CN110115559A - 眼底多模态同步成像系统 - Google Patents
眼底多模态同步成像系统 Download PDFInfo
- Publication number
- CN110115559A CN110115559A CN201910177954.2A CN201910177954A CN110115559A CN 110115559 A CN110115559 A CN 110115559A CN 201910177954 A CN201910177954 A CN 201910177954A CN 110115559 A CN110115559 A CN 110115559A
- Authority
- CN
- China
- Prior art keywords
- imaging
- module
- light
- slow axis
- mirror
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 104
- 238000012014 optical coherence tomography Methods 0.000 claims abstract description 51
- 230000005540 biological transmission Effects 0.000 claims abstract description 26
- 230000003287 optical effect Effects 0.000 claims description 30
- 230000001427 coherent effect Effects 0.000 claims description 13
- 230000011514 reflex Effects 0.000 claims description 8
- 230000003595 spectral effect Effects 0.000 claims description 5
- 238000005286 illumination Methods 0.000 claims description 4
- 239000000571 coke Substances 0.000 claims description 2
- 238000010226 confocal imaging Methods 0.000 abstract description 17
- 238000005516 engineering process Methods 0.000 abstract description 14
- 230000002401 inhibitory effect Effects 0.000 abstract description 5
- 238000010586 diagram Methods 0.000 description 11
- 230000001360 synchronised effect Effects 0.000 description 8
- 238000004587 chromatography analysis Methods 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 5
- 210000001508 eye Anatomy 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 238000003325 tomography Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 238000007747 plating Methods 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000009738 saturating Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 101100117236 Drosophila melanogaster speck gene Proteins 0.000 description 2
- 241000208340 Araliaceae Species 0.000 description 1
- 235000005035 Panax pseudoginseng ssp. pseudoginseng Nutrition 0.000 description 1
- 235000003140 Panax quinquefolius Nutrition 0.000 description 1
- 238000002583 angiography Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 210000005252 bulbus oculi Anatomy 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 210000004087 cornea Anatomy 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 235000008434 ginseng Nutrition 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/12—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes
- A61B3/1225—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes using coherent radiation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/14—Arrangements specially adapted for eye photography
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Biophysics (AREA)
- Ophthalmology & Optometry (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Eye Examination Apparatus (AREA)
Abstract
本发明公开了一种眼底多模态同步成像系统,包括:包括光学相干层析模块、慢轴扫描模块、成像模块、中反二色镜、线扫描共焦照明模块、快轴扫描模块以及平场透镜。本发明提供的眼底多模态同步成像系统实现了光学相干层析技术和线共焦扫描速度的有效利用,达到了眼底视网膜的快速面成像和断层成像的目的。本发明将现有技术中的“中间透射,两边反射的狭缝反射镜”修改为“中间反射,两边透射的中反二色镜,不会影响OCT的光从中反二色镜中间穿过。本发明提高了线共焦的成像分辨率,鬼影抑制效果更佳,且对OCT的成像无影响;克服了原有技术中狭缝反射镜中狭缝的宽度会对线共焦成像技术的成像分辨率造成影响的问题。
Description
技术领域
本发明涉及光学成像技术领域,特别涉及一种眼底多模态同步成像系统。
背景技术
临床上的眼底成像技术主要为眼底相机、光学相干层析成像(OCT)和共 焦扫描成像,在成像速度、成像视场和成像方式上各有优缺点。眼底相机采 用的是闪烁曝光,成像简单,但是不能连续成像;光学相干层析是一种断层 成像技术,成像深度最深;共焦成像技术是横向成像,图像信噪比高。
相比,共焦扫描成像技术的横向成像速度快,常作为光学相干层析的辅 助成像。共焦成像又分为点共焦成像和线共焦成像。线共焦的成像质量略有 下降,但是大大提高了成像速度。
将共焦成像技术和光学相干层析技术结合组成一套多模态系统(即多种 成像技术组合),从而结合各成像技术的优点,实现多方位的快速成像。
文献中“Real-time eye motion correction in phase-resolved OCTangiography with tracking SLO”有报道将点共焦技术(SLO)与光学相干 层析成像,在眼睛前端采用二色镜耦合,各自成像,相互不影响,但是无法 做到成像的同步,也不能减少系统的复杂程度。
文献“Noise analysis of a combined optical coherence tomography and aconfocal scanning ophthalmoscope”和专利“使用OCT光源和扫描 光学器件的二维共焦成像”有报道收集OCT的部分样品返回光作为点共焦的 成像光,利用OCT成像的多余光成像,提高了能量的利用率,但是OCT和点 共焦成像方向不同,点共焦成像速度将降低两个数量级,速度大大受限。
本申请人前期申请的专利公开了一种眼底多模态同步成像系统(申请号 为201810297538.1),将线扫描共焦成像技术与光学相干层析技术(OCT)结合, 采用共振镜的方式,同步扫描,采用的是狭缝反射镜进行光路耦合,狭缝反 射镜能减少角膜和前置镜垂直反射光进入线共焦的探测相机中,从而减少鬼 影存在,并且OCT可从狭缝中穿过,从而对眼底成像。OCT的样品成像光路 中将共用大部分线共焦光学器件,包括一维扫描振镜,两系统的光路能在一 个维度上始终保持同轴,从而实现同步扫描。降低硬件开销的情况下,不影 响各自的成像速度。
上述专利仍存在一个问题就是,狭缝反射镜中狭缝的宽度将影响线共焦 成像技术的成像分辨率。太小,分辨率下降;太大,能量利用率不够。线共 焦的成像分辨率及鬼影抑制效果还需进一步提高。
发明内容
本发明所要解决的技术问题在于针对上述现有技术中的不足,提供一种 眼底多模态同步成像系统。
本申请主要是针对本申请人前期已经申请的专利(申请号为 201810297538.1)的进一步改进,将其中的“中间透射,两边反射的狭缝反 射镜”修改为“中间反射,两边透射的中反二色镜,不会影响OCT的光从中 反二色镜中间穿过。本发明提高了线共焦的成像分辨率,鬼影抑制效果更佳, 且对OCT的成像无影响;克服了原有技术中狭缝反射镜中狭缝的宽度会对线 共焦成像技术的成像分辨率造成影响的问题。
本发明采用的技术方案是:一种眼底多模态同步成像系统,包括光学相 干层析模块、慢轴扫描模块、成像模块、中反二色镜、线扫描共焦照明模块、 快轴扫描模块以及平场透镜;
所述光学相干层析模块用于形成光学相干层析成像的样品光,所述慢轴 扫描模块包括慢轴扫描振镜和慢轴聚焦透镜,所述快轴扫描模块包括快轴扫 描振镜及快轴聚焦透镜,所述成像模块包括成像透镜、分光镜及探测器,所 述线扫描共焦照明模块包括激光器、准直透镜及柱镜;所述中反二色镜的两 侧为透光部分,中间为反射部分,且中间的反射部分对线扫描共焦照明模块 发出的光束是反射的,对光学相干层析模块发出的光束是透射的;其中:
所述样品光入射到所述慢轴扫描振镜后,再依次经所述慢轴聚焦透镜聚 焦、所述分光镜反射、所述成像透镜后透射所述中反二色镜的中间部分,到 达所述快轴扫描振镜;
所述激光器出射的激光光束依次经所述准直透镜准直、所述柱镜聚焦后 形成用于线共焦扫描的线光束,所述线光束被所述中反二色镜的中间反射部 分反射至所述快轴扫描振镜,与穿过所述中反二色镜的样品光相结合,形成 结合光;
所述结合光经所述快轴扫描振镜、快轴聚焦透镜及平场透镜后对眼底进 行同步照明成像,所述结合光经眼底反射后依次经所述平场透镜、所述快轴 聚焦透镜、所述快轴扫描振镜后返回至所述中反二色镜;其中的部分线光束 穿过所述中反二色镜两侧的透光部分到达所述成像透镜,再透射所述分光镜 到达所述探测器进行成像;其中的样品光穿过所述中反二色镜的中间部分到 达所述成像透镜,经所述分光镜反射后再依次经所述慢轴聚焦透镜、所述慢 轴扫描振镜后在所述光学相干层析模块中干涉成像。
优选的是,所述中反二色镜为中间镀窄带二向色膜的平片。
优选的是,所述中反二色镜包括平片和设置在所述平片中间的二色棱镜。
优选的是,所述光学相干层析模块为扫频源光学相干层析模块或者谱域 光学相干层析模块或者时域光学相干层析模块。
优选的是,所述慢轴扫描模块中的慢轴聚焦透镜与所述成像模块中的成 像透镜构成4f系统,所述慢轴扫描振镜和所述快轴扫描振镜分别处于该4f 系统两透镜的焦点位置。
优选的是,所述分光镜为分光平片或分光棱镜或分光薄膜。
本发明的有益效果是:
本发明提供的眼底多模态同步成像系统,通过将线扫描快速成像技术和 光学相干层析成像技术相结合,采用共光路共振镜同步扫描成像方法有效减 少系统硬件,并采用中空狭缝反射镜解决透镜和角膜反射亮斑的同时不影响 光学相干层析的扫描,实现了光学相干层析技术和线共焦扫描速度的有效利 用,达到了眼底视网膜的快速面成像和断层成像的目的。本发明将现有技术 中的“中间透射,两边反射的狭缝反射镜”修改为“中间反射,两边透射的 中反二色镜,不会影响OCT的光从中反二色镜中间穿过。本发明提高了线共焦的成像分辨率,鬼影抑制效果更佳,且对OCT的成像无影响;克服了原有 技术中狭缝反射镜中狭缝的宽度会对线共焦成像技术的成像分辨率造成影响 的问题。
附图说明
图1为本发明的眼底多模态同步成像系统的结构示意图;
图2为本发明的一种实施例中的中反二色镜的结构示意图;
图3为本发明的另一种实施例中的中反二色镜的结构示意图;
图4为本发明的一种实施例中的中反二色镜的光路示意图;
图5为本发明的另一种实施例中的中反二色镜的光路示意图;
图6为本发明的实施例1中的眼底多模态同步成像系统的结构示意图;
图7为本发明的实施例2中的眼底多模态同步成像系统的结构示意图。
具体实施方式
下面结合实施例对本发明做进一步的详细说明,以令本领域技术人员参 照说明书文字能够据以实施。
应当理解,本文所使用的诸如“具有”、“包含”以及“包括”术语并不 排除一个或多个其它元件或其组合的存在或添加。
如图1所示,本实施例的一种眼底多模态同步成像系统,包括光学相干 层析模块3、慢轴扫描模块2、成像模块6、中反二色镜5、线扫描共焦照明 模块1、快轴扫描模块4以及平场透镜7。
其中,光学相干层析模块3用于形成光学相干层析成像的样品光,慢轴 扫描模块2包括慢轴扫描振镜21和慢轴聚焦透镜22,快轴扫描模块4包括 快轴扫描振镜41及快轴聚焦透镜42,成像模块6包括成像透镜61、分光镜 62及探测器63,线扫描共焦照明模块1包括激光器11、准直透镜12及柱镜 13;中反二色镜5的两侧为透光部分,中间为反射部分,且中间的反射部分 对线扫描共焦照明模块1发出的光束是反射的,对光学相干层析模块3发出 的光束是透射的;其中:
其光路为:
样品光入射到慢轴扫描振镜21后,再依次经慢轴聚焦透镜22聚焦、分 光镜62反射、成像透镜61后透射中反二色镜5的中间部分,到达快轴扫描 振镜41;
激光器11出射的激光光束依次经准直透镜12准直、柱镜13聚焦后形成 用于线共焦扫描的线光束,线光束被中反二色镜5的中间反射部分反射至快 轴扫描振镜41,与穿过中反二色镜5的样品光相结合,形成结合光;
结合光经快轴扫描振镜41、快轴聚焦透镜42及平场透镜7后对眼底进 行同步照明成像,结合光经眼底反射后依次经平场透镜7、快轴聚焦透镜42、 快轴扫描振镜41后返回至中反二色镜5;其中的部分线光束穿过中反二色镜 5两侧的透光部分到达成像透镜61,再透射分光镜62到达探测器63进行成 像;其中的样品光穿过中反二色镜5的中间部分到达成像透镜61,经分光镜 62反射后再依次经慢轴聚焦透镜22、慢轴扫描振镜21后在光学相干层析模 块3中干涉成像。7
其中,光学相干层析模块3为扫频源光学相干层析模块或者谱域光学相 干层析模块或者时域光学相干层析模块。
其中,慢轴扫描模块2中的慢轴聚焦透镜22与成像模块6中的成像透镜 61构成4f系统,慢轴扫描振镜21和快轴扫描振镜41分别处于该4f系统两 透镜的焦点位置。
其中,分光镜62为分光平片51或分光棱镜或分光薄膜。
参照图2,在一种优选的实施例中,中反二色镜5为中间镀窄带二向色 膜52的平片51。二向色膜52对线扫描共焦照明模块1发出的线光束是反射 的,对光学相干层析模块3发出的样品光是透射的。图4为该中反二色镜5 的光路示意图,其中左侧体现对线光束的反射,右侧体现对样品光的透射。
参照图3,在另一种优选的实施例中,中反二色镜5包括平片51和设置 在平片51中间的二色棱镜53。二色棱镜53对线扫描共焦照明模块1发出的 线光束是反射的,对光学相干层析模块3发出的样品光是透射的。图5为该 中反二色镜5的光路示意图,其中左侧体现对线光束的反射,右侧体现对样 品光的透射。
本发明提供的眼底多模态同步成像系统,通过将线扫描快速成像技术和 光学相干层析成像技术相结合,采用共光路共振镜同步扫描成像方法有效减 少系统硬件,并采用中空狭缝反射镜解决透镜和角膜反射亮斑的同时不影响 光学相干层析的扫描,实现了光学相干层析技术和线共焦扫描速度的有效利 用,达到了眼底视网膜的快速面成像和断层成像的目的。本发明将现有技术 中的“中间透射,两边反射的狭缝反射镜”修改为“中间反射,两边透射的 中反二色镜,不会影响OCT的光从中反二色镜中间穿过。本发明提高了线共焦的成像分辨率,鬼影抑制效果更佳,且对OCT的成像无影响;克服了原有 技术中狭缝反射镜中狭缝的宽度会对线共焦成像技术的成像分辨率造成影响 的问题。
以下提供2种具体实施例,以对本发明做进一步说明。
实施例1
参照图6,为本发明实施例1提供的眼底多模态同步成像系统的结构示 意图。在本实施例中,光学相干层析模块3为扫频源光学相干层析单元,包 括:光源311、第一耦合器312、第二准直器313、补偿镜316、直角反射棱 镜317、第三准直器315、第二耦合器318及平衡探测器319。
具体地,光学相干层析的光源311发出的光经过第一耦合器312后分为 两部分光束,其中一部分光束经过准直器314出射经过补偿镜316、直角反 射棱镜317后被准直器316接收,并作为参考光到达第二耦合器318;另一 部分光从第一耦合器312到达准直器313作为光学相干层析成像的样品光, 并从准直器313出射后入射所述慢轴扫描振镜21,再经所述慢轴聚焦透镜22 后入射所述分光镜62,经所述分光镜62反射后的样品光经所述成像透镜61 聚焦后透过所述中反二色镜5的中间部分,到达快轴扫描振镜41。
所述激光器11出射的激光光束依次经所述准直透镜12、所述柱镜13后 形成用于线共焦扫描的线光束,线光束被所述中反二色镜5的中间反射部分 反射至所述快轴扫描振镜41,与穿过所述中反二色镜5的样品光相结合,形 成结合光;
所述结合光经所述快轴扫描振镜41、快轴聚焦透镜42及平场透镜7后 对眼底进行同步照明成像,所述结合光经眼底视网膜8反射后依次经所述平 场透镜7、所述快轴聚焦透镜42、所述快轴扫描振镜41后返回至所述中反二 色镜5;其中的部分线光束穿过所述中反二色镜5两侧的透光部分到达所述 成像透镜61,再透射所述分光镜62到达所述探测器63进行成像;其中的样 品光穿过所述中反二色镜5的中间部分到达所述成像透镜61,经所述分光镜 62反射后再依次经所述慢轴聚焦透镜22、所述慢轴扫描振镜21后在所述光 学相干层析模块3中干涉成像。进入光学相干层析模块3的样品光被准直器 313接收,再经过第一耦合器312的耦合,其中大部分光进入第二耦合器318, 与参考光发生干涉成像,最后被平衡探测器319接收并成像。
在进一步优选的实施例中,所述扫频源光学相干层析模块3的扫频光源 型号为santec-HSL-10,扫频速度为100kHz,中心波长为1060nm。可以理解, 所述扫频源光学相干层析模块3的扫频光源型号、扫频速度及中心波长并不 局限上述设定,实际中均可以根据实际情况调整。
其中,可以理解,扫频光源311发出的光经过耦合器322第一耦合器312 后,其中80%的光经过第二准直器313、补偿镜316、直角反射棱镜317后 再次被第三准直器315接收,另外20%的光到达准直器313作为样品光。
在进一步优选的实施例中,所述快轴扫描振镜41的扫描速度为200Hz, 镜面大小10mmX15mm。可以理解,实际中,所述快轴扫描振镜41的扫描速度 及镜面大小均可以根据实际情况调整。
其中,所述慢轴扫描振镜21设定的扫描速度为0.5Hz,型号和快轴扫描 振镜41型号相同,均为Cambridge 6220H,扫描轴方向相互垂直。可以理解, 所述慢轴扫描振镜21的型号并不局限上述型号,实际中还可以根据实际情况 调整。
在进一步优选的实施例中,所述慢轴聚焦透镜22和成像透镜61构成4f 系统,慢轴扫描振镜21和快轴扫描振镜41均位于该4f系统的透镜焦点位置。
在进一步优选的实施例中,线扫描共焦照明模块1的激光器11发出650nm 的光,经过准直器142后变成大小为直径为20mm的平行光斑,并再次被焦距 为50mm的柱镜13汇聚成线光束,照明时线光束被中反二色镜5中间反射, 成像时线光束经中反二色镜5两侧透光部分到达成像透镜61。
在一种优选的实施例中,所述分光镜62为分光平片或分光棱镜或分光薄 膜。
在一种优选的实施例中,所述中反二色镜5为中间镀窄带二向色膜52的 平片51。二向色膜52对线扫描共焦照明模块1发出的线光束是反射的,对 光学相干层析模块3发出的样品光是透射的。
在另一种优选的实施例中,所述中反二色镜5包括平片51和设置在所述 平片中间的二色棱镜53。二色棱镜53对线扫描共焦照明模块1发出的线光 束是反射的,对光学相干层析模块3发出的样品光是透射的。
在一些较佳的实施例中,所述分光镜62为分光平片或分光棱镜或分光薄 膜。优选地,分光镜型号为thorlabsDMSP805,短波通,截至波长为805nm。
在一些较佳的实施例中,探测器63型号为E2V-EM4,像素大小512pixels, 最大采样速度210kHz。
实施例2
参照图7,为本发明实施例2提供的眼底多模态同步成像系统的结构示 意图。
在本实施例中,光学相干层析模块3为谱域光学相干层析单元,包括半 导体激光器321、耦合器322、准直器328、补偿镜325,平面反射镜326、 准直器327、准直镜328、光栅329、聚焦透镜330及线阵相机331。
所述谱域光学相干层析单元的光源为半导体激光器321,型号为 SLD-351,中心波长为830nm,带宽为80nm。
其中,半导体激光器321发出的光经过耦合器322后,其中80%的光经 过准直器324、补偿镜325,并被平面反射镜326反射后再次由准直器324接 收;另外20%的光到达准直器323作为样品光,并从准直器323出射后入射 所述慢轴扫描振镜21,再经所述慢轴聚焦透镜22后入射所述分光镜62,经 所述分光镜62反射后的样品光经所述成像透镜61聚焦后透过所述中反二色 镜5的中间部分,到达所述快轴扫描振镜41;。
所述激光器11出射的激光光束依次经所述准直器12、所述柱镜13后形 成用于线共焦扫描的线光束,所述线光束被所述中反二色镜5的中间反射部 分反射至所述快轴扫描振镜41,与穿过所述中反二色镜5的样品光相结合, 形成结合光;
所述结合光经所述快轴扫描振镜41、快轴聚焦透镜42及平场透镜7后 对眼底进行同步照明成像,所述结合光经眼底视网膜8反射后依次经所述平 场透镜7、所述快轴聚焦透镜42、所述快轴扫描振镜41后返回至所述中反二 色镜5;其中的部分线光束穿过所述中反二色镜5两侧的透光部分到达所述 成像透镜61,再透射所述分光镜62到达所述探测器63进行成像;其中的样 品光穿过所述中反二色镜5的中间部分到达所述成像透镜61,经所述分光镜 62反射后再依次经所述慢轴聚焦透镜22、所述慢轴扫描振镜21后在所述光 学相干层析模块3中干涉成像。
其中,进入光学相干层析模块3的样品光被准直器323接收,进入耦合 器322与参考光发生干涉成像,干涉后的光进入准直器327,被准直镜328 准直为平行光束,由光栅329将各个频谱的光分离,经过聚焦透镜330的聚 焦后,最后被线阵相机331接收。
在一种优选的实施例中,所述中反二色镜5为中间镀窄带二向色膜52的 平片51。二向色膜52对线扫描共焦照明模块1发出的线光束是反射的,对 光学相干层析模块3发出的样品光是透射的。
在另一种优选的实施例中,所述中反二色镜5包括平片51和设置在所述 平片中间的二色棱镜53。二色棱镜53对线扫描共焦照明模块1发出的线光 束是反射的,对光学相干层析模块3发出的样品光是透射的。
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方 式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领 域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范 围所限定的一般概念下,本发明并不限于特定的细节。
Claims (6)
1.一种眼底多模态同步成像系统,其特征在于,包括光学相干层析模块、慢轴扫描模块、成像模块、中反二色镜、线扫描共焦照明模块、快轴扫描模块以及平场透镜;
所述光学相干层析模块用于形成光学相干层析成像的样品光,所述慢轴扫描模块包括慢轴扫描振镜和慢轴聚焦透镜,所述快轴扫描模块包括快轴扫描振镜及快轴聚焦透镜,所述成像模块包括成像透镜、分光镜及探测器,所述线扫描共焦照明模块包括激光器、准直透镜及柱镜;所述中反二色镜的两侧为透光部分,中间为反射部分,且中间的反射部分对线扫描共焦照明模块发出的光束是反射的,对光学相干层析模块发出的光束是透射的;其中:
所述样品光入射到所述慢轴扫描振镜后,再依次经所述慢轴聚焦透镜聚焦、所述分光镜反射、所述成像透镜后透射所述中反二色镜的中间部分,到达所述快轴扫描振镜;
所述激光器出射的激光光束依次经所述准直透镜准直、所述柱镜聚焦后形成用于线共焦扫描的线光束,所述线光束被所述中反二色镜的中间反射部分反射至所述快轴扫描振镜,与穿过所述中反二色镜的样品光相结合,形成结合光;
所述结合光经所述快轴扫描振镜、快轴聚焦透镜及平场透镜后对眼底进行同步照明成像,所述结合光经眼底反射后依次经所述平场透镜、所述快轴聚焦透镜、所述快轴扫描振镜后返回至所述中反二色镜;其中的部分线光束穿过所述中反二色镜两侧的透光部分到达所述成像透镜,再透射所述分光镜到达所述探测器进行成像;其中的样品光穿过所述中反二色镜的中间部分到达所述成像透镜,经所述分光镜反射后再依次经所述慢轴聚焦透镜、所述慢轴扫描振镜后在所述光学相干层析模块中干涉成像。
2.根据权利要求1所述的眼底多模态同步成像系统,其特征在于,所述中反二色镜为中间镀窄带二向色膜的平片。
3.根据权利要求1所述的眼底多模态同步成像系统,其特征在于,所述中反二色镜包括平片和设置在所述平片中间的二色棱镜。
4.根据权利要求2或3所述的眼底多模态同步成像系统,其特征在于,所述光学相干层析模块为扫频源光学相干层析模块或者谱域光学相干层析模块或者时域光学相干层析模块。
5.根据权利要求2或3所述的眼底多模态同步成像系统,其特征在于,所述慢轴扫描模块中的慢轴聚焦透镜与所述成像模块中的成像透镜构成4f系统,所述慢轴扫描振镜和所述快轴扫描振镜分别处于该4f系统两透镜的焦点位置。
6.根据权利要求1所述的眼底多模态同步成像系统,其特征在于,所述分光镜为分光平片或分光棱镜或分光薄膜。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910177954.2A CN110115559B (zh) | 2019-03-07 | 2019-03-07 | 眼底多模态同步成像系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910177954.2A CN110115559B (zh) | 2019-03-07 | 2019-03-07 | 眼底多模态同步成像系统 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110115559A true CN110115559A (zh) | 2019-08-13 |
CN110115559B CN110115559B (zh) | 2024-01-23 |
Family
ID=67520573
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910177954.2A Active CN110115559B (zh) | 2019-03-07 | 2019-03-07 | 眼底多模态同步成像系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110115559B (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110680272A (zh) * | 2019-10-16 | 2020-01-14 | 中国科学院苏州生物医学工程技术研究所 | 激光线扫描检眼镜的调焦装置及方法 |
CN110742574A (zh) * | 2019-11-27 | 2020-02-04 | 佛山光微科技有限公司 | 一种oct共聚焦共路双模内窥探头及成像方法 |
CN112617760A (zh) * | 2020-12-31 | 2021-04-09 | 佛山科学技术学院 | 一种基于3d打印技术的多模态手持式oct系统 |
CN113729620A (zh) * | 2021-08-16 | 2021-12-03 | 温州医科大学 | 一种级联式超广角激光扫描眼底成像系统 |
WO2023025062A1 (zh) * | 2021-08-24 | 2023-03-02 | 图湃(北京)医疗科技有限公司 | 一种眼部多模态成像系统 |
CN117398059A (zh) * | 2023-12-12 | 2024-01-16 | 中国科学院长春光学精密机械与物理研究所 | 基于差分相衬成像的视网膜成像方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140176903A1 (en) * | 2012-12-21 | 2014-06-26 | Carl Zeiss Meditec, Inc. | Two-dimensional confocal imaging using oct light source and scan optics |
CN107126189A (zh) * | 2016-05-31 | 2017-09-05 | 瑞尔明康(杭州)医疗科技有限公司 | 用于视网膜成像的光学组件和视网膜成像设备 |
CN108371542A (zh) * | 2018-04-04 | 2018-08-07 | 中国科学院苏州生物医学工程技术研究所 | 一种眼底多模态同步成像系统 |
CN108523839A (zh) * | 2018-04-17 | 2018-09-14 | 中国科学院苏州生物医学工程技术研究所 | 手持式线共焦与光学相干层析眼底成像仪 |
CN108742511A (zh) * | 2018-07-09 | 2018-11-06 | 中国科学院苏州生物医学工程技术研究所 | 谱域oct与线共焦同步扫描系统 |
-
2019
- 2019-03-07 CN CN201910177954.2A patent/CN110115559B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140176903A1 (en) * | 2012-12-21 | 2014-06-26 | Carl Zeiss Meditec, Inc. | Two-dimensional confocal imaging using oct light source and scan optics |
CN107126189A (zh) * | 2016-05-31 | 2017-09-05 | 瑞尔明康(杭州)医疗科技有限公司 | 用于视网膜成像的光学组件和视网膜成像设备 |
CN108371542A (zh) * | 2018-04-04 | 2018-08-07 | 中国科学院苏州生物医学工程技术研究所 | 一种眼底多模态同步成像系统 |
CN108523839A (zh) * | 2018-04-17 | 2018-09-14 | 中国科学院苏州生物医学工程技术研究所 | 手持式线共焦与光学相干层析眼底成像仪 |
CN108742511A (zh) * | 2018-07-09 | 2018-11-06 | 中国科学院苏州生物医学工程技术研究所 | 谱域oct与线共焦同步扫描系统 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110680272A (zh) * | 2019-10-16 | 2020-01-14 | 中国科学院苏州生物医学工程技术研究所 | 激光线扫描检眼镜的调焦装置及方法 |
CN110680272B (zh) * | 2019-10-16 | 2024-05-17 | 中国科学院苏州生物医学工程技术研究所 | 激光线扫描检眼镜的调焦装置及方法 |
CN110742574A (zh) * | 2019-11-27 | 2020-02-04 | 佛山光微科技有限公司 | 一种oct共聚焦共路双模内窥探头及成像方法 |
CN110742574B (zh) * | 2019-11-27 | 2023-12-15 | 佛山光微科技有限公司 | 一种oct共聚焦共路双模内窥探头及成像方法 |
CN112617760A (zh) * | 2020-12-31 | 2021-04-09 | 佛山科学技术学院 | 一种基于3d打印技术的多模态手持式oct系统 |
CN112617760B (zh) * | 2020-12-31 | 2023-05-30 | 佛山科学技术学院 | 一种基于3d打印技术的多模态手持式oct系统 |
CN113729620A (zh) * | 2021-08-16 | 2021-12-03 | 温州医科大学 | 一种级联式超广角激光扫描眼底成像系统 |
CN113729620B (zh) * | 2021-08-16 | 2023-06-23 | 温州医科大学 | 一种级联式超广角激光扫描眼底成像系统 |
WO2023025062A1 (zh) * | 2021-08-24 | 2023-03-02 | 图湃(北京)医疗科技有限公司 | 一种眼部多模态成像系统 |
CN117398059A (zh) * | 2023-12-12 | 2024-01-16 | 中国科学院长春光学精密机械与物理研究所 | 基于差分相衬成像的视网膜成像方法 |
Also Published As
Publication number | Publication date |
---|---|
CN110115559B (zh) | 2024-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110115559A (zh) | 眼底多模态同步成像系统 | |
CN108371542B (zh) | 一种眼底多模态同步成像系统 | |
CN108742511B (zh) | 谱域oct与线共焦同步扫描系统 | |
CN104684457B (zh) | 使用oct光源和扫描光学器件的二维共焦成像 | |
JP4059317B2 (ja) | 眼に対する光多重ショートコヒーレンス干渉測定方法および配置 | |
JP5981722B2 (ja) | 眼科装置 | |
CN102008288B (zh) | 一种线扫描共焦检眼镜的系统和方法 | |
US9072460B2 (en) | Optical coherence tomography device and optical coherence tomography method | |
US8789950B2 (en) | Confocal line-scanning ophthalmoscope | |
CN103815867B (zh) | 连续可调环带照明视网膜暗视场光学相干层析成像仪 | |
CN108567410B (zh) | 光学相干层析和点扫描共焦同步成像系统 | |
JPH06501166A (ja) | 光学装置、および眼科装置 | |
US20200297209A1 (en) | Imaging apparatus and control method therefor | |
US20200178797A1 (en) | System and method for multi-scale retinal imaging | |
WO2023025062A1 (zh) | 一种眼部多模态成像系统 | |
CN209236115U (zh) | 谱域oct与线共焦同步扫描系统 | |
CN108523839B (zh) | 手持式线共焦与光学相干层析眼底成像仪 | |
JP6701659B2 (ja) | 眼底撮影装置 | |
KR101223074B1 (ko) | 광간섭 단층촬영 장치 및 그를 이용한 광간섭 단층촬영 방법 | |
CN208892542U (zh) | 光学相干层析和点扫描共焦同步成像系统 | |
JP7441588B2 (ja) | スリット走査型眼底撮像装置の改良 | |
CN208892543U (zh) | 手持式线共焦与光学相干层析眼底成像仪 | |
JP2017064407A (ja) | 眼底撮影装置 | |
JP2019072027A (ja) | 眼科装置及びフォーカスユニット | |
CN115553712A (zh) | 一种基于偏振分光oct的眼轴测量装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |