CN110086169B - Power distribution network control method - Google Patents
Power distribution network control method Download PDFInfo
- Publication number
- CN110086169B CN110086169B CN201910439217.5A CN201910439217A CN110086169B CN 110086169 B CN110086169 B CN 110086169B CN 201910439217 A CN201910439217 A CN 201910439217A CN 110086169 B CN110086169 B CN 110086169B
- Authority
- CN
- China
- Prior art keywords
- converter
- phase
- target value
- current
- axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 26
- 230000009466 transformation Effects 0.000 claims description 24
- 238000006243 chemical reaction Methods 0.000 claims description 6
- 238000001914 filtration Methods 0.000 claims description 6
- 238000010586 diagram Methods 0.000 description 8
- 238000011217 control strategy Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/26—Arrangements for eliminating or reducing asymmetry in polyphase networks
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/50—Arrangements for eliminating or reducing asymmetry in polyphase networks
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
Description
技术领域technical field
本发明涉及电力系统领域,特别涉及一种配电网控制方法。The invention relates to the field of power systems, in particular to a distribution network control method.
背景技术Background technique
目前,面向配电层面的智能软开关SOP(Soft Open Point)技术正引发新一轮的研究热潮。SOP技术旨在以可控电力电子变换器代替传统基于断路器的馈线联络开关,从而实现馈线间常态化柔性“软连接”,能够提供灵活、快速、精确的功率交换控制与潮流优化能力。At present, the intelligent soft switch SOP (Soft Open Point) technology for power distribution level is triggering a new round of research upsurge. The SOP technology aims to replace the traditional circuit breaker-based feeder tie switch with a controllable power electronic converter, so as to realize the normalized flexible "soft connection" between feeders, and provide flexible, fast and accurate power exchange control and power flow optimization capabilities.
SOP的基本结构可以通过由大功率全控型电力电子元件(如绝缘栅双极型晶体管IGBT等)组成的背靠背型AC/DC/AC变换器来描述,图1示出了典型的SOP结构,其中,VSC1、VSC2为电压源变换器。一般来说,SOP两侧变换器在结构上完全对称,通过实施适当的控制策略,可按照调度指令实现功率的双向灵活流动与精确控制。采用SOP代替配电网中的联络开关后,能够通过控制两侧馈线的功率交换来影响或改变整个系统的潮流分布,使配电网的运行调度更加“柔性”。The basic structure of SOP can be described by a back-to-back AC/DC/AC converter composed of high-power fully-controlled power electronic components (such as insulated gate bipolar transistors, IGBTs, etc.). Figure 1 shows a typical SOP structure. Among them, VSC1 and VSC2 are voltage source converters. Generally speaking, the converters on both sides of the SOP are completely symmetrical in structure. By implementing appropriate control strategies, the two-way flexible flow and precise control of power can be realized in accordance with dispatching instructions. After the SOP is used to replace the tie switch in the distribution network, the power flow distribution of the entire system can be affected or changed by controlling the power exchange of the feeders on both sides, making the operation scheduling of the distribution network more "flexible".
图2示出了通过SOP代替传统联络开关的配电网的典型应用,与基于联络开关的常规网络连接方式相比,SOP实现了馈线间常态化柔性互联,避免了开关频繁变位造成的安全隐患,大大提高了配电网控制的灵活性和快速性,使配电网同时具备了开环运行与闭环运行的优势。Figure 2 shows a typical application of a distribution network in which traditional tie switches are replaced by SOP. Compared with the conventional network connection method based on tie switches, SOP realizes the normalized flexible interconnection between feeders and avoids safety hazards caused by frequent displacement of switches. It greatly improves the flexibility and rapidity of distribution network control, and enables the distribution network to have the advantages of both open-loop and closed-loop operation.
由于配电网中的负载很难达到平衡,因此,SOP两侧的电压是不平衡的,目前的解决方案是通过SOP模块其中一侧变换器控制直流母线电压稳定,通过SOP模块另一侧变换器控制流动的有功功率,实现对SOP模块两侧电压的趋近调整,即对一侧的三相电压同步减小,对另一侧的三相电压同步增大,使两侧电压趋向相同,但这种控制策略只能对两侧的三相电压进行同步调大或者调小,每一侧三相电压之间的不平衡并没有被治理。三相电压不平衡会增加线路的电能损耗,增加配电变压器的电能损耗,影响用电设备的安全运行。Because the load in the distribution network is difficult to achieve balance, the voltage on both sides of the SOP is unbalanced. The current solution is to control the DC bus voltage stability through the converter on one side of the SOP module, and transform it through the other side of the SOP module. The device controls the flowing active power to realize the approach adjustment of the voltage on both sides of the SOP module, that is, the three-phase voltage on one side is synchronously reduced, and the three-phase voltage on the other side is synchronously increased, so that the voltage on both sides tends to be the same. However, this control strategy can only increase or decrease the three-phase voltage on both sides synchronously, and the imbalance between the three-phase voltages on each side has not been controlled. The unbalanced three-phase voltage will increase the power loss of the line, increase the power loss of the distribution transformer, and affect the safe operation of the electrical equipment.
因此,在满足SOP模块两侧的电压平衡的前提下,实现三相电压之间的平衡,是目前亟待解决的问题。Therefore, under the premise of satisfying the voltage balance on both sides of the SOP module, realizing the balance between the three-phase voltages is an urgent problem to be solved at present.
发明内容Contents of the invention
本发明提出一种配电网控制方法,解决了现有技术中SOP模块一侧的三相电压之间不平衡的问题。The invention proposes a distribution network control method, which solves the problem of imbalance between the three-phase voltages on one side of the SOP module in the prior art.
本发明的技术方案是这样实现的:Technical scheme of the present invention is realized like this:
一种配电网控制方法,所述配电网包括SOP模块,SOP模块的其中一侧变换器配置为控制有功功率流动,SOP模块的另一侧变换器配置为控制直流母线电压,分别对SOP模块的两侧变换器进行控制,包括:A distribution network control method, the distribution network includes a SOP module, wherein a converter on one side of the SOP module is configured to control the flow of active power, and a converter on the other side of the SOP module is configured to control a DC bus voltage, respectively. The converters on both sides of the module are controlled, including:
根据变换器的有功电流目标值和无功电流目标值,获得变换器三相电流目标值;According to the active current target value and the reactive current target value of the converter, the three-phase current target value of the converter is obtained;
根据负载侧三相电流实际值对变换器三相电流目标值进行补偿,获得变换器三相电流最终目标值;Compensate the target value of the three-phase current of the converter according to the actual value of the three-phase current on the load side to obtain the final target value of the three-phase current of the converter;
根据变换器三相电流最终目标值与变换器三相电流实际值的差值,控制变换器开关管的通断。According to the difference between the final target value of the three-phase current of the converter and the actual value of the three-phase current of the converter, the on-off of the switch tube of the converter is controlled.
可选地,对于配置为控制有功功率流动的一侧变换器,所述变换器的有功电流目标值为根据变换器流过有功功率目标值和有功功率实际值的差值获得。Optionally, for a converter configured to control the flow of active power, the target value of active current of the converter is obtained according to the difference between the target value of active power flowing through the converter and the actual value of active power.
可选地,对于配置为控制直流母线电压的一侧变换器,所述变换器的有功电流目标值为根据直流母线电压目标值和直流母线电压实际值的差值获得。Optionally, for the one-side converter configured to control the DC bus voltage, the target active current value of the converter is obtained according to the difference between the target value of the DC bus voltage and the actual value of the DC bus voltage.
可选地,所述变换器的无功电流目标值为根据变换器输出无功功率目标值和无功功率实际值的差值获得。Optionally, the reactive current target value of the converter is obtained according to the difference between the converter output reactive power target value and the reactive power actual value.
可选地,所述根据变换器的有功电流目标值和无功电流目标值,获得变换器三相电流目标值,包括:Optionally, the obtaining the three-phase current target value of the converter according to the active current target value and the reactive current target value of the converter includes:
根据电网三相电压的相位信息将变换器有功电流目标值和无功电流目标值由dq轴变换至abc轴,求得变换器三相电流目标值。According to the phase information of the three-phase voltage of the power grid, the active current target value and the reactive current target value of the converter are transformed from the dq axis to the abc axis, and the three-phase current target value of the converter is obtained.
可选地,所述根据负载侧三相电流实际值对变换器三相电流目标值进行补偿,获得变换器三相电流最终目标值,包括:Optionally, the compensating the target value of the three-phase current of the converter according to the actual value of the three-phase current at the load side to obtain the final target value of the three-phase current of the converter includes:
根据电网三相电压的相位信息对负载侧三相电流实际值进行abc轴至dq轴的变换,再经过低通滤波和PI调节,获得变换器需要提供的补偿电流的dq轴分量;According to the phase information of the three-phase voltage of the power grid, the actual value of the three-phase current on the load side is transformed from the abc axis to the dq axis, and then through low-pass filtering and PI adjustment, the dq axis components of the compensation current that the converter needs to provide are obtained;
根据电网三相电压的相位信息对补偿电流的dq轴分量进行dq轴至abc轴的坐标变换,获得三相补偿电流值;According to the phase information of the three-phase voltage of the power grid, the dq-axis component of the compensation current is transformed from the dq axis to the abc axis to obtain the three-phase compensation current value;
根据三相补偿电流值和变换器三相电流目标值,获得变换器三相电流最终目标值。According to the three-phase compensation current value and the target value of the three-phase current of the converter, the final target value of the three-phase current of the converter is obtained.
可选地,所述根据电网三相电压的相位信息对负载侧三相电流实际值进行abc轴至dq轴的变换,包括:将电网三相电压的相位信息取反后,作为负载侧三相电流实际值由abc轴变换至dq轴的相位信息。Optionally, the transformation of the actual value of the three-phase current on the load side from the abc axis to the dq axis according to the phase information of the three-phase voltage of the power grid includes: after inverting the phase information of the three-phase voltage of the power grid, as the three-phase load side The current actual value is transformed from the abc axis to the phase information of the dq axis.
可选地,所述根据电网三相电压的相位信息对补偿电流的dq轴分量进行dq轴至abc轴的坐标变换,包括:将电网三相电压的相位信息取反后,作为补偿电流的dq轴分量由dq轴变换至abc轴的相位信息。Optionally, the coordinate transformation from the dq axis to the abc axis of the dq axis component of the compensation current according to the phase information of the three-phase voltage of the power grid includes: after inverting the phase information of the three-phase voltage of the power grid, as the dq of the compensation current The axis component is transformed from the dq axis to the phase information of the abc axis.
可选地,所述电网三相电压的相位信息为:提取电网电压的正序分量,经锁相环锁相后获得。Optionally, the phase information of the three-phase voltage of the power grid is obtained by extracting a positive sequence component of the power grid voltage, and obtaining it after being phase-locked by a phase-locked loop.
可选地,所述根据变换器三相电流最终目标值与变换器三相电流实际值的差值,控制变换器开关管的通断,包括:将变换器三相电流最终目标值与变换器三相电流实际值的差值通过滞环控制,将比较结果转换为变换器开关管门极信号,控制开关管的通断。Optionally, the controlling the on-off of the switch tube of the converter according to the difference between the final target value of the three-phase current of the converter and the actual value of the three-phase current of the converter includes: combining the final target value of the three-phase current of the converter with the actual value of the three-phase current of the converter The difference between the actual values of the three-phase currents is controlled by hysteresis, and the comparison result is converted into a gate signal of the switch tube of the converter to control the on-off of the switch tube.
本发明的有益效果是:The beneficial effects of the present invention are:
(1)对SOP模块两侧的负载电流不平衡分别进行补偿,获得两侧变换器三相电流最终的目标值,使得SOP模块两侧电网三相电流趋向平衡,进而使得SOP模块两侧电网三相电压之间分别趋向平衡。(1) Compensate the load current unbalance on both sides of the SOP module respectively, and obtain the final target value of the three-phase current of the converter on both sides, so that the three-phase current of the power grid on both sides of the SOP module tends to balance, and then makes the three-phase current of the power grid on both sides of the SOP module tend to be balanced. The phase voltages tend to be balanced respectively.
(2)保证电网的稳定性,提高供电质量。(2) Ensure the stability of the power grid and improve the quality of power supply.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention. Those skilled in the art can also obtain other drawings based on these drawings without creative work.
图1为典型SOP结构示意图;Figure 1 is a schematic diagram of a typical SOP structure;
图2为采用SOP的配电网的结构示意图;Figure 2 is a schematic structural diagram of a distribution network using SOP;
图3为配电网的一个可选实施结构示意图;Fig. 3 is a schematic diagram of an optional implementation structure of the distribution network;
图4为本公开实施例提供的配电网控制方法的流程示意图;FIG. 4 is a schematic flowchart of a distribution network control method provided by an embodiment of the present disclosure;
图5为本公开实施例提供的配电网控制方法的原理框图;FIG. 5 is a functional block diagram of a distribution network control method provided by an embodiment of the present disclosure;
图6为本公开实施例提供的配电网控制方法的原理框图;FIG. 6 is a functional block diagram of a distribution network control method provided by an embodiment of the present disclosure;
图7为本公开实施例提供的配电网控制系统的原理框图。Fig. 7 is a functional block diagram of a distribution network control system provided by an embodiment of the present disclosure.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some, not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
图3示出了配电网的一个可选实施结构。Figure 3 shows an alternative implementation structure of the distribution network.
V1a、V1b、V1c为SOP模块变换器VSC1连接的其中一侧电网的三相电压,is1,a、is1,b、is1,c为变换器VSC1的三相电流,V2a、V2b、V2c为SOP模块变换器VSC2连接的另一侧电网的三相电压,is2,a、is2,b、is2,c为变换器VSC2的三相电流,VSC控制器输出门极信号到VSC1和VSC2,控制开关管的通断。在电网负载侧Load1和电网负载侧Load2分别安装电流传感器,测其负载侧三相电流实际值il1,a、il1,b、il1,c和il2,a、il2,b、il2,c。V 1a , V 1b , V 1c are the three-phase voltages of the power grid on one side connected to the SOP module converter VSC1, i s1,a , i s1,b , and i s1,c are the three-phase currents of the converter VSC1, V 2a , V 2b , V 2c are the three-phase voltages of the power grid on the other side connected to the SOP module converter VSC2, i s2,a , i s2,b , and i s2,c are the three-phase currents of the converter VSC2, and the VSC controller outputs The gate signal is sent to VSC1 and VSC2 to control the on-off of the switch tube. Install current sensors on the load side Load1 and Load2 of the grid respectively, and measure the actual value of the three-phase current on the load side i l1,a , i l1,b , i l1,c and i l2,a , i l2,b , i l2,c .
本公开实施例中,SOP模块的其中一侧变换器VSC1配置为控制有功功率流动,SOP模块的另一侧变换器VSC2配置为控制直流母线电压,当然,在其他实施例中,也可以将SOP模块的变换器VSC2配置为控制有功功率流动,SOP模块的另一侧变换器VSC1配置为控制直流母线电压。In the embodiment of the present disclosure, the converter VSC1 on one side of the SOP module is configured to control the flow of active power, and the converter VSC2 on the other side of the SOP module is configured to control the DC bus voltage. Of course, in other embodiments, the SOP The converter VSC2 of the module is configured to control the flow of active power, and the converter VSC1 on the other side of the SOP module is configured to control the DC bus voltage.
图4示出了配电网控制方法的一个可选实施例。Figure 4 shows an alternative embodiment of a distribution network control method.
本公开实施例提供了一种配电网控制方法,分别对SOP模块的两侧变换器VSC1和VSC2进行控制,包括:根据变换器的有功电流目标值和无功电流目标值,获得变换器三相电流目标值;根据负载侧三相电流实际值对变换器三相电流目标值进行补偿,获得变换器三相电流最终目标值;根据变换器三相电流最终目标值与变换器三相电流实际值的差值,控制变换器开关管的通断。The embodiment of the present disclosure provides a distribution network control method, which respectively controls the converters VSC1 and VSC2 on both sides of the SOP module, including: according to the active current target value and reactive current target value of the converter, obtain the converter three Phase current target value; according to the actual value of the load side three-phase current, the converter three-phase current target value is compensated to obtain the final target value of the converter three-phase current; according to the final target value of the converter three-phase current and the converter three-phase current actual The difference between the values controls the on-off of the switch tube of the converter.
采用上述实施例,对SOP模块两侧的负载电流不平衡分别进行补偿,获得两侧变换器输出三相电流最终目标值,使得SOP模块两侧电网三相电流趋向平衡,进而使得SOP模块两侧电网三相电压之间分别趋向平衡,保证电网的稳定性,提高供电质量。Using the above-mentioned embodiment, the load current imbalance on both sides of the SOP module is compensated respectively, and the final target value of the output three-phase current of the converters on both sides is obtained, so that the three-phase current of the power grid on both sides of the SOP module tends to balance, and then makes the two sides of the SOP module The three-phase voltages of the power grid tend to be balanced respectively, ensuring the stability of the power grid and improving the quality of power supply.
可选地,对于配置为控制有功功率流动的一侧变换器,变换器的有功电流目标值为根据变换器流过有功功率目标值和有功功率实际值的差值获得。Optionally, for the converter on one side configured to control the flow of active power, the target value of active current of the converter is obtained according to the difference between the target value of active power flowing through the converter and the actual value of active power.
可选地,对于配置为控制直流母线电压的一侧变换器,变换器的有功电流目标值为根据直流母线电压目标值和直流母线电压实际值的差值获得。Optionally, for the one-side converter configured to control the DC bus voltage, the target active current value of the converter is obtained according to the difference between the target value of the DC bus voltage and the actual value of the DC bus voltage.
可选地,对于配置为控制有功功率流动的一侧变换器或者配置为控制直流母线电压的一侧变换器,变换器的无功电流目标值为根据变换器输出无功功率目标值和无功功率实际值的差值获得。Optionally, for the one-side converter configured to control the flow of active power or the one-side converter configured to control the DC bus voltage, the reactive current target value of the converter is based on the converter output reactive power target value and reactive power The difference between the actual power values is obtained.
可选地,上述根据变换器的有功电流目标值和无功电流目标值,获得变换器三相电流目标值,包括:根据电网三相电压的相位信息将变换器有功电流目标值和无功电流目标值由dq轴变换至abc轴,获得变换器三相电流目标值。Optionally, obtaining the target value of the three-phase current of the converter according to the target value of the active current and the target value of the reactive current of the converter includes: calculating the target value of the active current and the target value of the reactive current of the converter according to the phase information of the three-phase voltage of the power grid The target value is transformed from the dq axis to the abc axis to obtain the target value of the three-phase current of the converter.
可选地,上述根据负载侧三相电流实际值对变换器三相电流目标值进行补偿,获得变换器三相电流最终目标值,包括:根据电网三相电压的相位信息对负载侧三相电流实际值进行abc轴至dq轴的变换,再经过低通滤波和PI调节,获得变换器需要提供的补偿电流的dq轴分量;根据电网三相电压的相位信息对补偿电流的dq轴分量进行dq轴至abc轴的坐标变换,获得三相补偿电流值;根据三相补偿电流值和变换器三相电流目标值,获得变换器三相电流最终目标值。Optionally, the above-mentioned compensating the target value of the three-phase current of the converter according to the actual value of the three-phase current on the load side to obtain the final target value of the three-phase current of the converter includes: calculating the three-phase current on the load side according to the phase information of the three-phase voltage of the power grid The actual value is transformed from the abc axis to the dq axis, and then after low-pass filtering and PI adjustment, the dq axis components of the compensation current that the converter needs to provide are obtained; according to the phase information of the three-phase voltage of the power grid, the dq axis components of the compensation current are dq Coordinate transformation from axis to abc axis to obtain the three-phase compensation current value; according to the three-phase compensation current value and the target value of the three-phase current of the converter, the final target value of the three-phase current of the converter is obtained.
可选地,上述根据电网三相电压的相位信息对负载侧三相电流实际值进行abc轴至dq轴的变换,包括:将电网三相电压的相位信息取反后,作为负载侧三相电流实际值由abc轴变换至dq轴的相位信息。Optionally, the above-mentioned conversion of the actual value of the three-phase current on the load side from the abc axis to the dq axis according to the phase information of the three-phase voltage of the power grid includes: after inverting the phase information of the three-phase voltage of the power grid, as the three-phase current of the load side The actual value is transformed from the abc axis to the phase information of the dq axis.
可选地,上述根据电网三相电压的相位信息对补偿电流的dq轴分量进行dq轴至abc轴的坐标变换,包括:将电网三相电压的相位信息取反后,作为补偿电流的dq轴分量由dq轴变换至abc轴的相位信息。Optionally, the coordinate transformation from the dq axis to the abc axis is performed on the dq axis component of the compensation current according to the phase information of the three-phase voltage of the power grid, including: after the phase information of the three-phase voltage of the power grid is reversed, the dq axis of the compensation current Components are transformed from the dq axis to the phase information of the abc axis.
可选地,上述电网三相电压的相位信息为:提取电网电压的正序分量,经锁相环锁相后获得。Optionally, the above-mentioned phase information of the three-phase voltage of the grid is obtained by extracting the positive sequence component of the grid voltage, and obtaining it after being phase-locked by a phase-locked loop.
图5示出了配电网控制方法对配置为控制有功功率流动的一侧变换器进行控制的原理框图。Fig. 5 shows a functional block diagram of a distribution network control method controlling a one-side converter configured to control active power flow.
在一些实施例中,配电网控制方法包括:根据变换器VSC1流过有功功率目标值P*和实际值P的差值,获得变换器VSC1的有功电流目标值id1 *;根据变换器VSC1输出无功功率目标值Q1 *和无功功率实际值Q1的差值,获得变换器VSC1的无功电流目标值iq1 *;获取电网三相电压V1a、V1b、V1c的相位信息,根据电网三相电压V1a、V1b、V1c的相位信息将有功电流目标值id1 *和无功电流目标值iq1 *由dq轴变换至abc轴(帕克逆变换),求得变换器VSC1三相电流目标值ia1 *、ib1 *、ic1 *;根据负载侧三相电流实际值il1,a、il1,b、il1,c对VSC1三相电流目标值ia1 *、ib1 *、ic1 *进行补偿,获得变换器VSC1三相电流最终目标值is1,a *、is1,b *、is1,c *;根据变换器VSC1三相电流最终目标值is1,a *、is1,b *、is1,c *与变换器VSC1三相电流实际值is1,a、is1,b、is1,c的差值,控制变换器VSC1开关管的通断。In some embodiments, the distribution network control method includes: obtaining the active current target value i d1 * of the converter VSC1 according to the difference between the active power target value P * and the actual value P of the converter VSC1 ; according to the converter VSC1 Output the difference between the reactive power target value Q 1 * and the reactive power actual value Q 1 to obtain the reactive current target value i q1 * of the converter VSC1; obtain the phase of the grid three-phase voltage V 1a , V 1b , V 1c Information, according to the phase information of the three-phase voltage V 1a , V 1b , V 1c of the power grid, the active current target value i d1 * and the reactive current target value i q1 * are transformed from the dq axis to the abc axis (Parker inverse transformation), and the obtained Converter VSC1 three-phase current target value i a1 * , i b1 * , i c1 * ; according to the load side three-phase current actual value i l1,a , i l1,b , i l1,c to the VSC1 three-phase current target value i a1 * , i b1 * , i c1 * are compensated to obtain the final target value of the three-phase current of the converter VSC1 i s1,a * , i s1,b * , i s1,c * ; according to the final target of the three-phase current of the converter VSC1 The difference between the value i s1,a * , i s1,b * , i s1,c * and the actual value of the three-phase current of the converter VSC1 i s1,a , i s1,b , i s1,c controls the switch of the converter VSC1 Tube on and off.
变换器VSC1配置为控制有功功率流动,对VSC1侧电网三相不平衡电压进行不平衡补偿,在该侧电网负载侧Load1安装电流传感器,测其负载侧三相电流实际值il1,a、il1,b、il1,c,根据负载侧三相电流实际值il1,a、il1,b、il1,c对变换器VSC1三相电流目标值ia1 *、ib1 *、ic1 *进行补偿,使得该侧电网三相电压V1a、V1b、V1c之间趋向平衡。The converter VSC1 is configured to control the flow of active power and compensate the unbalanced voltage of the three-phase power grid on the VSC1 side. A current sensor is installed on the load side Load1 of the power grid on this side to measure the actual value of the three-phase current i l1,a , i on the load side l1,b , i l1,c , according to the actual value of the load-side three-phase current i l1,a , i l1,b , i l1,c to the three-phase current target value i a1 * , i b1 * , i c1 of the converter VSC1 * Compensation is performed so that the three-phase voltages V 1a , V 1b , and V 1c of the power grid on this side tend to be balanced.
可选地,上述根据负载侧三相电流实际值对变换器三相电流目标值进行补偿,获得变换器三相电流最终目标值,包括:获取负载侧三相电流实际值il1,a、il1,b、il1,c;根据电网三相电压V1a、V1b、V1c的相位信息对负载侧三相电流实际值il1,a、il1,b、il1,c进行abc轴至dq轴的变换(帕克变换),再经过低通滤波和PI调节,获得变换器需要提供的补偿电流的dq轴分量ild1 *和ilq1 *;根据电网三相电压V1a、V1b、V1c的相位信息对补偿电流的dq轴分量ild1 *和ilq1 *进行dq轴至abc轴的坐标变换(帕克逆变换),获得三相补偿电流值Δia1 *、Δib1 *、Δic1 *;根据三相补偿电流值Δia1 *、Δib1 *、Δic1 *和变换器三相电流目标值ia1 *、ib1 *、ic1 *,获得变换器三相电流最终目标值is1,a *、is1,b *、is1,c *。Optionally, the above-mentioned compensation is performed on the target value of the three-phase current of the converter according to the actual value of the three-phase current on the load side to obtain the final target value of the three-phase current of the converter, including: obtaining the actual value of the three-phase current on the load side i l1,a , i l1,b , i l1,c ; according to the phase information of the three-phase voltage V 1a , V 1b , V 1c of the power grid, the abc axis is performed on the actual value of the three-phase current at the load side i l1,a , i l1,b , i l1,c Transformation to the dq axis (Parker transformation), and then through low-pass filtering and PI adjustment, to obtain the dq axis components i ld1 * and i lq1 * of the compensation current that the converter needs to provide; according to the grid three-phase voltage V 1a , V 1b , The phase information of V 1c performs coordinate transformation from the dq axis to the abc axis (Parker inverse transformation) on the dq axis components i ld1 * and i lq1 * of the compensation current to obtain the three-phase compensation current values Δi a1 * , Δi b1 * , Δi c1 * ; According to the three-phase compensation current values Δi a1 * , Δi b1 * , Δi c1 * and the converter three-phase current target values i a1 * , i b1 * , i c1 * , the final target value i s1 of the converter three-phase current is obtained ,a * , i s1,b * , i s1,c * .
可选地,上述获取电网三相电压V1a、V1b、V1c的相位信息,包括:提取电网电压V1a、V1b、V1c的正序分量,经锁相环PLL锁相后获得电网三相电压V1a、V1b、V1c的相位信息。Optionally, the acquisition of the phase information of the grid three-phase voltages V 1a , V 1b , and V 1c includes: extracting the positive sequence components of the grid voltages V 1a , V 1b , and V 1c , and obtaining the grid phase information after being phase-locked by the phase-locked loop PLL. Phase information of the three-phase voltages V 1a , V 1b , V 1c .
可选地,上述根据电网三相电压V1a、V1b、V1c的相位信息对负载侧三相电流实际值il1,a、il1,b、il1,c进行abc轴至dq轴的变换,包括:将电网三相电压V1a、V1b、V1c的相位信息取反后,作为负载侧三相电流实际值il1,a、il1,b、il1,c由abc轴变换至dq轴的相位信息。Optionally, according to the phase information of the three-phase voltages V 1a , V 1b , V 1c of the power grid, the actual values of the three-phase currents i l1,a , i l1,b , i l1,c on the load side are transformed from the abc axis to the dq axis Transformation, including: after inverting the phase information of the three-phase voltage V 1a , V 1b , V 1c of the power grid, the actual value of the three-phase current on the load side i l1,a , i l1,b , i l1,c is transformed by the abc axis Phase information to the dq axis.
可选地,上述根据电网三相电压V1a、V1b、V1c的相位信息对补偿电流的dq轴分量ild1 *和ilq1 *进行dq轴至abc轴的坐标变换,包括:将电网三相电压V1a、V1b、V1c的相位信息取反后,作为补偿电流的dq轴分量ild1 *和ilq1 *由dq轴变换至abc轴的相位信息。Optionally, according to the phase information of the three-phase voltages V 1a , V 1b , V 1c of the power grid, the dq axis components i ld1 * and i lq1 * of the compensation current are transformed from the dq axis to the abc axis coordinates, including: After the phase information of the phase voltages V 1a , V 1b , and V 1c is reversed, the dq-axis components i ld1 * and i lq1 * of the compensation current are converted from the dq-axis to the phase information of the abc-axis.
可选地,上述根据变换器三相电流最终目标值is1,a *、is1,b *、is1,c *与变换器三相电流实际值is1,a、is1,b、is1,c的差值,控制变换器VSC1开关管的通断,包括:将变换器三相电流最终目标值is1,a *、is1,b *、is1,c *与变换器三相电流实际值is1,a、is1,b、is1,c的差值通过滞环控制,将比较结果转换为变换器VSC1开关管门极信号,控制开关管的通断。Optionally, according to the above-mentioned final target value of the three-phase current of the converter i s1,a * , i s1,b * , i s1,c * and the actual value of the three-phase current of the converter i s1,a , i s1,b , i The difference between s1,c controls the on-off of the switch tube of the converter VSC1, including: the final target value of the three-phase current of the converter i s1,a * , i s1,b * , i s1,c * and the three-phase converter The difference between the actual current values i s1,a , i s1,b , and i s1,c is controlled by a hysteresis loop, and the comparison result is converted into a gate signal of the switch tube of the converter VSC1 to control the on-off of the switch tube.
可选地,上述根据电网有功功率目标值P*和实际值P的差值,获得变换器的有功电流目标值id1 *,包括:将电网有功功率目标值P*和实际值P的差值送入PI调节器,PI调节器输出信号通过限幅模块后,获得变换器的有功电流目标值id1 *。Optionally, according to the difference between the grid active power target value P * and the actual value P, the active current target value i d1 * of the converter is obtained, including: the difference between the grid active power target value P * and the actual value P After the output signal of the PI regulator passes through the limiting module, the active current target value i d1 * of the converter is obtained.
可选地,有功功率流动方向可以通过有功功率目标值P*的正负来控制,例如,P*为正值表示控制有功功率从VSC1侧流向VSC2侧,P*为负值表示控制有功功率从VSC2侧流向VSC1侧。Optionally, the direction of active power flow can be controlled by the positive or negative of the active power target value P * , for example, a positive value of P * indicates that the active power is controlled to flow from the VSC1 side to the VSC2 side, and a negative value of P * indicates that the active power is controlled from The VSC2 side flows to the VSC1 side.
可选地,上述根据变换器输出无功功率目标值Q1 *和无功功率实际值Q1的差值,获得变换器的无功电流目标值iq1 *,包括:将变换器无功功率目标值Q1 *和无功功率实际值Q1的差值送入PI调节器,PI调节器输出信号通过限幅模块后,获得变换器的无功电流目标值分量iq1 *。Optionally, according to the difference between the output reactive power target value Q 1 * of the converter and the actual reactive power value Q 1 , the reactive current target value i q1 * of the converter is obtained, including: converting the reactive power of the converter The difference between the target value Q 1 * and the actual value of reactive power Q 1 is sent to the PI regulator, and the output signal of the PI regulator passes through the limiting module to obtain the reactive current target value component i q1 * of the converter.
图6给出了配电网控制方法对配置为控制直流母线电压的一侧变换器进行控制的原理框图。Fig. 6 shows a functional block diagram of a distribution network control method controlling a converter configured to control a DC bus voltage.
在一些实施例中,配电网控制方法,包括:根据直流母线电压目标值Vdc *和实际值Vdc的差值,获得变换器VSC2的有功电流目标值id2 *;根据变换器VSC2输出无功功率目标值Q2 *和实际值Q2的差值,获得变换器VSC2的无功电流目标值iq2 *;获取电网三相电压V2a、V2b、V2c的相位信息,根据电网三相电压V2a、V2b、V2c的相位信息将有功电流目标值id2 *和无功电流目标值iq2 *由dq轴变换至abc轴(帕克逆变换),求得变换器VSC2三相电流目标值ia2 *、ib2 *、ic2 *;根据负载侧三相电流实际值il2,a、il2,b、il2,c对VSC2三相电流目标值ia2 *、ib2 *、ic2 *进行补偿,获得变换器VSC2三相电流最终目标值is2,a *、is2,b *、is2,c *;根据变换器VSC2三相电流最终目标值is2,a *、is2,b *、is2,c *与变换器VSC2三相电流实际值is2,a、is2,b、is2,c的差值,控制变换器VSC2开关管的通断。In some embodiments, the distribution network control method includes: obtaining the active current target value i d2 * of the converter VSC2 according to the difference between the DC bus voltage target value V dc * and the actual value V dc ; according to the output of the converter VSC2 The difference between the reactive power target value Q 2 * and the actual value Q 2 is obtained to obtain the reactive current target value i q2 * of the converter VSC2; to obtain the phase information of the three-phase voltage V 2a , V 2b , V 2c of the power grid, according to the power grid The phase information of the three-phase voltage V 2a , V 2b , V 2c transforms the active current target value i d2 * and the reactive current target value i q2 * from the dq axis to the abc axis (Parker inverse transformation), and obtains the converter VSC2 three Phase current target value i a2 * , i b2 * , i c2 * ; according to the actual value of the load side three-phase current i l2,a , i l2,b , i l2,c to the VSC2 three-phase current target value i a2 * , i b2 * and i c2 * are compensated to obtain the final target value i s2,a * of the three-phase current of the converter VSC2, i s2,b * , i s2,c * ; according to the final target value of the three-phase current of the converter VSC2 i s2, The difference between a * , i s2,b * , i s2,c * and the actual value of the three-phase current of the converter VSC2 i s2,a , i s2,b , i s2,c controls the on-off of the switch tube of the converter VSC2 .
变换器VSC2配置为控制直流母线电压,对VSC2侧电网三相不平衡电压进行不平衡补偿,在该侧电网负载侧Load2安装电流传感器,测其负载侧三相电流实际值il2,a、il2,b、il2,c,根据负载侧三相电流实际值il2,a、il2,b、il2,c对变换器VSC2三相电流目标值ia2 *、ib2 *、ic2 *进行补偿,使得该侧电网三相电压V2a、V2b、V2c之间趋向平衡。The converter VSC2 is configured to control the DC bus voltage and compensate the unbalanced three-phase voltage of the power grid on the VSC2 side. A current sensor is installed on the load side Load2 of the power grid to measure the actual value of the three-phase current i l2,a and i on the load side l2,b , i l2,c , according to the actual value of the load-side three-phase current i l2,a , i l2,b , i l2,c to the three-phase current target value i a2 * , i b2 * , i c2 of the converter VSC2 * Compensation is performed so that the three-phase voltages V 2a , V 2b , and V 2c of the power grid on this side tend to be balanced.
可选地,上述根据负载侧三相电流实际值对变换器三相电流目标值进行补偿,获得变换器三相电流最终目标值,包括:获取负载侧三相电流实际值il2,a、il2,b、il2,c;根据电网三相电压V2a、V2b、V2c的相位信息对负载侧三相电流实际值il2,a、il2,b、il2,c进行abc轴至dq轴的变换(帕克变换),再经过低通滤波和PI调节,获得变换器需要提供的补偿电流的dq轴分量ild2 *和ilq2 *;根据电网三相电压V2a、V2b、V2c的相位信息对补偿电流的dq轴分量ild2 *和ilq2 *进行dq轴至abc轴的坐标变换(帕克逆变换),获得三相补偿电流值Δia2 *、Δib2 *、Δic2 *;根据三相补偿电流值Δia2 *、Δib2 *、Δic2 *和变换器三相电流目标值ia2 *、ib2 *、ic2 *,获得变换器三相电流最终目标值is2,a *、is2,b *、is2,c *。Optionally, the above-mentioned compensation is performed on the target value of the three-phase current of the converter according to the actual value of the three-phase current on the load side to obtain the final target value of the three-phase current of the converter, including: obtaining the actual value of the three-phase current on the load side i l2,a , i l2,b , i l2,c ; according to the phase information of the three-phase voltage V 2a , V 2b , V 2c of the power grid, the abc axis is performed on the actual value of the three-phase current at the load side i l2,a , i l2,b , i l2,c Transformation to the dq axis (Parker transformation), and then through low-pass filtering and PI adjustment, to obtain the dq axis components i ld2 * and i lq2 * of the compensation current that the converter needs to provide; according to the grid three-phase voltage V 2a , V 2b , The phase information of V 2c performs coordinate transformation from the dq axis to the abc axis (Parker inverse transformation) on the dq axis components i ld2 * and i lq2 * of the compensation current to obtain the three-phase compensation current values Δi a2 * , Δi b2 * , Δi c2 * ; According to the three-phase compensation current values Δi a2 * , Δi b2 * , Δi c2 * and the converter three-phase current target values i a2 * , i b2 * , i c2 * , the final target value i s2 of the converter three-phase current is obtained ,a * , i s2,b * , i s2,c * .
可选地,上述获取电网三相电压V2a、V2b、V2c的相位信息,包括:提取电网电压V2a、V2b、V2c的正序分量,经锁相环PLL锁相后获得电网三相电压V2a、V2b、V2c的相位信息。Optionally, the acquisition of the phase information of the grid three-phase voltages V 2a , V 2b , and V 2c includes: extracting the positive sequence components of the grid voltages V 2a , V 2b , and V 2c , and obtaining the grid phase information after being phase-locked by the phase-locked loop PLL. Phase information of the three-phase voltages V 2a , V 2b , V 2c .
可选地,上述根据电网三相电压V2a、V2b、V2c的相位信息对负载侧三相电流实际值il2,a、il2,b、il2,c进行abc轴至dq轴的变换,包括:将电网三相电压V2a、V2b、V2c的相位信息取反后,作为负载侧三相电流实际值il2,a、il2,b、il2,c由abc轴变换至dq轴的相位信息。Optionally, according to the phase information of the three-phase voltages V 2a , V 2b , and V 2c of the power grid, the actual values of the three-phase currents i l2,a , i l2,b , and i l2,c on the load side are transformed from the abc axis to the dq axis. Transformation, including: after inverting the phase information of the three-phase voltage V 2a , V 2b , V 2c of the grid, as the actual value of the three-phase current on the load side i l2,a , i l2,b , i l2,c are transformed by the abc axis Phase information to the dq axis.
可选地,上述根据电网三相电压V2a、V2b、V2c的相位信息对补偿电流的dq轴分量ild2 *和ilq2 *进行dq轴至abc轴的坐标变换,包括:将电网三相电压V2a、V2b、V2c的相位信息取反后,作为补偿电流的dq轴分量ild2 *和ilq2 *由dq轴变换至abc轴的相位信息。Optionally, according to the phase information of the three-phase voltages V 2a , V 2b , V 2c of the power grid, the dq axis components i ld2 * and i lq2 * of the compensation current are transformed from the dq axis to the abc axis coordinates, including: After the phase information of the phase voltages V 2a , V 2b , and V 2c is reversed, the dq-axis components i ld2 * and i lq2 * of the compensation current are converted from the dq-axis to the phase information of the abc-axis.
可选地,上述根据三相电流最终目标值is2,a *、is2,b *、is2,c *与三相电流实际值is2,a、is2,b、is2,c的差值,控制变换器VSC2开关管的通断,包括:将变换器三相电流最终目标值is2,a *、is2,b *、is2,c *与变换器三相电流实际值is2,a、is2,b、is2,c的差值通过滞环控制,将比较结果转换为变换器VSC2开关管门极信号,控制开关管的通断。Optionally, the above is based on the final target value of the three-phase current i s2,a * , i s2,b * , i s2,c * and the actual value of the three-phase current i s2,a , i s2,b , i s2,c The difference value controls the on-off of the switch tube of the converter VSC2, including: the final target value of the three-phase current of the converter i s2, a * , i s2, b * , i s2, c * and the actual value of the three-phase current of the converter i The difference between s2,a , i s2,b and i s2,c is controlled by hysteresis, and the comparison result is converted into the gate signal of the switch tube of the converter VSC2 to control the on-off of the switch tube.
可选地,根据直流母线电压目标值Vdc *和实际值Vdc的差值,获得变换器的有功电流目标值id2 *,包括:将直流母线电压目标值Vdc *和实际值Vdc的差值送入PI调节器,PI调节器输出信号通过限幅模块后,获得变换器的有功电流目标值id2 *。Optionally, according to the difference between the DC bus voltage target value V dc * and the actual value V dc , the active current target value i d2 * of the converter is obtained, including: combining the DC bus voltage target value V dc * with the actual value V dc The difference is sent to the PI regulator, and the output signal of the PI regulator passes through the limiting module to obtain the active current target value i d2 * of the converter.
可选地,上述根据变换器输出无功功率目标值Q2 *和无功功率实际值Q2的差值,获得变换器的无功电流目标值iq2 *,包括:将变换器输出无功功率目标值Q2 *和无功功率实际值Q2的差值送入PI调节器,PI调节器输出信号通过限幅模块后,获得变换器的无功电流目标值分量iq2 *。Optionally, according to the difference between the output reactive power target value Q 2 * of the converter and the actual reactive power value Q 2 , the reactive current target value i q2 * of the converter is obtained, including: outputting the reactive power of the converter The difference between the power target value Q 2 * and the reactive power actual value Q 2 is sent to the PI regulator, and the output signal of the PI regulator passes through the limiting module to obtain the reactive current target value component i q2 * of the converter.
在另一些实施例中,本申请还提出了一种配电网控制系统,分别对SOP模块的两侧变换器VSC1和VSC2进行控制,包括:第一单元,配置为获得变换器的有功电流目标值。第二单元,配置为获得变换器的无功电流目标值。第三单元,配置为获取电网三相电压的相位信息。第四单元,配置为根据电网三相电压的相位信息将有功电流目标值和无功电流目标值由dq轴变换至abc轴(帕克逆变换),求得变换器三相电流目标值。第五单元,配置为根据负载侧三相电流实际值计算三相补偿电流值,用于对变换器三相电流目标值进行补偿。第六单元,配置为根据三相电流目标值和三相补偿电流值,获得变换器三相电流最终目标值;根据变换器三相电流最终目标值与变换器三相电流实际值的差值,控制变换器开关管的通断。In some other embodiments, the present application also proposes a distribution network control system, which respectively controls the converters VSC1 and VSC2 on both sides of the SOP module, including: a first unit configured to obtain the active current target of the converter value. The second unit is configured to obtain a reactive current target value of the converter. The third unit is configured to acquire phase information of the three-phase voltage of the power grid. The fourth unit is configured to convert the active current target value and the reactive current target value from the dq axis to the abc axis (inverse Parker transformation) according to the phase information of the three-phase voltage of the power grid, and obtain the three-phase current target value of the converter. The fifth unit is configured to calculate the three-phase compensation current value according to the actual value of the three-phase current at the load side, and is used to compensate the target value of the three-phase current of the converter. The sixth unit is configured to obtain the final target value of the three-phase current of the converter according to the target value of the three-phase current and the value of the three-phase compensation current; according to the difference between the final target value of the three-phase current of the converter and the actual value of the three-phase current of the converter, Control the on-off of the switch tube of the converter.
图7示出了配电网控制系统的一个实施例,该实施例中,配电网控制系统对配置为控制有功功率流动的一侧变换器进行控制。Figure 7 illustrates an embodiment of a distribution network control system that controls a side converter configured to control the flow of active power.
本公开实施例提供了一种配电网控制系统,包括:第一单元10,配置为根据变换器VSC1流过有功功率目标值P*和实际值P的差值,获得变换器VSC1的有功电流目标值id1 *。第二单元20,配置为根据变换器VSC1输出无功功率目标值Q1 *和无功功率实际值Q1的差值,获得变换器VSC1的无功电流目标值iq1 *。第三单元30,配置为获取电网三相电压V1a、V1b、V1c的相位信息。第四单元40,配置为根据电网三相电压V1a、V1b、V1c的相位信息将有功电流目标值id1 *和无功电流目标值iq1 *由dq轴变换至abc轴(帕克逆变换),求得变换器VSC1三相电流目标值ia1 *、ib1 *、ic1 *。第五单元50,配置为根据负载侧三相电流实际值il1,a、il1,b、il1,c计算三相补偿电流值Δia1 *、Δib1 *、Δic1 *,用于对VSC1三相电流目标值ia1 *、ib1 *、ic1 *进行补偿。第六单元60,配置为根据变换器三相电流目标值ia1 *、ib1 *、ic1 *和三相补偿电流值Δia1 *、Δib1 *、Δic1 *,获得变换器VSC1三相电流最终目标值is1,a *、is1,b *、is1,c *;根据变换器VSC1三相电流最终目标值is1,a *、is1,b *、is1,c *与变换器VSC1三相电流实际值is1,a、is1,b、is1,c的差值,控制变换器VSC1开关管的通断。An embodiment of the present disclosure provides a distribution network control system, including: a
变换器VSC1配置为控制有功功率流动,对VSC1侧电网三相不平衡电压进行不平衡补偿,上述系统还包括在该侧电网负载侧Load1安装的电流传感器,测其负载侧三相电流实际值il1,a、il1,b、il1,c,根据负载侧三相电流实际值il1,a、il1,b、il1,c对变换器VSC1三相电流目标值ia1 *、ib1 *、ic1 *进行补偿,使得该侧电网三相电压V1a、V1b、V1c之间趋向平衡。The converter VSC1 is configured to control the flow of active power and compensate the unbalanced voltage of the three-phase power grid on the VSC1 side. The above system also includes a current sensor installed on the load side Load1 of the power grid on this side to measure the actual value of the three-phase current at the load side i l1,a , i l1,b , i l1,c , according to the actual value of the three-phase current at the load side i l1,a , i l1,b , i l1,c to the three-phase current target value i a1 * , i of the converter VSC1 b1 * and i c1 * perform compensation so that the three-phase voltages V 1a , V 1b , and V 1c of the power grid on this side tend to be balanced.
可选地,上述系统通过有功功率目标值P*的正负来控制有功功率流动方向,例如,P*为正值表示控制有功功率从VSC1侧流向VSC2侧,P*为负值表示控制有功功率从VSC2侧流向VSC1侧。Optionally, the above system controls the flow direction of active power through the positive or negative value of the active power target value P * , for example, a positive value of P * means that the active power is controlled to flow from the VSC1 side to the VSC2 side, and a negative value of P * means that the active power is controlled Flow from the VSC2 side to the VSC1 side.
可选地,上述第一单元10包括:PI调节器和限幅模块,变换器流过有功功率目标值P*和有功功率实际值P的差值送入PI调节器,PI调节器输出信号通过限幅模块后,获得变换器的有功电流目标值id1 *。Optionally, the above-mentioned
可选地,上述第二单元20包括:PI调节器和限幅模块,变换器输出无功功率目标值Q1 *和无功功率实际值Q1的差值送入PI调节器,PI调节器输出信号通过限幅模块后,获得变换器的无功电流目标值分量iq1 *。Optionally, the above-mentioned
可选地,上述第三单元30包括:正序提取模块,配置为提取电网电压V1a、V1b、V1c的正序分量;锁相环PLL,将电网电压V1a、V1b、V1c的正序分量锁相后,获得电网三相电压V1a、V1b、V1c的相位信息。Optionally, the above-mentioned
可选地,上述第五单元50包括:在负载侧安装的电流传感器,配置为获取负载侧三相电流实际值il1,a、il1,b、il1,c;第一变换单元51,配置为根据电网三相电压V1a、V1b、V1c的相位信息对负载侧三相电流实际值il1,a、il1,b、il1,c进行abc轴至dq轴的变换(帕克变换);低通滤波器和PI调节器,对第一变换单元51的输出信号进行低通滤波和PI调节,获得变换器需要提供的补偿电流的dq轴分量ild1 *和ilq1 *;第二变换单元52,配置为根据电网三相电压V1a、V1b、V1c的相位信息对补偿电流的dq轴分量ild1 *和ilq1 *进行dq轴至abc轴的坐标变换(帕克逆变换),获得三相补偿电流值Δia1 *、Δib1 *、Δic1 *。Optionally, the above-mentioned
可选地,上述第一变换单元51包括:将电网三相电压V1a、V1b、V1c的相位信息取反后,作为负载侧三相电流实际值il1,a、il1,b、il1,c由abc轴变换至dq轴的相位信息。Optionally, the above-mentioned
可选地,上述第二变换单元52包括:将电网三相电压V1a、V1b、V1c的相位信息取反后,作为补偿电流的dq轴分量ild1 *和ilq1 *由dq轴变换至abc轴的相位信息。Optionally, the above-mentioned
可选地,上述第六单元60包括:滞环比较器,将变换器三相电流最终目标值is1,a *、is1,b *、is1,c *与变换器三相电流实际值is1,a、is1,b、is1,c的差值通过滞环控制,滞环比较器输出的比较结果转换为变换器VSC1开关管门极信号,控制开关管的通断。Optionally, the above-mentioned
在另一些实施例中,配电网控制系统对配置为控制直流母线电压的一侧变换器VSC2进行控制。其中,第一单元10,直流母线电压目标值Vdc *和实际值Vdc的差值,获得变换器VSC2的有功电流目标值id2 *。第二单元20,配置为根据变换器VSC2输出无功功率目标值Q2 *和实际值Q2的差值,获得变换器VSC2的无功电流目标值iq2 *。第三单元30,配置为获取电网三相电压V2a、V2b、V2c的相位信息。第四单元40,配置为根据电网三相电压V2a、V2b、V2c的相位信息将有功电流目标值id2 *和无功电流目标值iq2 *由dq轴变换至abc轴(帕克逆变换),求得变换器VSC2三相电流目标值ia2 *、ib2 *、ic2 *。第五单元50,配置为根据负载侧三相电流实际值il2,a、il2,b、il2,c计算三相补偿电流值Δia2 *、Δib2 *、Δic2 *,用于对VSC2三相电流目标值ia2 *、ib2 *、ic2 *进行补偿。第六单元60,配置为根据变换器三相电流目标值ia2 *、ib2 *、ic2 *和三相补偿电流值Δia2 *、Δib2 *、Δic2 *,获得变换器VSC2三相电流最终目标值is2,a *、is2,b *、is2,c *;根据变换器VSC2三相电流最终目标值is2,a *、is2,b *、is2,c *与变换器VSC2三相电流实际值is2,a、is2,b、is2,c的差值,控制变换器VSC2开关管的通断。In some other embodiments, the distribution network control system controls the one-side converter VSC2 configured to control the DC bus voltage. Wherein, the
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included in the scope of the present invention. within the scope of protection.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910439217.5A CN110086169B (en) | 2019-05-24 | 2019-05-24 | Power distribution network control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910439217.5A CN110086169B (en) | 2019-05-24 | 2019-05-24 | Power distribution network control method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110086169A CN110086169A (en) | 2019-08-02 |
CN110086169B true CN110086169B (en) | 2023-05-26 |
Family
ID=67421723
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910439217.5A Active CN110086169B (en) | 2019-05-24 | 2019-05-24 | Power distribution network control method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110086169B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113595106B (en) * | 2021-07-30 | 2024-04-19 | 中国矿业大学 | Asynchronous power grid interconnection three-phase imbalance treatment method based on intelligent soft switch |
CN114583722B (en) * | 2022-05-07 | 2022-09-02 | 深圳市德兰明海科技有限公司 | Ammeter balance control method and device, electronic equipment and system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106229983A (en) * | 2016-10-18 | 2016-12-14 | 国网重庆市电力公司电力科学研究院 | A kind of Energy Saving for Distribution Transformer runs system and method |
CN107394819A (en) * | 2017-08-24 | 2017-11-24 | 上海交通大学 | Flexible interconnection system and its control method between a kind of transformer station's low-voltage bus bar |
CN107425525A (en) * | 2017-08-24 | 2017-12-01 | 上海交通大学 | Regulate and control method between more feed-in type alternating current-direct current microgrid flexible interconnection systems and its microgrid |
CN108306317A (en) * | 2018-05-02 | 2018-07-20 | 南京赫曦电气有限公司 | A kind of power distribution network transformer electric energy quality synthesis compensation apparatus and its method |
WO2019053447A1 (en) * | 2017-09-15 | 2019-03-21 | Turbo Power Systems Ltd | Sub-station transformer load balancing system |
-
2019
- 2019-05-24 CN CN201910439217.5A patent/CN110086169B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106229983A (en) * | 2016-10-18 | 2016-12-14 | 国网重庆市电力公司电力科学研究院 | A kind of Energy Saving for Distribution Transformer runs system and method |
CN107394819A (en) * | 2017-08-24 | 2017-11-24 | 上海交通大学 | Flexible interconnection system and its control method between a kind of transformer station's low-voltage bus bar |
CN107425525A (en) * | 2017-08-24 | 2017-12-01 | 上海交通大学 | Regulate and control method between more feed-in type alternating current-direct current microgrid flexible interconnection systems and its microgrid |
WO2019053447A1 (en) * | 2017-09-15 | 2019-03-21 | Turbo Power Systems Ltd | Sub-station transformer load balancing system |
CN108306317A (en) * | 2018-05-02 | 2018-07-20 | 南京赫曦电气有限公司 | A kind of power distribution network transformer electric energy quality synthesis compensation apparatus and its method |
Non-Patent Citations (2)
Title |
---|
The Steady-State and Fault Ride-Through Control Strategies of Soft Normally Open Point in Distribution Network;Yuze Li等;《2018 IEEE Energy Conversion Congress and Exposition (ECCE)》;20181206;全文 * |
基于二阶锥规划的有源配电网SNOP电压无功时序控制方法;赵金利等;《高电压技术》;20160731;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN110086169A (en) | 2019-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104934989B (en) | Reactive power compensator and its control method based on modular multilevel topology | |
CN110148954B (en) | A SOP-Based Distribution Network Control Method | |
CN109495001B (en) | Modular parallel three-level Vienna rectifier, control system and method | |
CN103269177B (en) | Distributed ISOP inverter and input voltage sharing and output same-amplitude control method thereof | |
WO2015165191A1 (en) | Steady state control method for three-phase double-mode inverter | |
CN107493015B (en) | A kind of two-way DC converter and its Poewr control method of dual transformer structure | |
CN109217687A (en) | Power distribution network electric power electric transformer and its control method based on MMC | |
CN103825278B (en) | Power quality controls | |
CN104993505A (en) | Voltage and power balance control method for modular power electric transformer | |
CN105071670A (en) | Three-phase rectifying boost circuit, control method thereof and uninterruptible power supply | |
CN110277788A (en) | Composite compensation device for long-distance sparse power supply | |
CN102774294A (en) | Energy feedback type traction power supply device based on series compensation transformer | |
CN104993713A (en) | Control method for double PWM solid-state transformer | |
CN110086169B (en) | Power distribution network control method | |
CN110535192A (en) | A kind of alternating current-direct current mixing micro-capacitance sensor system and its control method based on parallel-connection network side converter | |
CN110048433B (en) | Intelligent power distribution network control method based on intelligent soft switch | |
CN102291024A (en) | Parallel structure of three-phase multi-level pulse width modulation (PWM) converter | |
CN112909993B (en) | Three-phase current unbalance compensation method for medium-voltage photovoltaic power generation system | |
CN108233418A (en) | One kind adjusts three-phase full-bridge inverter based on the dynamic tracking of quasi- ratio resonant parameter | |
CN105006841B (en) | Three-phase grid-connected inverter seamless grid-connected controller and control method thereof | |
CN104810838A (en) | SVG (static var generator) parallel operation device and control method | |
CN102437575B (en) | Medium-and-high-voltage unified power quality controller (UPQC) without transformer | |
CN207460027U (en) | Isolated bidirectional DC/AC power supply | |
CN106921155B (en) | The control method of DC bipolar power supply system Voltage unbalance | |
CN107612344A (en) | A kind of pressure equalizing control method of the combined DC/DC converters of ISOS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |