CN110117780B - 一种二维材料层及制备方法 - Google Patents

一种二维材料层及制备方法 Download PDF

Info

Publication number
CN110117780B
CN110117780B CN201910208837.8A CN201910208837A CN110117780B CN 110117780 B CN110117780 B CN 110117780B CN 201910208837 A CN201910208837 A CN 201910208837A CN 110117780 B CN110117780 B CN 110117780B
Authority
CN
China
Prior art keywords
dimensional material
material layer
atoms
producing
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910208837.8A
Other languages
English (en)
Other versions
CN110117780A (zh
Inventor
张苗
陈玉龙
狄增峰
薛忠营
贾鹏飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Microsystem and Information Technology of CAS
Original Assignee
Shanghai Institute of Microsystem and Information Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Microsystem and Information Technology of CAS filed Critical Shanghai Institute of Microsystem and Information Technology of CAS
Priority to CN201910208837.8A priority Critical patent/CN110117780B/zh
Publication of CN110117780A publication Critical patent/CN110117780A/zh
Application granted granted Critical
Publication of CN110117780B publication Critical patent/CN110117780B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/10Interconnection of layers at least one layer having inter-reactive properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/041Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/746Slipping, anti-blocking, low friction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明提供一种二维材料层及制备方法,包括步骤:提供一衬底,于衬底上表面形成二维材料层;采用导电型针尖扫描所述二维材料层的上表面,所述导电型针尖具有激发电压。本发明的二维材料层及制备方法能很大程度降低界面的摩擦,从而延长器件的寿命,减少功耗,提高效率,还能节能环保,减少经济损失。

Description

一种二维材料层及制备方法
技术领域
本发明属于二维材料制备领域,特别是涉及一种二维材料层及制备方法。
背景技术
摩擦、磨损对人类社会影响深远。据不完全统计,全球大约1/4的一次性能源因摩擦而损耗,80%的器件失效由磨损而引起。带来巨额经济损失的同时,还造成环境污染甚至无可挽回的资源浪费。进一步,摩擦、磨损使得许多关键技术遇到发展瓶颈。近年来MEMS发展火热,但是当器件减小到微米以及纳米尺度时,尺寸缩小将带来许多物理性质的改变,这种影响会反应到结构材料、设计理论、制造方法及测量技术等方面。例如,随着器件尺寸缩小,表面相关的范德华力、粘附力、表面张力和静电力等逐渐成为影响系统性能的关键因素。宏观的摩擦理论已不再适用,在高速相对运动和长时间循环工作的MEMS器件中,界面摩擦导致的磨损问题十分突出。
近年来,石墨烯、TMD等二维材料的火热推动了半导体物理、凝聚态物理、生物医学等的发展,其独特的电学、力学性质有利于MEMS的性能改善。在MEMS器件加工过程中,无论是各向异性腐蚀还是刻蚀形成沟槽,都会在Si结构表面聚集大量气泡,同时在器件表面转移石墨烯、TMD等二维材料时也会俘获空气、杂质形成大量气泡。这些气泡会形成局部掩膜,阻碍进一步的干法、湿法刻蚀,造成局部不完全释放。同时,三维空间形成的气泡产生大量局部不均匀摩擦力,这种在界面处形成的摩擦阻力会降低器件的寿命,带来巨大的经济损失。
基于以上所述,本发明的目的是给出一种二维材料层及制备方法,以降低界面的摩擦,从而延长器件的寿命,减少功耗,提高效率,还能节能环保,减少经济损失。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种二维材料层及制备方法,用于降低界面的摩擦,从而延长器件的寿命,减少功耗,提高效率,还能节能环保,减少经济损失。
为实现上述目的及其他相关目的,本发明提供一种二维材料层的制备方法,包括步骤:
提供一衬底,于衬底上表面形成二维材料层;
采用导电型针尖扫描所述二维材料层的上表面,所述导电型针尖具有激发电压。
可选地,所述衬底包括锗衬底,所述二维材料层包括石墨烯,在所述锗衬底上形成所述石墨烯的方法包括化学气相沉积。
可选地,所述化学气相沉积的原料包括氢气、甲烷、氩气,在高温环境中所述氢气和所述甲烷裂解成氢原子和碳原子,沉积时,所述锗衬底上先沉积一层所述氢原子形成Ge-H键,构成二维电子气,然后再沉积一层所述碳原子,并且所述碳原子构成六圆环状态的石墨烯,通过在所述激发电压下,所述导电型针尖放电激发使所述Ge-H键发生断裂,形成的氢原子结合形成氢气,由于所述石墨烯阻止气体分子通过,形成的所述氢气包覆在所述石墨烯中,使所述二维材料层向三维方向凸起,与所述锗衬底存在相对悬浮。
可选地,所述二维材料层的层数至少2层,采用导电型针尖扫描所述二维材料层的上表面,在所述激发电压下,所述导电型针尖在所述二维材料层的上表面产生局部放电,同时产生静电力,在所述静电力的作用下,层与层间的二维材料原子间的库仑吸引力大于层间的分子间的范德华作用力,使层间二维材料的原子发生滑移,朝着所述二维材料原子间结合更稳定的方向滑移以降低势垒,并形成莫尔条纹。
可选地,所述二维材料层包括由下至上依次叠加的第一二维材料层和第二二维材料层,所述第一二维材料层包括石墨烯,所述第二二维材料层包括二硫化钼。
可选地,所述二硫化钼二维材料层通过转移方法形成于所述第一二维材料层上,所述转移方法包括PMMA湿法转移方法、机械剥离转移方法中的一种。
可选地,所述衬底和所述二维材料层组成的单元包括化学键,采用导电型针尖扫描所述二维材料层的上表面,使所述化学键断裂生成生成物,并使掩盖所述生成物的所述二维材料层形成凸起。
可选地,所述导电型针尖依附的装置包括原子力显微镜。
可选地,所述导电型针尖的材质包括铂铱合金。
可选地,所述激发电压的大小介于-4V~-12V之间。
可选地,所述导电型针尖的半径介于25nm~30nm之间。
本发明还提供一种二维材料层,所述二维材料层采用所述的二维材料层的制备方法所制备。
如上所述,本发明提供一种二维材料层及制备方法,本发明具有以下功效:
能很大程度降低界面的摩擦,从而延长器件的寿命,减少功耗,提高效率,还能节能环保,减少经济损失。
进一步的,采用化学气相沉积方法于锗衬底的上表面形成石墨烯,并形成Ge-H键,在激发电压的作用下,Ge-H键断裂,形成的H原子结合成氢气,使所述石墨烯和所述二硫化钼二维材料层形成凸起,与所述锗衬底存在相对悬浮,进一步保护所述锗衬底,并起到润滑作用。
所述二维材料层的层数至少2层,将25nm半径的导电型铂铱针尖安装在原子力显微镜上,来扫描所述二硫化钼二维材料层的上表面,由于所述导电型铂铱针尖的半径很小,在所述二硫化钼二维材料层的上表面产生强烈的局部放电,同时产生巨大的静电力。在所述静电力的作用下,所述石墨烯中原子与所述二硫化钼二维材料层中原子之间的洛伦兹力大于分子间作用力,使所述石墨烯中原子和所述二硫化钼二维材料层中原子发生微小滑移,朝着更稳定的方向结合以降低势垒,并形成低摩擦的莫尔条纹。
附图说明
图1~图3显示为本发明的二维材料层的制备方法步骤1)所呈现的结构示意图。
图4显示为本发明的二维材料层的制备方法步骤2)所呈现的结构示意图。
图5显示为本发明的二维材料层的制备方法的流程图。
图6显示为本发明的二维材料层中凸起处在原子力显微镜中所呈现的高度图。
图7显示为本发明的二维材料层中凸起处在原子力显微镜中所呈现的摩擦力图。
元件标号说明
101 锗衬底
102 石墨烯
103 二硫化钼二维材料层
104 凸起
105 导电型针尖
S01、S02 步骤
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
请参阅图1~图7。需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。
如图1~图7所示,本实施例提供一种二维材料层的制备方法,包括步骤:
如图1~图3所示,进行步骤1)S01,提供一衬底,于衬底上表面形成二维材料层。
如图4所示,进行步骤2)S02,采用导电型针尖105扫描所述二维材料层的上表面,所述导电型针尖105具有激发电压。
作为示例,所述衬底的材质包括锗。在本实施例中,所述衬底为锗衬底101。
作为示例,所述二维材料层的层数至少2层,采用导电型针尖105扫描所述二维材料层的上表面,使所述二维材料层之间结合更稳定,并形成莫尔条纹。
所述莫尔条纹是两条线或两个物体之间以恒定的角度和频率发生干涉的视觉结果。当人眼无法分辨这两条线或两个物体时,只能看到干涉的花纹,这种光学现象中的花纹就是莫尔条纹。
在本实施例中,所述二维材料层的层数为2层。
作为示例,所述二维材料层包括由下至上依次叠加的第一二维材料层和第二二维材料层。所述第一二维材料层包括石墨烯102。形成所述石墨烯102的方法包括化学气相沉积。所述第二二维材料层包括二硫化钼二维材料层103。所述二硫化钼二维材料层103通过转移方法形成于所述第一二维材料层上,所述二硫化钼二维材料层103的转移方法包括:PMMA湿法转移方法、机械剥离转移方法。
所述PMMA就是聚甲基丙烯酸甲酯,以丙烯酸及其酯类聚合所得到的聚合物统称丙烯酸类树酯,相应的塑料统称聚丙烯酸类塑料,其中以聚甲基丙烯酸甲酯应用最广泛。聚甲基丙烯酸甲酯缩写代号为PMMA,俗称有机玻璃。采用PMMA湿法转移方法后需用丙酮浸泡去胶。
在本实施例中,采用化学气相沉积方法于锗衬底101的上表面形成石墨烯102,在高温700℃~1200℃环境中氢气和甲烷裂解成单个氢原子和碳原子,沉积时,锗衬底101上先沉积一层氢原子形成Ge-H键,然后再沉积一层碳原子,并且碳原子构成六圆环状态的石墨烯102。采用机械剥离方法将单层二硫化钼转移到石墨烯102的上表面。锗衬底101、石墨烯102与二硫化钼二维材料层103之间由分子间作用力紧密贴合在一起,但是它们之间的结合角度是随机的。
所述分子间作用力,又称范德瓦尔斯力。是存在于中性分子或原子之间的一种弱碱性的电性吸引力。
作为示例,所述衬底和所述二维材料层组成的单元包括化学键,例如Ge-H键,采用导电型针尖105扫描所述二维材料层的上表面,使所述化学键断裂生成生成物,例如氢气,并使掩盖所述生成物的所述二维材料层形成凸起104。所述化学键存在于所述衬底与最顶层的所述二维材料层之间的任何位置,不限于所述衬底表面。
所述化学气相沉积的原料包括氢气、甲烷、保护气,所述保护气例如氩气,在高温环境中所述氢气和所述甲烷裂解成氢原子和碳原子,沉积时,所述锗衬底上先沉积一层所述氢原子形成Ge-H键,构成二维电子气,然后再沉积一层所述碳原子,并且所述碳原子构成六圆环状态的石墨烯,在所述激发电压下,所述导电型针尖105放电激发使所述Ge-H键发生断裂,形成的氢原子结合形成氢气,形成的所述氢气包覆在所述石墨烯中,使所述二维材料层向三维方向凸起104,与所述锗衬底存在相对悬浮。
作为示例,所述导电型针尖105依附的装置包括原子力显微镜。所述导电型针尖105的材质包括铂铱合金。在本实施例中,原子力显微镜上安装导电型铂铱针尖,对二硫化钼二维材料层103的上表面进行扫描。
原子力显微镜是一种可用来研究包括绝缘体在内的固体材料表面结构的分析仪器。它通过检测样品表面和一个微型力敏感元件之间的极微弱的原子间相互的作用力,将一对微弱力极端敏感的微悬臂一端固定,另一端的微小针尖接近样品,这时它将与其相互作用,作用力将使得微悬臂发生形变或运动状态发生变化。扫描样品时,利用传感器检测这些变化,就可获得作用力分布信息,从而以纳米级分辨率获得表面结构信息。
作为示例,所述激发电压的大小介于-4V~-12V之间。所述导电型针尖105的半径介于25nm~30nm之间。在本实施例中,所述激发电压的大小为-10V,所述导电型针尖105的半径为25nm。
在本实施例中,将25nm半径的导电型铂铱针尖安装在原子力显微镜上,来扫描所述二硫化钼二维材料层103的上表面,所述导电型铂铱针尖具有-10V的激发电压。由于所述导电型铂铱针尖的半径很小,在所述二硫化钼二维材料层103的上表面产生强烈的局部放电,同时产生巨大的静电力。在所述静电力的作用下,所述石墨烯102中原子与所述二硫化钼二维材料层103中原子之间的洛伦兹力大于分子间作用力,使所述石墨烯102中原子和所述二硫化钼二维材料层103中原子发生微小滑移,朝着更稳定的方向结合以降低势垒,并形成低摩擦的莫尔条纹。同时,在激发电压的作用下,Ge-H键断裂,形成的H原子结合成氢气,使所述石墨烯102和所述二硫化钼二维材料层103形成凸起104,与所述锗衬底101存在相对悬浮,进一步保护所述锗衬底101,并起到润滑作用。
所述势垒就是势能比附近的势能都高的空间区域,基本上就是极值点附近的一小片区域。
图6显示为本发明的二维材料层中凸起104处在原子力显微镜中所呈现的高度图,颜色越浅代表越高,也就是越凸。图7显示为本发明的二维材料层中凸起104处在原子力显微镜中所呈现的摩擦力图,颜色越深代表摩擦力越小。如图6~图7所示,所述二维材料层形成所述凸起104,会使所述二维材料层降低摩擦。
如图4所示,本实施例还提供一种二维材料层,所述二维材料层采用所述的二维材料层的制备方法所制备。
综上所述,本发明提供一种二维材料层及制备方法,具有以下功效:
能很大程度降低界面的摩擦,从而延长器件的寿命,减少功耗,提高效率,还能节能环保,减少经济损失。
进一步的,采用化学气相沉积方法于锗衬底101的上表面形成石墨烯102,并形成Ge-H键,在激发电压的作用下,Ge-H键断裂,形成的H原子结合成氢气,使所述石墨烯102和所述二硫化钼二维材料层103形成凸起104,与所述锗衬底101存在相对悬浮,进一步保护所述锗衬底101,并起到润滑作用。
所述二维材料层的层数至少2层,将25nm半径的导电型铂铱针尖安装在原子力显微镜上,来扫描所述二硫化钼二维材料层103的上表面,由于所述导电型铂铱针尖的半径很小,在所述激发电压下,所述导电型针尖在所述二硫化钼二维材料层103的上表面产生强烈的局部放电,同时产生巨大的静电力。在所述静电力的作用下,所述石墨烯102中原子与所述二硫化钼二维材料层103中原子之间的洛伦兹力大于分子间作用力,使所述石墨烯102中原子和所述二硫化钼二维材料层103中原子发生微小滑移,朝着更稳定的方向结合以降低势垒,并形成低摩擦的莫尔条纹。所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (11)

1.一种二维材料层的制备方法,其特征在于,包括步骤:
提供一衬底,于衬底上表面形成二维材料层;
采用导电型针尖扫描所述二维材料层的上表面,所述导电型针尖具有激发电压;
所述衬底和所述二维材料层组成的单元包括化学键,采用导电型针尖扫描所述二维材料层的上表面,使所述化学键断裂生成生成物,并使掩盖所述生成物的所述二维材料层形成凸起。
2.根据权利要求1所述的二维材料层的制备方法,其特征在于:所述衬底包括锗衬底,所述二维材料层包括石墨烯,在所述锗衬底上形成所述石墨烯的方法包括化学气相沉积。
3.根据权利要求2所述的二维材料层的制备方法,其特征在于:所述化学气相沉积的原料包括氢气、甲烷、氩气,在高温环境中所述氢气和所述甲烷裂解成氢原子和碳原子,沉积时,所述锗衬底上先沉积一层所述氢原子形成Ge-H键,构成二维电子气,然后再沉积一层所述碳原子,并且所述碳原子构成六圆环状态的石墨烯,在所述激发电压下,所述导电型针尖放电激发使所述Ge-H键发生断裂,形成的氢原子结合形成氢气,形成的所述氢气包覆在所述石墨烯中,使所述二维材料层向三维方向凸起,与所述锗衬底存在相对悬浮。
4.根据权利要求1所述的二维材料层的制备方法,其特征在于:所述二维材料层的层数至少2层,采用导电型针尖扫描所述二维材料层的上表面,在所述激发电压下,所述导电型针尖在所述二维材料层的上表面产生局部放电,同时产生静电力,在所述静电力的作用下,层与层间的二维材料原子间的库仑吸引力大于层间的分子间的范德华作用力,使层间二维材料的原子发生滑移,朝着所述二维材料原子间结合更稳定的方向滑移以降低势垒,并形成莫尔条纹。
5.根据权利要求1所述的二维材料层的制备方法,其特征在于:所述二维材料层包括由下至上依次叠加的第一二维材料层和第二二维材料层,所述第一二维材料层包括石墨烯,所述第二二维材料层包括二硫化钼。
6.根据权利要求5所述的二维材料层的制备方法,其特征在于:所述二硫化钼二维材料层通过转移方法形成于所述第一二维材料层上,所述转移方法包括PMMA湿法转移方法、机械剥离转移方法中的一种。
7.根据权利要求1所述的二维材料层的制备方法,其特征在于:所述导电型针尖依附的装置包括原子力显微镜。
8.根据权利要求1所述的二维材料层的制备方法,其特征在于:所述导电型针尖的材质包括铂铱合金。
9.根据权利要求1所述的二维材料层的制备方法,其特征在于:所述激发电压的大小介于-4V~-12V之间。
10.根据权利要求1所述的二维材料层的制备方法,其特征在于:所述导电型针尖的半径介于25nm~30nm之间。
11.一种二维材料层,其特征在于,所述二维材料层采用如权利要求1~10中任一项所述的二维材料层的制备方法所制备。
CN201910208837.8A 2019-03-19 2019-03-19 一种二维材料层及制备方法 Active CN110117780B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910208837.8A CN110117780B (zh) 2019-03-19 2019-03-19 一种二维材料层及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910208837.8A CN110117780B (zh) 2019-03-19 2019-03-19 一种二维材料层及制备方法

Publications (2)

Publication Number Publication Date
CN110117780A CN110117780A (zh) 2019-08-13
CN110117780B true CN110117780B (zh) 2021-03-12

Family

ID=67520520

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910208837.8A Active CN110117780B (zh) 2019-03-19 2019-03-19 一种二维材料层及制备方法

Country Status (1)

Country Link
CN (1) CN110117780B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104764905A (zh) * 2015-03-24 2015-07-08 清华大学深圳研究生院 一种原子力显微镜扫描热探针及其制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101244383B1 (ko) * 2011-05-11 2013-03-18 건국대학교 산학협력단 Afm 마찰력 매핑을 이용한 그래핀 도메인 측정 시스템 및 그 방법
US9278502B2 (en) * 2011-07-01 2016-03-08 Clean Energy Labs, Llc Encapsulated micro-bubble materials and methods to make and use same
WO2014011954A1 (en) * 2012-07-13 2014-01-16 Northwestern University Multifunctional graphene coated scanning tips
CN104217931A (zh) * 2013-05-29 2014-12-17 国家纳米科学中心 一种石墨烯掺杂的方法及掺杂石墨烯
CN103935956B (zh) * 2014-04-15 2016-03-02 江苏大学 一种基于针尖增强拉曼光谱的石墨烯纳米带边界修饰方法
CN105088179B (zh) * 2015-08-26 2017-08-15 中国科学院上海微系统与信息技术研究所 一种转移石墨烯的方法
CN106338355B (zh) * 2016-08-16 2019-08-20 电子科技大学 一种石墨烯表面黏着力与摩擦力的测试方法
WO2018133053A1 (en) * 2017-01-21 2018-07-26 Southern University Of Science And Technology Graphene film and direct method for transfering graphene film onto flexible and transparent substrates
CN107328956B (zh) * 2017-06-05 2020-10-20 南京航空航天大学 一种包裹二维材料的原子力显微镜探针制备方法
CN108382041A (zh) * 2018-01-15 2018-08-10 太仓斯迪克新材料科技有限公司 一种石墨烯气泡保护薄膜及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104764905A (zh) * 2015-03-24 2015-07-08 清华大学深圳研究生院 一种原子力显微镜扫描热探针及其制备方法

Also Published As

Publication number Publication date
CN110117780A (zh) 2019-08-13

Similar Documents

Publication Publication Date Title
Marchetto et al. Friction and wear on single-layer epitaxial graphene in multi-asperity contacts
Stan et al. Ultimate bending strength of Si nanowires
Cho et al. Structural and electronic decoupling of C60 from epitaxial graphene on SiC
Marsden et al. Friction force microscopy: a simple technique for identifying graphene on rough substrates and mapping the orientation of graphene grains on copper
CN109030870B (zh) 二维层状材料包裹原子力显微镜探针及其制备方法以及应用
Liu et al. Thermomechanical nanostraining of two-dimensional materials
Lang et al. Atomic-scale friction characteristics of graphene under conductive AFM with applied voltages
Park et al. Influence of carrier density on the friction properties of silicon pn junctions
Wang et al. Study of dynamic contacts for graphene nano-electromechanical switches
Guo et al. Fabrication mechanism of friction-induced selective etching on Si (100) surface
Yu et al. Material-dependent evolution of mechanical folding instabilities in two-dimensional atomic membranes
Ishikawa et al. Adhesion and peeling forces of carbon nanotubes on a substrate
Woo et al. Critical bending radius of thin single-crystalline silicon with dome and pyramid surface texturing
CN110117780B (zh) 一种二维材料层及制备方法
Arkan et al. Monolithic integration of Si nanowires with metallic electrodes: NEMS resonator and switch applications
Gigli et al. Lifted graphene nanoribbons on gold: from smooth sliding to multiple stick-slip regimes
Zhao et al. Design and implementation of shape memory alloy-actuated nanotweezers for nanoassembly
Wang et al. Colloquium: Sliding and pinning in structurally lubric 2D material interfaces
Zhang et al. Friction reduction of suspended multilayer h-BN based on electrostrain
Fraysse et al. Towards the demonstration of actuator properties of a single carbon nanotube
Yang et al. Creating custom-designed patterns of nanoscale graphene quantum dots
Furmanchuk et al. Mechanical properties of silicon nanowires
Song et al. Atomic Friction Processes of Two-Dimensional Materials
Sato et al. Development of MEMS-in-TEM setup to observe shear deformation for the study of nano-scale friction
Song et al. Effect of scan parameters and etching temperature on low‐destructive nanofabrication of quartz

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant