filtering, Gaussian filtering using the formula
在步骤S4中,对处理后的图像的像素灰度值进行求导,确定指静脉纹路中心位置;In step S4, the pixel gray value of the processed image is derived to determine the center position of the finger vein pattern;
在步骤S5中,采用公式s=crγ对图像的灰度值进行Gamma变换操作,对图像灰度区分增强;In step S5, use the formula s=cr γ to perform a Gamma transform operation on the gray value of the image, so as to distinguish and enhance the gray level of the image;
在步骤S6中,通过遍历指静脉二值图的边缘,并根据索引表去判断该点的8领域的情况。若结果为1则去除;若结果为0则为图像边缘像素点,需要保留。In step S6, by traversing the edge of the finger vein binary image, and according to the index table to determine the situation of the eight fields of the point. If the result is 1, it is removed; if the result is 0, it is an image edge pixel and needs to be retained.
在步骤S7中,将一副指静脉骨架旋转多个角度,之后再对多副骨架图像进行融合。对融合之后的指静脉图像再采用计算核为正方形的结构元素进行形态学膨胀处理。生成指静脉注册模板。其中计算核为 In step S7, a pair of finger vein skeletons are rotated by multiple angles, and then multiple skeleton images are fused. The fused finger vein image is then subjected to morphological expansion processing using the structural elements whose computing kernel is a square. Generate a finger vein registration template. where the computing core is
参考图2,图2为指静脉算法识别流程。Referring to FIG. 2 , FIG. 2 shows the identification process of the finger vein algorithm.
进一步地,模板匹配公式为T=1-∫∫s(f-t)2dx dy,其中S表表示图像t(x,y)的定义域,计算指静脉输入图像与样本图像的相似度S,1表示相似度最高,0表示无相似度。Further, the template matching formula is T=1-∫∫ s (ft) 2 dx dy, where S represents the definition domain of the image t(x, y), and the similarity S, 1 of the finger vein input image and the sample image is calculated Indicates the highest similarity, and 0 means no similarity.
进一步地,Hu矩的计算方式如下Further, the calculation method of Hu moment is as follows
φ1=η20+η02 φ 1 =η 20 +η 02
φ2=(η20-η02)2+4η11 2 φ 2 =(η 20 -η 02 ) 2 +4η 11 2
φ3=(η30-3η12)2+(3η21-η03)2 φ 3 =(η 30 -3η 12 ) 2 +(3η 21 -η 03 ) 2
φ4=(η30+η12)2+(η21+η03)2 φ 4 =(η 30 +η 12 ) 2 +(η 21 +η 03 ) 2
φ5=(η30-3η12)(η30+η12)[(η30+η12)2-3(η21+η03)2]+φ 5 =(η 30 -3η 12 )(η 30 +η 12 )[(η 30 +η 12 ) 2 -3(η 21 +η 03 ) 2 ]+
(3η21-η03)(η21+η03)[3(η30+η12)2-(η21+η03)2](3n 21 -n 03 )(n 21 +n 03 )[3(n 30 +n 12 ) 2 -(n 21 +n 03 ) 2 ]
φ6=(η20-η02)[(η30+η12)2-(η21+η03)2]+φ 6 =(η 20 -η 02 )[(η 30 +η 12 ) 2 -(η 21 +η 03 ) 2 ]+
4η11(η30+η12)(η21+η03)4n 11 (n 30 +n 12 ) (n 21 +n 03 )
φ7=(3η21-η03)(η30+η12)[(η30+η12)2-3(η21+η03)2]+φ 7 =(3η 21 -η 03 )(η 30 +η 12 )[(η 30 +η 12 ) 2 -3(η 21 +η 03 ) 2 ]+
(3η12-η30)(η21+η03)[3(η30+η12)2-(η21+η03)2](3n 12 -n 30 )(n 21 +n 03 )[3(n 30 +n 12 ) 2 -(n 21 +n 03 ) 2 ]
为Hu二三阶矩构造的七个不变矩,ηpq为(p+q)阶不变矩。 are the seven invariant moments constructed for the second and third order moments of Hu, and η pq is the (p+q) order invariant moment.
进一步地,改进的Zernike矩的计算方式如下。Further, the calculation method of the improved Zernike moment is as follows.
一是找出指静脉脉络的形状质心O(xo,yo),再利用欧式距离找出其脉络上距离形状质心O最远的像素点B(xb,yb),r为两者之间的距离,从而确定其指静脉脉络的外接圆,半径为r,把所有的目标点归一化到单位圆内,这就使得得到的Zernike矩具有平移和尺度不变性;One is to find the shape centroid O(x o , y o ) of the finger vein vein, and then use the Euclidean distance to find the pixel point B(x b , y b ) on the vein that is farthest from the shape centroid O, and r is both The distance between them, thus determining the circumscribed circle of its finger veins, the radius is r, and all the target points are normalized into the unit circle, which makes the Zernike moment obtained have translation and scale invariance;
二是计算出图像中指静脉脉络的0阶几何矩。The second is to calculate the 0th order geometric moment of the finger vein venation in the image.
m00=∫∫f(x,y)dxdym 00 =∫∫f(x,y)dxdy
三是计算单位圆中各阶Zernike矩The third is to calculate the Zernike moments of each order in the unit circle
四是利用0阶几何矩归一化Zernike矩The fourth is to normalize the Zernike moment using the 0th order geometric moment
进一步地,将指静脉图像的各项特征值与指静脉库进行比对,当模板匹配、七阶Hu矩值、与改进的Zernike矩值三者的匹配度,与阈值进行比较,其中任意一个值大于阈值则匹配成功。Further, the eigenvalues of the finger vein image are compared with the finger vein database, when the matching degree of template matching, seventh-order Hu moment value, and improved Zernike moment value is compared with the threshold, any one of If the value is greater than the threshold, the match is successful.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910417207.1A CN110119724A (en) | 2019-05-16 | 2019-05-16 | A kind of finger vein identification method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910417207.1A CN110119724A (en) | 2019-05-16 | 2019-05-16 | A kind of finger vein identification method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110119724A true CN110119724A (en) | 2019-08-13 |
Family
ID=67522905
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910417207.1A Pending CN110119724A (en) | 2019-05-16 | 2019-05-16 | A kind of finger vein identification method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110119724A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110852213A (en) * | 2019-10-30 | 2020-02-28 | 天津大学 | Multi-condition automatic reading method of pointer meter based on template matching |
CN111639557A (en) * | 2020-05-15 | 2020-09-08 | 圣点世纪科技股份有限公司 | Intelligent registration feedback method for finger vein image |
CN111639555A (en) * | 2020-05-15 | 2020-09-08 | 圣点世纪科技股份有限公司 | Finger vein image noise accurate extraction and self-adaptive filtering denoising method and device |
CN111639560A (en) * | 2020-05-15 | 2020-09-08 | 圣点世纪科技股份有限公司 | Finger vein feature extraction method and device based on dynamic fusion of vein skeleton line and topographic relief characteristic |
CN112287147A (en) * | 2020-10-30 | 2021-01-29 | 华盛通(无锡)影像科技有限公司 | Multi-template finger vein feature search algorithm based on bubbling sorting |
CN113128378A (en) * | 2021-04-06 | 2021-07-16 | 浙江精宏智能科技有限公司 | Quick finger vein identification method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101730905A (en) * | 2007-07-11 | 2010-06-09 | 索尼公司 | Registering apparatus, collaiting apparatus, data structure, and storage medium |
CN102622587A (en) * | 2012-03-08 | 2012-08-01 | 哈尔滨工程大学 | Hand back vein recognition method based on multi-scale second-order differential structure model and improved watershed algorithm |
CN103077459A (en) * | 2012-12-18 | 2013-05-01 | 天津科技大学 | Method for carrying out living body authentication and payment by fusing multi-biometric features of user |
CN107368792A (en) * | 2017-06-29 | 2017-11-21 | 广州智慧城市发展研究院 | A kind of finger vein identification method and system based on wave filter and Bone Edge |
-
2019
- 2019-05-16 CN CN201910417207.1A patent/CN110119724A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101730905A (en) * | 2007-07-11 | 2010-06-09 | 索尼公司 | Registering apparatus, collaiting apparatus, data structure, and storage medium |
CN102622587A (en) * | 2012-03-08 | 2012-08-01 | 哈尔滨工程大学 | Hand back vein recognition method based on multi-scale second-order differential structure model and improved watershed algorithm |
CN103077459A (en) * | 2012-12-18 | 2013-05-01 | 天津科技大学 | Method for carrying out living body authentication and payment by fusing multi-biometric features of user |
CN107368792A (en) * | 2017-06-29 | 2017-11-21 | 广州智慧城市发展研究院 | A kind of finger vein identification method and system based on wave filter and Bone Edge |
Non-Patent Citations (1)
Title |
---|
胡阳阳: ""基于嵌入式的指静脉识别系统的研究"", 《中国优秀硕士学位论文全文数据库信息科技辑》 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110852213A (en) * | 2019-10-30 | 2020-02-28 | 天津大学 | Multi-condition automatic reading method of pointer meter based on template matching |
CN110852213B (en) * | 2019-10-30 | 2023-12-12 | 天津大学 | Pointer instrument multi-condition automatic reading method based on template matching |
CN111639557A (en) * | 2020-05-15 | 2020-09-08 | 圣点世纪科技股份有限公司 | Intelligent registration feedback method for finger vein image |
CN111639555A (en) * | 2020-05-15 | 2020-09-08 | 圣点世纪科技股份有限公司 | Finger vein image noise accurate extraction and self-adaptive filtering denoising method and device |
CN111639560A (en) * | 2020-05-15 | 2020-09-08 | 圣点世纪科技股份有限公司 | Finger vein feature extraction method and device based on dynamic fusion of vein skeleton line and topographic relief characteristic |
CN111639557B (en) * | 2020-05-15 | 2023-06-20 | 圣点世纪科技股份有限公司 | Intelligent registration feedback method for finger vein image |
CN112287147A (en) * | 2020-10-30 | 2021-01-29 | 华盛通(无锡)影像科技有限公司 | Multi-template finger vein feature search algorithm based on bubbling sorting |
CN113128378A (en) * | 2021-04-06 | 2021-07-16 | 浙江精宏智能科技有限公司 | Quick finger vein identification method |
CN113128378B (en) * | 2021-04-06 | 2022-07-19 | 浙江精宏智能科技有限公司 | Finger vein rapid identification method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110119724A (en) | A kind of finger vein identification method | |
Kanhangad et al. | Contactless and pose invariant biometric identification using hand surface | |
Thalji et al. | Iris Recognition using robust algorithm for eyelid, eyelash and shadow avoiding | |
CN108009472B (en) | Finger back joint print recognition method based on convolutional neural network and Bayes classifier | |
CN104123537A (en) | Rapid authentication method based on handshape and palmprint recognition | |
CN103955674B (en) | Palm print image acquisition device and palm print image positioning and segmenting method | |
CN105760841B (en) | A kind of identification method and system | |
CN106778499B (en) | Method for rapidly positioning human iris in iris acquisition process | |
Hilal et al. | Hough transform and active contour for enhanced iris segmentation | |
Kang et al. | The biometric recognition on contactless multi-spectrum finger images | |
Gupta et al. | Multi-modal fusion of palm-dorsa vein pattern for accurate personal authentication | |
CN104123547B (en) | Identification method based on improved directional filtering and flexible matching | |
Aleem et al. | Fast and accurate retinal identification system: Using retinal blood vasculature landmarks | |
Uriarte-Antonio et al. | Vascular biometrics based on a minutiae extraction approach | |
Chen et al. | Band selection for improvement of dorsal hand recognition | |
CN109977909A (en) | Finger vein identification method and system based on minutiae point Region Matching | |
Mustafa et al. | A new finger-vein recognition system using the complete local binary pattern and the phase only correlation | |
Peng et al. | An effective preprocessing method for finger vein recognition | |
Yan et al. | Palm vein recognition based on multi-algorithm and score-level fusion | |
CN109523484B (en) | A repair method of finger vein vascular network based on fractal features | |
CN115311746A (en) | Off-line signature authenticity detection method based on multi-feature fusion | |
Nazari et al. | A novel retina-based human identification algorithm based on geometrical shape features using a hierarchical matching structure | |
CN105975960A (en) | Iris identification method based on texture-direction energy characteristic | |
Oldal et al. | Biometric Authentication System based on Hand Geometry and Palmprint Features. | |
KR100794361B1 (en) | Eyelid Detection and Eyelash Interpolation for Improving Iris Recognition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20190813 |