CN110108802A - 一种载波调制非线性超声导波损伤检测方法 - Google Patents

一种载波调制非线性超声导波损伤检测方法 Download PDF

Info

Publication number
CN110108802A
CN110108802A CN201910427160.7A CN201910427160A CN110108802A CN 110108802 A CN110108802 A CN 110108802A CN 201910427160 A CN201910427160 A CN 201910427160A CN 110108802 A CN110108802 A CN 110108802A
Authority
CN
China
Prior art keywords
frequency
signal
component
frequency component
linear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910427160.7A
Other languages
English (en)
Other versions
CN110108802B (zh
Inventor
洪晓斌
刘远
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201910427160.7A priority Critical patent/CN110108802B/zh
Priority to PCT/CN2019/088043 priority patent/WO2020232687A1/zh
Priority to US17/040,490 priority patent/US20230107987A1/en
Publication of CN110108802A publication Critical patent/CN110108802A/zh
Application granted granted Critical
Publication of CN110108802B publication Critical patent/CN110108802B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • G01M7/025Measuring arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/12Analysing solids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0025Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings of elongated objects, e.g. pipes, masts, towers or railways
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0033Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining damage, crack or wear
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0066Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by exciting or detecting vibration or acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/14Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object using acoustic emission techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/36Detecting the response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/42Detecting the response signal, e.g. electronic circuits specially adapted therefor by frequency filtering or by tuning to resonant frequency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4445Classification of defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/46Processing the detected response signal, e.g. electronic circuits specially adapted therefor by spectral analysis, e.g. Fourier analysis or wavelet analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/024Mixtures
    • G01N2291/02491Materials with nonlinear acoustic properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0258Structural degradation, e.g. fatigue of composites, ageing of oils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/102Number of transducers one emitter, one receiver

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Signal Processing (AREA)
  • Acoustics & Sound (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

本发明公开了一种载波调制非线性超声导波损伤检测方法,包括根据检测对象的频率响应特性选取高低频率成分,将高频成分进行延时处理并与低频成分组合构成调制载波信号;采用单激励‑单接收方式进行信号采集,由单一激励换能器激发已调制的含高频成分与低频成分的调制载波信号,载波信号传播时与损伤相互作用产生非线性调制效应,并通过透射法由接收换能器采集;根据高频成分的到达时间和端面反射回波时间截取信号进行分析,对信号滤波和归一化处理后,采用经验模态分解方法对接收信号进行分解,根据分解的各IMF频谱信息选取包含基频和非线性频率成分的IMF分量进行信号重构;提取高频与低频调制旁瓣的差频分量,即非线性成分分量,计算非线性系数,以无损伤非线性系数为基准,对材料损伤程度进行评估。

Description

一种载波调制非线性超声导波损伤检测方法
技术领域
本发明涉及无损检测技术及结构健康监测技术领域,尤其涉及一种载波调制非线性超声导波损伤检测方法。
背景技术
航空航天飞行器、桥梁工程、船舶工程以及输油管道等大型工程结构在长期服役中,受到外部环境影响,如疲劳、腐蚀效应及材料老化等影响,结构表面或内部不可避免的会有缺陷形成。缺陷的产生严重破坏了工程材料的结构完整性,致使其性能急剧下降,从而在实际使用过程中引发严重事故。为避免引起突发事故,结构健康监测技术得到了广泛关注和发展。结构健康监测(structural health monitoring,简称SHM)是一种在线监测技术,在不破坏结构件完整性的前提下,对工程材料进行不间断监测,对收集到的结构响应信号进行分析,并对材料是否存在损伤以及损伤的位置和程度进行评估。为保证工程材料在使用过程中的可靠性,采取有效的检测手段对材料进行损伤检测是十分有必要的。
超声导波检测技术具有传播距离长、检测效率高、成本低、对人体无害等优点,在无损检测领域得到广泛的应用。超声导波检测技术主要分为线性超声导波和非线性超声导波检测技术两大类。线性超声导波检测技术通常根据信号的时间与幅值特征的变化进行检测,对于尺寸大于波长的裂纹和孔洞等损伤具有较高的检测精度和灵敏度,但对于微裂纹、疲劳损伤、分层损伤进行检测时,时间和幅值特征的变化非常不明显,导致检测结果不准确。非线性超声导波检测技术不受传播波长的限制,在材料内部存在的微缺陷或状态变化非常敏感。非线性超声导波检测技术通常对接收信号的频域进行分析,主要观测的是材料存在的非线性效应,如高次谐波和调制旁瓣等。其中高次谐波法由于受仪器非线性和材料非线性影响测量结果不能准确描述由缺陷产生的非线性效应。调制旁瓣法通过两列超声信号在传播途径中与缺陷相互作用产生的非线性效应可以更准确的描述缺陷的非线性效应。但是,调制旁瓣法需要多个激励源,且非线性分量相对基频分量而言非常微弱,严重影响检测的准确度。
发明内容
为解决上述技术问题,本发明的目的是提供一种载波调制非线性超声导波损伤检测方法。
本发明的目的通过以下的技术方案来实现:
一种载波调制非线性超声导波损伤检测方法,包括以下步骤:
步骤S1根据检测对象的频率响应特性选取高低频率成分,将高频成分进行延时处理并与低频成分组合构成调制载波信号;
步骤S2采用单激励-单接收方式进行信号采集,由单一激励换能器激发已调制的含高频成分与低频成分的调制载波信号,载波信号传播时与损伤相互作用产生非线性调制效应,并通过透射法由接收换能器采集;
步骤S3根据高频成分的到达时间和端面反射回波时间截取信号进行分析,对信号滤波和归一化处理后,采用经验模态分解方法对接收信号进行分解,根据分解的各IMF频谱信息选取包含基频和非线性频率成分的IMF分量进行信号重构;
步骤S4提取高频与低频调制旁瓣的差频分量,即非线性成分分量,计算非线性系数,以损伤非线性系数为基准,对材料损伤程度进行评估。
与现有技术相比,本发明的一个或多个实施例可以具有如下优点:
实现对工程材料反射信号弱微小损伤进行有效、准确的检测;
通过载波调制信号使用单压电换能器实现多频率成分信号的激励,降低调制非线性超声导波检测方法成本;
通过IMF各分量频谱信息提取高低频调制旁瓣中的差频(即高频与低频之差)分量,提高调制非线性超声检测方法准确性并对损伤程度进行评估。
附图说明
图1是载波调制非线性超声导波损伤检测方法流程图;
图2是载波调制非线性超声检测系统框架图;
图3a和3b是时域信号和频域信号图;
图4是载波调制高低频延时激励信号图;
图5是载波调制非线性超声导波检测原理示意图;
图6是截取含差频调制旁瓣时域信号图;
图7是信号EMD后的本征模态图;
图8是EMD分解后各本征模态频谱图
图9是包含基频及差频旁瓣成分重构信号的频谱图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合实施例及附图对本发明作进一步详细的描述。
如图1所示,为载波调制非线性超声导波损伤检测方法,该方法通过入图2检测系统实现,所述方法具体包括如下步骤:
步骤10根据检测对象的频率响应特性分别选取280kHz和160kHz作为高频率和低频率成分,将高频成分做延时处理后与低频成分组合构成调制载波信号;
对检测对象进行扫频实验,其时域信号如图3a及频域信号如图3b所述。分别选取280kHz和160kHz作为高低频率成分构成调制载波信号,此时选取的频率响应强度接近响应最大值的1/2,调制效果较好。调制的激励载波信号如图4所示。
上述低频成分采用连续正弦波,高频成分采用汉宁窗调制20峰正弦波,将高频成分进行延时处理与低频成分组合构成调制载波信号,高频成分延时长度取值大于低频信号到达接收换能器的时间。
步骤20采用载波调制的超声检测信号对检测对象实现单激励-单接收方式损伤检测;即:采用单激励-单接收方式进行信号采集,由单一激励换能器激发已调制的含高频成分与低频成分的调制载波信号,载波信号传播时与损伤相互作用产生非线性调制效应,并通过透射法由接收换能器采集;
单一激励换能器产生包含两种频率成分的激励信号,采用单激励-单接收方式进行信号采集,由单个超声换能器单元激励调制载波信号,在经过损伤后由单个压电超声换能器单元接收透射信号。
发射与接收传感器均使用正逆压电效应的PZT换能器,T为激励换能器,激发包含高低频率成分的载波调制信号,R为接收换能器,接收到的透射信号包含由载波调制信号与损伤相互作用产生的非线性调制旁瓣。
当超声波在非线性介质上传播时,其波形会产生失真与变形,而非线性调制现象是材料非线性特性中的一种形式,在频谱上表现为能量的重新分配。
载波调制信号由高低频率成分相互调制而成,包含两个频率成分,假设输入载波调制信号为u(0)(x,t)=A01cos(ω1τ)+A02cos(ω2τ),根据非线性调制原理,信号经过裂纹损伤,接收信号包含高频分量、低频分量、非线性调制分量以及非线性谐波分量,非线性调制分量分为幅值调制与频率调制,如公式(1)所示,
从不同频率分布的角度看,上式中包含原来ω1与ω2的频率,同时有2ω1与2ω2,以及和频ω12和差频ω12,取差频成分ω12进行分析。
步骤30根据高频成分的到达时间和端面反射回波时间截取信号进行分析,对信号滤波和归一化处理后,采用经验模态分解EMD方法对接收信号进行分解,根据分解的各IMF频谱信息选取包含基频和非线性频率成分的IMF分量进行信号重构;
高频成分设置了延时,到达接收换能器的时间比低频成分晚,高频成分在整个传播路径中均存在低频成分,为获取准确的调制旁瓣信息,根据高频成分的到达时间和材料端面反射回波截取信号中一定时间长度的信号进行分析,截取信号的起点为高频成分到达接收换能器的时间,终点为端面反射回波到达接收换能器的时间,截取信号如图6所示。对截取信号进行滤波及归一化处理,消除由传感器等外在因素产生的误差,截取信号中包含了基频及其与损伤相互作用产生的非线性分量。
将归一化处理应用于信号分解之前,即将时域信号归一化后再进行分析,消除由传感器外在因素产生的误差。对信号进行EMD分解,如图7为某一延时信号的EMD分解结果,对各个IMF分量进行频谱分析,如图8为EMD分解各IMF分量的频谱图,选取包含基频信号及其与损伤调制产生的差频旁瓣分量进行信号重构。
步骤40提取高频与低频调制旁瓣的差频分量,即非线性成分分量,计算非线性系数,以无损伤非线性系数为基准,对材料损伤程度进行评估。中非线性系数为差频调制旁瓣能量与基频信号能量的比值。
对重构信号进行傅里叶变换,图9为重构信号频谱图。根据非线性声波调制原理,计算非线性系数为差频调制旁瓣能量与基频信号能量的比值。以无损伤非线性系数βs为基准对材料损伤情况进行评估,(0-1.5βs]、(1.5βs-3βs]、(3βs-]分别定义为无损伤、轻度损伤和重度损伤。
虽然本发明所揭露的实施方式如上,但所述的内容只是为了便于理解本发明而采用的实施方式,并非用以限定本发明。任何本发明所属技术领域内的技术人员,在不脱离本发明所揭露的精神和范围的前提下,可以在实施的形式上及细节上作任何的修改与变化,但本发明的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (9)

1.一种载波调制非线性超声导波损伤检测方法,其特征在于,所述方法包括以下步骤:
步骤S1根据检测对象的频率响应特性选取高低频率成分,将高频成分进行延时处理并与低频成分组合构成调制载波信号;
步骤S2采用单激励-单接收方式进行信号采集,由单一激励换能器激发已调制的含高频成分与低频成分的调制载波信号,载波信号传播时与损伤相互作用产生非线性调制效应,并通过透射法由接收换能器采集;
步骤S3根据高频成分的到达时间和端面反射回波时间截取信号进行分析,对信号滤波和归一化处理后,采用经验模态分解方法对接收信号进行分解,根据分解的各IMF频谱信息选取包含基频和非线性频率成分的IMF分量进行信号重构;
步骤S4提取高频与低频调制旁瓣的差频分量,即非线性成分分量,计算非线性系数,以无损伤非线性系数为基准,对材料损伤程度进行评估。
2.如权利要求1所述的载波调制非线性超声导波损伤检测方法,其特征在于,所述步骤S1中,高频成分延时处理后与低频成分组合构成的调制载波信号为单一信号源,其中选取的高频率成分与低频率成分分别为响应强度接近响应最大值1/2的左右两边两个频率成分。
3.如权利要求1所述的载波调制非线性超声导波损伤检测方法,其特征在于,所述步骤S1中低频成分采用连续正弦波,高频成分采用汉宁窗调制20峰正弦波,将高频成分进行延时处理与低频成分组合构成调制载波信号,高频成分延时长度取值大于低频信号到达接收换能器的时间。
4.如权利要求1所述的载波调制非线性超声导波损伤检测方法,其特征在于,所述步骤S2中单一激励换能器产生包含两种频率成分的激励信号,采用单激励-单接收方式进行信号采集,由单个超声换能器单元激励调制载波信号,在经过损伤后由单个压电超声换能器单元接收透射信号。
5.如权利要求1所述的载波调制非线性超声导波损伤检测方法,其特征在于,所述步骤S3中截取信号应包含基频及其与损伤相互作用产生的非线性分量,截取信号的起点为高频成分到达接收换能器的时间,终点为端面反射回波到达接收换能器的时间。
6.如权利要求1所述的载波调制非线性超声导波损伤检测方法,其特征在于,步骤S3中将归一化处理应用于信号分解之前,即将时域信号归一化后再进行分析,消除由传感器外在因素产生的误差。
7.如权利要求1所述的载波调制非线性超声导波损伤检测方法,其特征在于,所述步骤S3中信号重构是根据经验模态分解后的各IMF分量频谱信息进行选取,采用包含基频及调制差频成分的IMF分量进行重构。
8.如权利要求1所述的载波调制非线性超声导波损伤检测方法,其特征在于,步骤S4中非线性系数为差频调制旁瓣能量与基频信号能量的比值。
9.如权利要求1所述的载波调制非线性超声导波损伤检测方法,其特征在于,所述步骤S4中以无损伤非线性系数βs为基准对检测对象损伤情况进行评估,(0-1.5βs]、(1.5βs-3βs]、(3βs-]分别定义为无损伤、轻度损伤和重度损伤。
CN201910427160.7A 2019-05-22 2019-05-22 一种载波调制非线性超声导波损伤检测方法 Active CN110108802B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201910427160.7A CN110108802B (zh) 2019-05-22 2019-05-22 一种载波调制非线性超声导波损伤检测方法
PCT/CN2019/088043 WO2020232687A1 (zh) 2019-05-22 2019-05-23 一种载波调制非线性超声导波损伤检测方法
US17/040,490 US20230107987A1 (en) 2019-05-22 2019-05-23 A detection method of nonlinear ultrasonic guided wave with carrier modulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910427160.7A CN110108802B (zh) 2019-05-22 2019-05-22 一种载波调制非线性超声导波损伤检测方法

Publications (2)

Publication Number Publication Date
CN110108802A true CN110108802A (zh) 2019-08-09
CN110108802B CN110108802B (zh) 2021-05-18

Family

ID=67491504

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910427160.7A Active CN110108802B (zh) 2019-05-22 2019-05-22 一种载波调制非线性超声导波损伤检测方法

Country Status (3)

Country Link
US (1) US20230107987A1 (zh)
CN (1) CN110108802B (zh)
WO (1) WO2020232687A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111581865A (zh) * 2020-05-08 2020-08-25 成都山地环安防灾减灾技术有限公司 一种工程结构损伤远程监测预警方法及系统
CN112946078A (zh) * 2021-02-03 2021-06-11 山东大学 一种复合材料胶接质量评估和早期损伤识别方法及系统
CN113655117A (zh) * 2021-07-27 2021-11-16 上海核工程研究设计院有限公司 一种基于超声导波的高温压力容器损伤定位方法
CN113758996A (zh) * 2021-08-30 2021-12-07 浙江工业大学 基于混频非线性超声的法兰螺栓松动检测方法及检测装置
CN113777161A (zh) * 2021-08-31 2021-12-10 哈尔滨工业大学(深圳) 宽频激励非线性声场调制的混凝土微裂缝检测系统及方法
CN114235962A (zh) * 2021-11-30 2022-03-25 华南理工大学 一种面向各向异性结构的超声导波成像方法及系统
CN114414659A (zh) * 2022-01-21 2022-04-29 山东大学 基于频率融合的非线性超声导波无参损伤识别方法及系统

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113237951A (zh) * 2021-05-11 2021-08-10 重庆大学 一种基于形状上下文动态时间规整的金属板疲劳损伤超声导波检测方法
CN114002327B (zh) * 2021-11-05 2024-02-23 湘潭大学 一种用于钢绞线完整程度的检测方法
CN114184677B (zh) * 2021-12-02 2023-09-12 天津大学 基于超声能量扩散多层非一致介质界面剥离损伤检测方法
CN115655887B (zh) * 2022-11-01 2023-04-21 广东建设职业技术学院 一种混凝土强度的预测方法
CN115901045A (zh) * 2022-11-22 2023-04-04 厦门大学 基于构件r区的非线性特征导波装置和方法
CN116343966B (zh) * 2023-03-27 2023-11-17 山东大学 基于延迟因子的概率乘累加结构损伤成像定位方法及系统
CN116609442B (zh) * 2023-07-17 2023-10-13 南京工业大学 基于非线性超声导波和深度学习的管道裂纹评估定位方法
CN116738221B (zh) * 2023-08-15 2023-10-20 湖南天联城市数控有限公司 一种带压管道气体分析方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006064574A (ja) * 2004-08-27 2006-03-09 Choonpa Zairyo Shindan Kenkyusho:Kk 超音波材料評価方法及び装置
WO2013070455A1 (en) * 2011-11-10 2013-05-16 The Regents Of The University Of California Stress detection in rail
CN104807888A (zh) * 2015-04-13 2015-07-29 北京工业大学 一种用于微裂纹长度测量的非共线混频超声检测方法
CN105044216A (zh) * 2015-08-21 2015-11-11 华南理工大学 一种非金属管道损伤穿透式导波检测新方法
CN107422033A (zh) * 2017-03-20 2017-12-01 华南理工大学 一种玻璃幕墙结构胶粘接强度的检测评价方法
US10161910B2 (en) * 2016-01-11 2018-12-25 General Electric Company Methods of non-destructive testing and ultrasonic inspection of composite materials
CN109187754A (zh) * 2018-10-15 2019-01-11 山东省特种设备检验研究院有限公司 倍频调制非线性超声导波时间反转检测管道微裂纹的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104034801B (zh) * 2014-05-13 2016-06-15 华南理工大学 基于合成时反的结构损伤迭代聚焦成像监测方法
KR101732494B1 (ko) * 2016-03-29 2017-05-04 한국과학기술원 비선형 초음파 변조 기법을 이용한 균열 탐지 방법
US10191013B2 (en) * 2017-05-11 2019-01-29 The Florida International University Board Of Trustees Implementation of heterodyne effect in SHM and talking SHM systems
CN109406635A (zh) * 2018-11-08 2019-03-01 航天科工防御技术研究试验中心 基于空气耦合超声的振动声调制成像检测方法和系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006064574A (ja) * 2004-08-27 2006-03-09 Choonpa Zairyo Shindan Kenkyusho:Kk 超音波材料評価方法及び装置
WO2013070455A1 (en) * 2011-11-10 2013-05-16 The Regents Of The University Of California Stress detection in rail
CN104807888A (zh) * 2015-04-13 2015-07-29 北京工业大学 一种用于微裂纹长度测量的非共线混频超声检测方法
CN105044216A (zh) * 2015-08-21 2015-11-11 华南理工大学 一种非金属管道损伤穿透式导波检测新方法
US10161910B2 (en) * 2016-01-11 2018-12-25 General Electric Company Methods of non-destructive testing and ultrasonic inspection of composite materials
CN107422033A (zh) * 2017-03-20 2017-12-01 华南理工大学 一种玻璃幕墙结构胶粘接强度的检测评价方法
CN109187754A (zh) * 2018-10-15 2019-01-11 山东省特种设备检验研究院有限公司 倍频调制非线性超声导波时间反转检测管道微裂纹的方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
HONG XIAOBIN ET AL.: "Nonlinear Ultrasonic Detection Method for Delamination Damage of Lined Anti-Corrosion Pipes Using PZT Transducers", 《APPLIED SCIENCES-BASEL》 *
W. LI AND Y. CHO: "Thermal Fatigue Damage Assessment in an Isotropic Pipe Using Nonlinear Ultrasonic Guided Waves", 《EXPERIMENTAL MECHANICS》 *
周孜毅等: "基于非线性超声导波的高压电缆瓷套式终端液位检测", 《中国测试》 *
洪晓斌等: "非金属管道损伤的非线性超声导波延时检测定位方法", 《光学 精密工程》 *
王兴武等: "影响非线性差频方法产生太赫兹辐射的因素分析", 《第十三届全国红外加热暨红外医学发展研讨会论文及论文摘要集》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111581865A (zh) * 2020-05-08 2020-08-25 成都山地环安防灾减灾技术有限公司 一种工程结构损伤远程监测预警方法及系统
CN111581865B (zh) * 2020-05-08 2023-09-05 成都山地环安科技有限公司 一种工程结构损伤远程监测预警方法及系统
CN112946078A (zh) * 2021-02-03 2021-06-11 山东大学 一种复合材料胶接质量评估和早期损伤识别方法及系统
CN112946078B (zh) * 2021-02-03 2022-08-05 山东大学 一种复合材料胶接质量评估和早期损伤识别方法及系统
CN113655117A (zh) * 2021-07-27 2021-11-16 上海核工程研究设计院有限公司 一种基于超声导波的高温压力容器损伤定位方法
CN113758996A (zh) * 2021-08-30 2021-12-07 浙江工业大学 基于混频非线性超声的法兰螺栓松动检测方法及检测装置
CN113777161A (zh) * 2021-08-31 2021-12-10 哈尔滨工业大学(深圳) 宽频激励非线性声场调制的混凝土微裂缝检测系统及方法
CN113777161B (zh) * 2021-08-31 2023-11-17 哈尔滨工业大学(深圳) 宽频激励非线性声场调制的混凝土微裂缝检测系统及方法
CN114235962A (zh) * 2021-11-30 2022-03-25 华南理工大学 一种面向各向异性结构的超声导波成像方法及系统
CN114235962B (zh) * 2021-11-30 2023-06-16 华南理工大学 一种面向各向异性结构的超声导波成像方法及系统
CN114414659A (zh) * 2022-01-21 2022-04-29 山东大学 基于频率融合的非线性超声导波无参损伤识别方法及系统
CN114414659B (zh) * 2022-01-21 2023-12-29 山东大学 基于频率融合的非线性超声导波无参损伤识别方法及系统

Also Published As

Publication number Publication date
WO2020232687A1 (zh) 2020-11-26
US20230107987A1 (en) 2023-04-06
CN110108802B (zh) 2021-05-18

Similar Documents

Publication Publication Date Title
CN110108802A (zh) 一种载波调制非线性超声导波损伤检测方法
Michaels et al. Chirp excitation of ultrasonic guided waves
Gangadharan et al. Time reversal technique for health monitoring of metallic structure using Lamb waves
Gan et al. The use of broadband acoustic transducers and pulse-compression techniques for air-coupled ultrasonic imaging
US8176783B2 (en) Non-contact fluid characterization in containers using ultrasonic waves
Hutchins et al. Coded waveforms for optimised air-coupled ultrasonic nondestructive evaluation
Laguerre et al. Magnetostrictive pulse-echo device for non-destructive evaluation of cylindrical steel materials using longitudinal guided waves
US6823736B1 (en) Nondestructive acoustic emission testing system using electromagnetic excitation and method for using same
Lin et al. Excitation waveform design for Lamb wave pulse compression
US11092573B2 (en) Apparatus, systems, and methods for determining nonlinear properties of a material to detect early fatigue or damage
Pedram et al. Split-spectrum processing technique for SNR enhancement of ultrasonic guided wave
US8776603B2 (en) Method and system for non-destructive testing
Fierro et al. Nonlinear elastic imaging of barely visible impact damage in composite structures using a constructive nonlinear array sweep technique
US20210293947A1 (en) Continuous wave ultrasound or acoustic non-destructive testing
CN108802203B (zh) 一种基于多模态技术的杆状构件内部缺陷定位方法
Moll et al. Time-varying inverse filtering of narrowband ultrasonic signals
Kehlenbach et al. Identifying damage in plates by analyzing Lamb wave propagation characteristics
US20030167141A1 (en) Structural health monitoring
Liu et al. Pulsed ultrasonic comb filtering effect and its applications in the measurement of sound velocity and thickness of thin plates
Yücel et al. Pulse-compression based iterative time-of-flight extraction of dispersed ultrasonic guided waves
Yu et al. Signal processing techniques for damage detection with piezoelectric wafer active sensors and embedded ultrasonic structural radar
Cicero et al. Potential and limitations of a deconvolution approach for guided wave structural health monitoring
Zima et al. Application of wavelet transform in analysis of guided wave propagation signals for damage detection in a steel plate
Xu et al. Lamb wave based damage imaging under nonlinear chirp excitation
Battaglini et al. The use of pulse compression and frequency modulated continuous wave to improve ultrasonic non destructive evaluation of highly-scattering materials

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant