CN110107547B - 基于开关阀体积流量拟合模块的气缸输出力伺服控制系统 - Google Patents

基于开关阀体积流量拟合模块的气缸输出力伺服控制系统 Download PDF

Info

Publication number
CN110107547B
CN110107547B CN201910407498.6A CN201910407498A CN110107547B CN 110107547 B CN110107547 B CN 110107547B CN 201910407498 A CN201910407498 A CN 201910407498A CN 110107547 B CN110107547 B CN 110107547B
Authority
CN
China
Prior art keywords
volume flow
switch valve
valve
force
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201910407498.6A
Other languages
English (en)
Other versions
CN110107547A (zh
Inventor
林忠麟
嵇润民
韦青燕
张天宏
黄向华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN201910407498.6A priority Critical patent/CN110107547B/zh
Publication of CN110107547A publication Critical patent/CN110107547A/zh
Application granted granted Critical
Publication of CN110107547B publication Critical patent/CN110107547B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/028Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the actuating force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/08Servomotor systems incorporating electrically operated control means

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Actuator (AREA)

Abstract

本发明提出的是一种基于开关阀体积流量拟合模块的气缸输出力伺服控制系统及其控制方法,其结构包括控制器、4个高速开关阀、带弹簧的双出杆双作动气缸、力传感器、压力传感器;其中4个高速开关阀分别通过气管与带弹簧的双出杆双作动气缸的左、右腔的气孔相连,力传感器安装于气缸一侧带有弹簧的输出杆的顶端,压力传感器的2个检测终端分别连接于缸的左、右腔的气孔处;4个高速开关阀、力传感器和压力传感器分别通过电缆与控制器相连接。优点:采用真实数据拟合的开关阀体积流量模型代替了传统的数学模型,解决传统模型设计中忽略开关阀模型的问题,最大限度的降低开关阀最小开启脉冲的影响,提高气缸输出力伺服控制的响应精度和速度。

Description

基于开关阀体积流量拟合模块的气缸输出力伺服控制系统
技术领域
本发明涉及的是一种基于开关阀体积流量拟合模块的气缸输出力伺服控制系统及其控制方法,属于气动伺服控制技术领域。
背景技术
在现代生产过程自动化和机械化过程中,气压传动和控制通过以压缩空气为工作介质进行能量转换,是机械自动化控制有效的手段之一。现代气动控制技术由于具有节能、无污染、效率高、低成本和安全等特点,已经被广泛地应用在机器人、医疗器械和食品加工等行业中。现代气动控制技术更注重和电子技术的结合,在控制系统中通常会大量使用各种传感器,使气动元件更加智能化;新型的阀元件内部通常带有加速电路等装置,从而在不改变传统阀设计的基础上,通过电子化提高了其工作频率;各种元件也更加安全可靠,并且大部分均采用无油润滑技术,其工作寿命大大提高。
目前在伺服控制技术领域中,国内外技术人员针对各种线性和非线性控制方法均开展了多项研究:在现有线性控制方法中,现有技术研究最为广泛的是比例积分微分控制方法,即PID控制,该方法由于是一种针对线性控制系统的控制方法,对于强非线性系统适用性较差,单纯采用PID控制器难以取得良好的控制效果;在现有非线性控制方法中,现有技术通常采用滑模变结构控制、模糊控制和模型预测控制方法,针对气动伺服控制系统进行改进和优化,如“Mp S D S , Ferreira J A . Novel intelligent real-timeposition tracking system using FPGA and fuzzy logic.[J]. Isa Transactions,2014, 53(2):402-414.”以及“Hodgson S , Le M Q , Tavakoli M , et al. Improvedtracking and switching performance of an electro-pneumatic positioning system[J]. Mechatronics, 2012, 22(1):1-12.”中分别使用了模糊控制器和滑模控制器,最终的控制效果相比传统方法有了大幅的提升,均取得了较好的控制和跟踪效果。
然而,现有技术中的气动伺服研究大多基于数学模型开展,并依靠数学模型进行控制器设计和仿真验证,从而经常忽略开关阀的最小开启脉宽限制对模型的影响,仿真结果与真实结果一般差距较大,并且控制器参数设计的调整较为繁琐,真实控制效果较差;同时,现有技术的研究过程通常忽略了开关阀自身的非线性模型,以及开启和关闭死区对整个气动伺服控制系统的影响,造成在实际生产过程中,将理论模型研究得到的控制方法应用在一般的控制系统中非常困难,反而导致控制效果变差,不具有普适性。
发明内容
本发明的目的在于针对现有气体伺服控制技术存在的上述问题,提出一种新型的基于开关阀体积流量拟合模块的气缸输出力伺服控制系统以代替传统的数学模型,并有效结合基础的PID控制器,提高气缸输出力伺服控制系统的控制精度和响应速度。
本发明的技术解决方案:基于开关阀体积流量拟合模块的气缸输出力伺服控制系统,其结构包括控制器、4个高速开关阀、带弹簧的双出杆双作动气缸、力传感器、压力传感器;其中4个高速开关阀分为2组,每组分别通过气管与带弹簧的双出杆双作动气缸的左、右腔的气孔相连,力传感器安装于带弹簧的双出杆双作动气缸一侧带有弹簧的输出杆的顶端,压力传感器的2个检测终端分别连接于带弹簧的双出杆双作动气缸的左、右腔的气孔处;4个高速开关阀、力传感器和压力传感器分别通过电缆与控制器相连接,控制器控制4个高速开关阀的开启和关闭,并对力传感器和压力传感器反馈的数值进行测量和处理。
所述的高速开关阀为电磁三通高速开关阀,可通过控制关闭其中一个气孔作为双通电磁高速开关阀使用;其中与带弹簧的双出杆双作动气缸的左腔相连的2个高速开关阀分别为左腔充气阀和左腔放气阀,与带弹簧的双出杆双作动气缸的右腔相连的2个高速开关阀分别为右腔充气阀和右腔放气阀。
所述带弹簧的双出杆双作动气缸为最高耐压0.7MPa,最大行程0.1m的标准气缸,其一端的输出杆顶端安装有弹簧,该弹簧最大可承受力为100N。
所述力传感器采用输出0~5V电信号的平面膜盒式测力传感器,用于测量带弹簧的双出杆双作动气缸的实测力F,并将实测力F输出到力误差计算模块中进行计算。
所述压力传感器采用输出0~5V电信号的标准压力传感器,用于测量气缸左腔气压
Figure 100002_DEST_PATH_IMAGE001
和右腔气压
Figure 84899DEST_PATH_IMAGE002
,并将测量结果输出到开关阀体积流量拟合模块中。
所述的控制器内部结构包括开关阀体积流量拟合模块、力误差计算模块、PID控制器、开关阀开启策略模块;其中力误差计算模块的输入端连接力传感器的输出端,力误差计算模块的输出端分别连接PID控制器的输入端和开关阀开启策略模块的第一输入端;PID控制器的输出端连接开关阀体积流量拟合模块的第一输入端,开关阀体积流量拟合模块的输出端连接开关阀开启策略模块的第二输入端,开关阀体积流量拟合模块的第二输入端连接压力传感器的输出端;开关阀开启策略模块的输出端分别连接4个高速开关阀。
所述的开关阀体积流量拟合模块包括高压气源、调压阀、1个高速开关阀和体积流量计,其中调压阀的进气口接入外部高压气源,调压阀的排气口通过1个高速开关阀连接体积流量计的进气口,体积流量计的排气口与大气相连;所述调压阀也称为减压阀,可降低高压气源压力,输出给定的压力;所述体积流量计采用输出0~5V电信号的微小气体热式体积流量计。
基于开关阀体积流量拟合模块的气缸输出力伺服控制系统的控制方法,具体包括如下步骤:
1)开关阀体积流量特性测试:通过调节调压阀调节与其连接的高速开关阀的输入气压,并调节在多组控制频率下的高速开关阀的开启脉宽,记录体积流量计输出的平均体积流量
Figure 100002_DEST_PATH_IMAGE003
,最后对采集数据进行拟合处理,得到开关阀体积流量拟合模块的拟合模型;
2)通过力传感器测量双出杆双作动气缸输出杆的实测力F,并通过力误差计算模块根据其内部设定的给定力
Figure 260665DEST_PATH_IMAGE004
的数值与实测力F的差值计算力误差
Figure 100002_DEST_PATH_IMAGE005
,即
Figure 451475DEST_PATH_IMAGE006
3)PID控制器根据力误差计算模块输出的力误差
Figure 472521DEST_PATH_IMAGE005
的大小,计算输出开关阀体积流量百分比K;PID控制器的计算公式为
Figure 100002_DEST_PATH_IMAGE007
,其中
Figure 65176DEST_PATH_IMAGE008
Figure 100002_DEST_PATH_IMAGE009
Figure 349527DEST_PATH_IMAGE010
都是PID控制器的参数;
4)开关阀体积流量拟合模块对开关阀体积流量百分比K和压力传感器采集的左腔气压
Figure 100002_DEST_PATH_IMAGE011
和右腔气压
Figure 27633DEST_PATH_IMAGE012
进行计算处理,输出各开关阀对应的开启脉宽;
5)通过开关阀开启策略模块,进而通过数字量输出卡输出数字信号控制4个高速开关阀的开启和关闭,最终带动带弹簧的双出杆双作动气缸中的输出杆运动,使气缸输出实测力F的数值与给定力
Figure 100002_DEST_PATH_IMAGE013
的误差保持最小并保持稳定。
所述的步骤1)得到开关阀体积流量拟合模块的拟合模型的具体方法包括:首先设定50Hz的脉宽调制频率,调节调压阀,改变高速开关阀的输入气压大小
Figure 852370DEST_PATH_IMAGE014
,由于开关阀的输出气压为定值大气压
Figure 100002_DEST_PATH_IMAGE015
,故改变输入气压即为改变进出口气压差
Figure 565111DEST_PATH_IMAGE016
在50Hz和0.1、0.3、0.5、0.7、1、1.5、2、3bar的进出口气压差下分别进行以下测试:在开关阀开启占空比小于10%时,按照1%的步长调整占空比,记录每一步的体积流量,在体积流量接近最小值时按0.1%的步长调整占空比,找到最小开启占空比,在开关阀开启占空比大于10%时,按照10%的步长调整占空比,记录每一步的体积流量,在体积流量接近最大值时按0.1%的步长调整占空比,找到最大开启占空比;其次改变脉宽调制频率为100Hz和150Hz,得到3组频率下的开关阀体积流量特性测试数据;通过Matlab2018软件根据采集的数据,去除部分不准确的数据,并对10%占空比左右的数据进行优化处理,对占空比0~10%和10%~100%的数据进行4阶多项式分段拟合,最终得到开关阀体积流量拟合模块对应的拟合模型关系。
所述的步骤4)中,根据得到的开关阀体积流量拟合模块体积流量百分比、占空比和阀进出口压差之间的拟合模型关系,在选定100Hz为控制频率之后,由于仅测试了0.1、0.3、0.5、0.7、1、1.5、2、3bar这8个阀进出口压差下的体积流量百分比和占空比的关系,所以需要对非测试曲线上的值采用插值法进行计算;
首先按如下公式对4个高速开关阀进行压差计算:左腔充气阀:
Figure 100002_DEST_PATH_IMAGE017
,左腔放气阀:
Figure 754784DEST_PATH_IMAGE018
,右腔充气阀:
Figure 100002_DEST_PATH_IMAGE019
,右腔放气阀:
Figure 185765DEST_PATH_IMAGE020
;其次假定需要计算
Figure 100002_DEST_PATH_IMAGE021
下的占空比
Figure 283034DEST_PATH_IMAGE022
,则在开关阀体积流量拟合模型上找到
Figure 100002_DEST_PATH_IMAGE023
左右相邻的
Figure 584702DEST_PATH_IMAGE024
Figure 100002_DEST_PATH_IMAGE025
两条曲线,根据PID控制器(9)给出的开关阀体积流量百分比
Figure 210856DEST_PATH_IMAGE026
,计算出对应的占空比
Figure 100002_DEST_PATH_IMAGE027
Figure 394712DEST_PATH_IMAGE028
,最后按照如下插值法公式进行计算得到占空比
Figure 100002_DEST_PATH_IMAGE029
Figure 295672DEST_PATH_IMAGE030
所述的步骤5)中开关阀开启策略模块根据误差的大小,设定不同的阀开启占空比,如下表所示,表中
Figure 100002_DEST_PATH_IMAGE031
Figure 186268DEST_PATH_IMAGE032
分别表示在该模式下计算出的该阀对应的开启占空比。
Figure 514481DEST_PATH_IMAGE033
本发明的优点:采用真实数据拟合的开关阀体积流量模型代替了传统的数学模型,解决传统模型设计中忽略开关阀模型的问题,最大限度的降低开关阀最小开启脉冲的影响,提高气缸输出力伺服控制的响应精度和速度。
附图说明
图1是本发明基于开关阀体积流量拟合模块的气缸输出力伺服控制系统的结构框图。
图2是本发明的控制系统设备结构示意图。
图3是本发明的开关阀体积流量拟合模型图。
图4是本发明的开关阀体积流量与最小占空比的关系曲线图。
图5是本发明的开关阀体积流量与最大占空比的关系曲线图。
图6是本发明的实际控制效果曲线图。
具体实施方式
下面结合说明书附图对本发明的技术方案作更进一步的解释说明。
如图1所示的基于开关阀体积流量拟合模块的气缸输出力伺服控制系统,包含4个高速开关阀1、带弹簧的双出杆双作动气缸2、力传感器3、压力传感器4、开关阀体积流量拟合模块5、控制器和气管,开关阀体积流量拟合模块由高压气源、调压阀6、高速开关阀1、体积流量计7组成的测试系统测试的数据拟合而成,控制器包括力误差计算模块8、PID控制器9、开关阀开启策略模块10;4个高速开关阀1通过气管与带弹簧的双出杆双作动气缸2相连;力传感器3与带弹簧的双出杆双作动气缸2连接,测量双出杆双作动气缸输出杆的实测力F,并将实测力F输出到力误差计算模块8中进行计算;压力传感器4与带弹簧的双出杆双作动气缸2连接,测量气缸左腔气压
Figure 123317DEST_PATH_IMAGE034
和右腔气压
Figure 296809DEST_PATH_IMAGE035
,并将测量结果输出到开关阀体积流量拟合模块5中;开关阀体积流量拟合模块5的第一个输入为开关阀体积流量百分比K,来自PID控制器9,第二个输入为左腔气压
Figure 838649DEST_PATH_IMAGE034
和右腔气压
Figure 806605DEST_PATH_IMAGE035
,来自压力传感器4,输出与开关阀开启策略模块10连接;开关阀体积流量拟合模块5由高压气源、调压阀6、高速开关阀1、体积流量计7组成的测试系统测试的数据拟合而成,其中调压阀6一端与高压气源相连,一端与1个高速开关阀相连,体积流量计7一端与1个高速开关阀相连,一端与大气相连,通过调节高速开关阀的开启脉宽和控制频率,采集体积流量计的体积流量,最终将数据拟合为开关阀体积流量拟合模块5;力误差计算模块8计算力误差
Figure 902737DEST_PATH_IMAGE036
,力误差
Figure 145499DEST_PATH_IMAGE036
为给定力与实测力F的差值,即
Figure 10687DEST_PATH_IMAGE037
;PID控制器9的输入为力误差
Figure 149545DEST_PATH_IMAGE036
,来自力误差计算模块8,输出为开关阀体积流量百分比K;开关阀开启策略模块10的第一个输入为力误差
Figure 264131DEST_PATH_IMAGE036
,来自力误差计算模块8,第二个输入为开关阀体积流量拟合模块5输出的阀开启脉宽,输出控制4个高速开关阀1的开启和关闭,进而控制带弹簧的双出杆双作动气缸的输出杆运动。
力误差计算模块、PID控制器、开关阀开启策略模块和开关阀体积流量拟合模块通过嵌入式控制器NI cRIO-9074运行,并接有数字量输出卡(型号为NI 9401)和模拟量采集卡(型号为NI 9205),用于数字量信号输出和模拟量信号采集。
如图2所示的控制系统结构示意图,4个高速开关阀1通过多根气管与带弹簧的双出杆双作动气缸的2个气孔相连;力传感器3安装在与气缸的输出杆相连的弹簧的顶端,测量得到的力反馈回控制器进行处理;带弹簧的双出杆双作动气缸的2个气孔与压力传感器相连,测量得到的压力反馈回控制器进行处理;控制器与4个高速开关阀1通过电缆相连,控制4个高速开关阀1的开启和关闭。
所述4个高速开关阀1是电磁三通高速开关阀,三通开关阀可通过堵住一个气孔的方式作为双通电磁高速开关阀使用。
所述带弹簧的双出杆双作动气缸2是由弹簧,最高耐压0.7MPa,最大行程0.1m的标准气缸组成的,该弹簧最大可承受力为100N。
所述力传感器3是输出0~5V电信号的平面膜盒式测力传感器。
所述压力传感器4是输出0~5V电信号的标准压力传感器。
所述调压阀6,也称为减压阀,可降低高压气源压力,输出给定的压力。
所述体积流量计7是输出0~5V电信号的微小气体热式体积流量计。
基于开关阀体积流量拟合模块的气缸输出力伺服控制方法,包括如下步骤:
步骤1:开关阀体积流量特性测试:通过调节调压阀6调节高速开关阀1的输入气压,并调节在多组控制频率下的高速开关阀1的开启脉宽,记录体积流量计7输出的平均体积流量
Figure 513847DEST_PATH_IMAGE038
,最后使用采集的数据进行拟合处理,得到开关阀体积流量拟合模块5。具体方法是首先设定50Hz的脉宽调制频率,调节调压阀6,改变高速开关阀1的输入气压大小
Figure 30279DEST_PATH_IMAGE039
,由于开关阀的输出气压为大气压
Figure 340037DEST_PATH_IMAGE040
(定值),故改变输入气压即为改变进出口气压差
Figure 410762DEST_PATH_IMAGE041
,在50Hz和0.1、0.3、0.5、0.7、1、1.5、2、3bar的进出口气压差下分别进行以下测试:在开关阀开启占空比小于10%时,按照1%的步长调整占空比,记录每一步的体积流量,在体积流量接近最小值时按0.1%的步长调整占空比,找到最小开启占空比,在开关阀开启占空比大于10%时,按照10%的步长调整占空比,记录每一步的体积流量,在体积流量接近最大值时按0.1%的步长调整占空比,找到最大开启占空比;其次改变脉宽调制频率为100Hz和150Hz,得到3组频率下的开关阀体积流量特性测试数据;根据采集的数据,去除部分不准确的数据,并对10%占空比左右的数据进行优化处理,对占空比0~10%和10%~100%的数据进行分段拟合,拟合方法为4阶多项式拟合,最终得到开关阀体积流量拟合模型关系图,如图3所示。
选取0.1、0.3、0.5、0.7、1、1.5、2、3bar的进出口气压差的目的在于:选取0.1bar是由于0-0.1bar是最重要的压差区间,其次0.3、0.5、0.7bar这三个部分考虑到测试的数据量以及测试精度的要求,选择了0.2bar的步长进行设置;0.7bar以上对精度要求不高,只需要知道大概的变化趋势,所以设置的压差步长很大。上述取值方法既能兼顾精度要求,也能减少一定的数据量,保证控制器的快速精确运行。
步骤2:测量双出杆双作动气缸输出杆的实测力F,根据其内部设定的给定力
Figure 995327DEST_PATH_IMAGE042
的数值与实测力
Figure 835107DEST_PATH_IMAGE043
的差值计算力误差
Figure 315767DEST_PATH_IMAGE044
,即
Figure 139366DEST_PATH_IMAGE045
步骤3: PID控制器9根据力误差的大小,计算输出开关阀体积流量百分比
Figure 996464DEST_PATH_IMAGE046
;PID控制器的计算公式为
Figure 690750DEST_PATH_IMAGE047
,其中
Figure 873470DEST_PATH_IMAGE048
Figure 918786DEST_PATH_IMAGE049
Figure DEST_PATH_IMAGE050
都是PID控制器的参数。
步骤4:开关阀体积流量拟合模块5,对开关阀体积流量百分比
Figure 845154DEST_PATH_IMAGE046
和压力传感器4采集的左腔气压
Figure 393947DEST_PATH_IMAGE051
和右腔气压
Figure DEST_PATH_IMAGE052
进行计算处理,输出各开关阀对应的开启脉宽。开关阀体积流量拟合模块5为体积流量百分比、占空比和阀进出口压差之间的关系图,如图3所示,在选定100Hz为控制频率之后,由于仅测试了0.1、0.3、0.5、0.7、1、1.5、2、3bar这8个阀进出口压差下的体积流量百分比和占空比的关系,所以需要对非测试曲线上的值采用插值法进行计算,首先按如下公式对4个高速开关阀1进行压差计算,第一个阀为左腔充气阀、第二个阀为左腔放气阀、第三个阀为右腔充气阀,第四个阀为右腔放气阀:
Figure 13147DEST_PATH_IMAGE017
Figure 280181DEST_PATH_IMAGE018
Figure 10239DEST_PATH_IMAGE019
Figure 413539DEST_PATH_IMAGE020
,其次假定需要计算
Figure 672482DEST_PATH_IMAGE021
下的占空比
Figure 957969DEST_PATH_IMAGE022
,则在开关阀体积流量拟合模型上找到
Figure 694981DEST_PATH_IMAGE023
左右相邻的
Figure 218367DEST_PATH_IMAGE024
Figure 179369DEST_PATH_IMAGE025
两条曲线,根据PID控制器(9)给出的开关阀体积流量百分比
Figure 155416DEST_PATH_IMAGE026
,计算出对应的占空比
Figure 227277DEST_PATH_IMAGE027
Figure 870748DEST_PATH_IMAGE028
,最后按照如下插值法公式进行计算得到占空比
Figure 205914DEST_PATH_IMAGE029
Figure 465994DEST_PATH_IMAGE030
。图4和图5为从开关阀体积流量拟合模块5中归纳出来的开关阀最小/最大开启脉宽(ms)与阀进出口压差(bar)之间的关系,通过使用上述方法计算出来的占空比,不会超过开关阀最小、最大开启脉宽限制,保证了控制的精度。
步骤5:开关阀开启策略模块,根据误差的大小,设定了不同的阀开启占空比,如下表所示,表中
Figure 544809DEST_PATH_IMAGE031
Figure 42786DEST_PATH_IMAGE032
分别表示在该模式下计算出的该阀对应的开启占空比。
Figure 414034DEST_PATH_IMAGE002
通过所述开关阀开启策略模块10,进而通过数字量输出卡输出数字信号控制4个高速开关阀1的开启和关闭,最终带动带弹簧的双出杆双作动气缸2中的输出杆运动,得到实测力
Figure DEST_PATH_IMAGE054
。如图6所示为实际测试采集得到的控制效果图,该阶跃响应超调量小,响应速度快,证明了该控制方法的有效性。
本发明所提出的基于开关阀体积流量拟合模块的气缸输出力伺服控制系统及其控制方法,相比传统以数学模型为基础的气动伺服力控制系统和方法具有明显的优势;一方面能够解决使用通用数学模型造成的控制器设计困难、参数设计困难,仿真和实验效果差的问题;另一方面能够完全的考虑到开关阀自身的非线性模型以及开启和关闭死区对整个气动伺服控制系统的影响,最大限度的降低开关阀最小开启脉冲的影响,有效提高系统稳态控制精度以及控制的稳定性,大幅度提高气动伺服力控制的可靠性。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (9)

1.基于开关阀体积流量拟合模块的气缸输出力伺服控制系统,其特征是其结构包括控制器、4个高速开关阀(1)、带弹簧的双出杆双作动气缸(2)、力传感器(3)、压力传感器(4);其中4个高速开关阀(1)分为2组,每组分别通过气管与带弹簧的双出杆双作动气缸(2)的左、右腔的气孔相连,力传感器(3)安装于带弹簧的双出杆双作动气缸(2)一侧带有弹簧的输出杆的顶端,压力传感器(4)的2个检测终端分别连接于带弹簧的双出杆双作动气缸(2)的左、右腔的气孔处;4个高速开关阀(1)、力传感器(3)和压力传感器(4)分别通过电缆与控制器相连接,控制器控制4个高速开关阀(1)的开启和关闭,并对力传感器(3)和压力传感器(4)反馈的数值进行测量和处理;
所述的控制器内部结构包括开关阀体积流量拟合模块(5)、力误差计算模块(8)、PID控制器(9)、开关阀开启策略模块(10);其中力误差计算模块(8)的输入端连接力传感器(3)的输出端,力误差计算模块(8)的输出端分别连接PID控制器(9)的输入端和开关阀开启策略模块(10)的第一输入端;PID控制器(9)的输出端连接开关阀体积流量拟合模块(5)的第一输入端,开关阀体积流量拟合模块(5)的输出端连接开关阀开启策略模块(10)的第二输入端,开关阀体积流量拟合模块(5)的第二输入端连接压力传感器(4)的输出端;开关阀开启策略模块(10)的输出端分别连接4个高速开关阀(1)。
2.根据权利要求1所述的基于开关阀体积流量拟合模块的气缸输出力伺服控制系统,其特征是所述的高速开关阀(1)为电磁三通高速开关阀,可通过控制关闭其中一个气孔作为双通电磁高速开关阀使用;其中与带弹簧的双出杆双作动气缸(2)的左腔相连的2个高速开关阀(1)分别为左腔充气阀和左腔放气阀,与带弹簧的双出杆双作动气缸(2)的右腔相连的2个高速开关阀(1)分别为右腔充气阀和右腔放气阀。
3.根据权利要求1所述的基于开关阀体积流量拟合模块的气缸输出力伺服控制系统,其特征是所述带弹簧的双出杆双作动气缸(2)为最高耐压0.7MPa,最大行程0.1m的标准气缸,其一端的输出杆顶端安装有弹簧,该弹簧最大可承受力为100N。
4.根据权利要求1所述的基于开关阀体积流量拟合模块的气缸输出力伺服控制系统,其特征是所述力传感器(3)采用输出0~5V电信号的平面膜盒式测力传感器,用于测量带弹簧的双出杆双作动气缸(2)的实测力F,并将实测力F输出到力误差计算模块(8)中进行计算;所述压力传感器(4)采用输出0~5V电信号的标准压力传感器,用于测量气缸左腔气压
Figure DEST_PATH_IMAGE001
和右腔气压
Figure DEST_PATH_IMAGE002
,并将测量结果输出到开关阀体积流量拟合模块(5)中。
5.根据权利要求1所述的基于开关阀体积流量拟合模块的气缸输出力伺服控制系统,其特征是所述的开关阀体积流量拟合模块(5)包括高压气源、调压阀(6)、1个高速开关阀(1)和体积流量计(7),其中调压阀(6)的进气口接入外部高压气源,调压阀(6)的排气口通过1个高速开关阀(1)连接体积流量计(7)的进气口,体积流量计(7)的排气口与大气相连;所述调压阀(6)也称为减压阀,可降低高压气源压力,输出给定的压力;所述体积流量计(7)采用输出0~5V电信号的微小气体热式体积流量计。
6.如权利要求1所述的基于开关阀体积流量拟合模块的气缸输出力伺服控制系统的控制方法,其特征是包括如下步骤:
1)开关阀体积流量特性测试:通过调节调压阀(6)调节与其连接的高速开关阀(1)的输入气压,并调节在多组控制频率下的高速开关阀(1)的开启脉宽,记录体积流量计(7)输出的平均体积流量
Figure DEST_PATH_IMAGE003
,最后对采集数据进行拟合处理,得到开关阀体积流量拟合模块(5)的拟合模型;
2)通过力传感器(3)测量双出杆双作动气缸输出杆的实测力F,并通过力误差计算模块(8)根据其内部设定的给定力
Figure DEST_PATH_IMAGE004
的数值与实测力
Figure DEST_PATH_IMAGE005
的差值计算力误差
Figure DEST_PATH_IMAGE006
,即
Figure DEST_PATH_IMAGE007
3)PID控制器(9)根据力误差计算模块(8)输出的力误差
Figure 612469DEST_PATH_IMAGE006
的大小,计算输出开关阀体积流量百分比
Figure DEST_PATH_IMAGE008
;PID控制器的计算公式为
Figure DEST_PATH_IMAGE009
,其中
Figure DEST_PATH_IMAGE010
Figure DEST_PATH_IMAGE011
Figure DEST_PATH_IMAGE012
都是PID控制器的参数;
4)开关阀体积流量拟合模块(5)对开关阀体积流量百分比
Figure 342659DEST_PATH_IMAGE008
和压力传感器(4)采集的左腔气压
Figure DEST_PATH_IMAGE013
和右腔气压
Figure DEST_PATH_IMAGE014
进行计算处理,输出各开关阀对应的开启脉宽;
5)通过开关阀开启策略模块(10),进而通过数字量输出卡输出数字信号控制4个高速开关阀(1)的开启和关闭,最终带动带弹簧的双出杆双作动气缸(2)中的输出杆运动,使气缸输出实测力
Figure DEST_PATH_IMAGE015
的数值与给定力
Figure DEST_PATH_IMAGE016
的误差保持最小并保持稳定。
7.根据权利要求6所述的基于开关阀体积流量拟合模块的气缸输出力伺服控制系统的控制方法,其特征是所述的步骤1)得到开关阀体积流量拟合模块(5)的拟合模型的具体方法包括:首先设定50Hz的脉宽调制频率,调节调压阀(6),改变高速开关阀(1)的输入气压大小
Figure DEST_PATH_IMAGE017
,由于开关阀的输出气压为定值大气压
Figure DEST_PATH_IMAGE018
,故改变输入气压即为改变进出口气压差
Figure DEST_PATH_IMAGE019
在50Hz和0.1、0.3、0.5、0.7、1、1.5、2、3bar的进出口气压差下分别进行以下测试:在开关阀开启占空比小于10%时,按照1%的步长调整占空比,记录每一步的体积流量,在体积流量接近最小值时按0.1%的步长调整占空比,找到最小开启占空比,在开关阀开启占空比大于10%时,按照10%的步长调整占空比,记录每一步的体积流量,在体积流量接近最大值时按0.1%的步长调整占空比,找到最大开启占空比;其次改变脉宽调制频率为100Hz和150Hz,得到3组频率下的开关阀体积流量特性测试数据;根据采集的数据,去除部分不准确的数据,并对10%占空比左右的数据进行优化处理,对占空比0~10%和10%~100%的数据进行4阶多项式分段拟合,最终得到开关阀体积流量拟合模块(5)对应的拟合模型关系图。
8.根据权利要求6所述的基于开关阀体积流量拟合模块的气缸输出力伺服控制系统的控制方法,所述的步骤4)中,根据得到的开关阀体积流量拟合模块(5)体积流量百分比、占空比和阀进出口压差之间的拟合模型关系图,在选定100Hz为控制频率之后,由于仅测试了0.1、0.3、0.5、0.7、1、1.5、2、3bar这8个阀进出口压差下的体积流量百分比和占空比的关系,所以需要对非测试曲线上的值采用插值法进行计算;
首先按如下公式对4个高速开关阀(1)进行压差计算:左腔充气阀:
Figure DEST_PATH_IMAGE020
,左腔放气阀:
Figure DEST_PATH_IMAGE021
,右腔充气阀:
Figure DEST_PATH_IMAGE022
,右腔放气阀:
Figure DEST_PATH_IMAGE023
;其次假定需要计算
Figure DEST_PATH_IMAGE024
下的占空比
Figure DEST_PATH_IMAGE025
,则在开关阀体积流量拟合模型上找到
Figure DEST_PATH_IMAGE026
左右相邻的
Figure DEST_PATH_IMAGE027
Figure DEST_PATH_IMAGE028
两条曲线,根据PID控制器(9)给出的开关阀体积流量百分比
Figure DEST_PATH_IMAGE029
,计算出对应的占空比
Figure DEST_PATH_IMAGE030
Figure DEST_PATH_IMAGE031
,最后按照如下插值法公式进行计算得到占空比
Figure DEST_PATH_IMAGE032
Figure DEST_PATH_IMAGE033
9.根据权利要求6所述的基于开关阀体积流量拟合模块的气缸输出力伺服控制系统的控制方法,所述的步骤5)中开关阀开启策略模块(10)根据误差的大小,设定不同的阀开启占空比,如下表所示,表中
Figure DEST_PATH_IMAGE034
Figure DEST_PATH_IMAGE035
分别表示在该模式下计算出的该阀对应的开启占空比。
Figure DEST_PATH_IMAGE036
CN201910407498.6A 2019-05-16 2019-05-16 基于开关阀体积流量拟合模块的气缸输出力伺服控制系统 Expired - Fee Related CN110107547B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910407498.6A CN110107547B (zh) 2019-05-16 2019-05-16 基于开关阀体积流量拟合模块的气缸输出力伺服控制系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910407498.6A CN110107547B (zh) 2019-05-16 2019-05-16 基于开关阀体积流量拟合模块的气缸输出力伺服控制系统

Publications (2)

Publication Number Publication Date
CN110107547A CN110107547A (zh) 2019-08-09
CN110107547B true CN110107547B (zh) 2020-05-05

Family

ID=67490540

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910407498.6A Expired - Fee Related CN110107547B (zh) 2019-05-16 2019-05-16 基于开关阀体积流量拟合模块的气缸输出力伺服控制系统

Country Status (1)

Country Link
CN (1) CN110107547B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112377819B (zh) * 2020-11-17 2022-08-02 张峰 一种调压阀阀口过气量的计量方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4269999B2 (ja) * 2003-06-30 2009-05-27 トヨタ自動車株式会社 負荷要素の状態検出装置
EP2031256A3 (de) * 2007-08-29 2010-05-12 Robert Bosch GmbH Hubwerk und Verfahren zum Ansteuern eines Hubwerkes
US7740323B2 (en) * 2005-09-02 2010-06-22 Hitachi Construction Machinery Co., Ltd. Hydraulic drive device for vertical pivoting movement of load carrying platform
CN104919190A (zh) * 2013-01-17 2015-09-16 日立建机株式会社 作业机械的液压油能量回收装置
CN107355433A (zh) * 2017-07-06 2017-11-17 杭州华泰电液成套技术有限公司 电连接器拉脱力试验装置及其方法
CN107725509A (zh) * 2017-10-16 2018-02-23 南京航空航天大学 基于高速开关阀气压平衡调控策略的敏捷位置控制系统和方法
CN107748511A (zh) * 2017-09-26 2018-03-02 南京航空航天大学 基于四开关阀同开策略的气动位置控制系统及其控制方法
CN108916142A (zh) * 2018-06-05 2018-11-30 北京交通大学 大型液压顶升系统同步控制稳定性分析方法及系统
CN109319676A (zh) * 2018-11-30 2019-02-12 武汉船用机械有限责任公司 一种电液比例多液压绞车控制系统及其控制策略

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4269999B2 (ja) * 2003-06-30 2009-05-27 トヨタ自動車株式会社 負荷要素の状態検出装置
US7740323B2 (en) * 2005-09-02 2010-06-22 Hitachi Construction Machinery Co., Ltd. Hydraulic drive device for vertical pivoting movement of load carrying platform
EP2031256A3 (de) * 2007-08-29 2010-05-12 Robert Bosch GmbH Hubwerk und Verfahren zum Ansteuern eines Hubwerkes
CN104919190A (zh) * 2013-01-17 2015-09-16 日立建机株式会社 作业机械的液压油能量回收装置
CN107355433A (zh) * 2017-07-06 2017-11-17 杭州华泰电液成套技术有限公司 电连接器拉脱力试验装置及其方法
CN107748511A (zh) * 2017-09-26 2018-03-02 南京航空航天大学 基于四开关阀同开策略的气动位置控制系统及其控制方法
CN107725509A (zh) * 2017-10-16 2018-02-23 南京航空航天大学 基于高速开关阀气压平衡调控策略的敏捷位置控制系统和方法
CN108916142A (zh) * 2018-06-05 2018-11-30 北京交通大学 大型液压顶升系统同步控制稳定性分析方法及系统
CN109319676A (zh) * 2018-11-30 2019-02-12 武汉船用机械有限责任公司 一种电液比例多液压绞车控制系统及其控制策略

Also Published As

Publication number Publication date
CN110107547A (zh) 2019-08-09

Similar Documents

Publication Publication Date Title
CN103233946B (zh) 一种气动位置伺服系统反步控制方法
CN110107547B (zh) 基于开关阀体积流量拟合模块的气缸输出力伺服控制系统
CN102589861B (zh) 一种滑阀式气动换向阀过渡机能的测量装置
CN201925167U (zh) 用于干式罗茨真空泵机组性能检测过程的控制系统
Pipan et al. Volume flow characterization of PWM-controlled fast-switching pneumatic valves
CN103048614A (zh) 一种便携式瓦斯继电器现场校验仪
CN102402229A (zh) 一种连铸中间包钢水液位控制装置及方法
CN105841647A (zh) 一种电液伺服阀叠合量测量装置及其测量方法
CN108506279B (zh) 一种高压气动伺服阀质量流量特性测定装置及方法
CN203037418U (zh) 一种吸入式多通道氮氢检漏装置
CN107860443A (zh) 气体脉动流标准试验装置
CN109723699B (zh) 一种喷嘴挡板伺服阀前置级流量系数测试装置及方法
CN107748511B (zh) 基于四开关阀同开策略的气动位置控制系统
CN202884205U (zh) 水封阀开度无级调节气动控制系统
CN205506366U (zh) 气动制动控制系统
CN114471927A (zh) 一种磨煤机入口一次风门开度控制方法
CN110442155B (zh) 一种变比加热装置液氧流量精确调节方法
CN108958305A (zh) 一种8421编码可控流量高压气体压力精确控制结构
CN115793439A (zh) 基于高斯预测模型的航空发动机喘振压力模拟系统及方法
CN108226679B (zh) 一种接力器反应时间常数可调的测试方法及装置
CN103245481B (zh) 基于变频技术的变负荷大型换热器气阻特性的检测方法
CN216524782U (zh) 阀体综合性能试验装置
CN207816416U (zh) 气体脉动流标准试验装置
CN209927440U (zh) 一种节流装置测试装置
CN216978371U (zh) 一种智能发动机滚流气道试验系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200505

Termination date: 20210516