CN110083769A - 一种面向用户偏好演化的移动应用推荐方法 - Google Patents
一种面向用户偏好演化的移动应用推荐方法 Download PDFInfo
- Publication number
- CN110083769A CN110083769A CN201910354445.2A CN201910354445A CN110083769A CN 110083769 A CN110083769 A CN 110083769A CN 201910354445 A CN201910354445 A CN 201910354445A CN 110083769 A CN110083769 A CN 110083769A
- Authority
- CN
- China
- Prior art keywords
- user
- mobile application
- lstm
- develops
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 38
- 239000011159 matrix material Substances 0.000 claims abstract description 32
- 230000008569 process Effects 0.000 claims abstract description 15
- 230000003993 interaction Effects 0.000 claims abstract description 5
- 230000001413 cellular effect Effects 0.000 claims description 6
- 230000004913 activation Effects 0.000 claims description 3
- 238000003780 insertion Methods 0.000 claims description 3
- 230000037431 insertion Effects 0.000 claims description 3
- 238000009434 installation Methods 0.000 abstract description 3
- 230000002123 temporal effect Effects 0.000 abstract description 2
- 230000008901 benefit Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 208000001491 myopia Diseases 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/95—Retrieval from the web
- G06F16/953—Querying, e.g. by the use of web search engines
- G06F16/9535—Search customisation based on user profiles and personalisation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/06—Buying, selling or leasing transactions
- G06Q30/0601—Electronic shopping [e-shopping]
- G06Q30/0631—Item recommendations
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D10/00—Energy efficient computing, e.g. low power processors, power management or thermal management
Landscapes
- Engineering & Computer Science (AREA)
- Databases & Information Systems (AREA)
- Business, Economics & Management (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Accounting & Taxation (AREA)
- Finance (AREA)
- Physics & Mathematics (AREA)
- Economics (AREA)
- General Business, Economics & Management (AREA)
- Strategic Management (AREA)
- Marketing (AREA)
- Development Economics (AREA)
- Data Mining & Analysis (AREA)
- General Engineering & Computer Science (AREA)
- Medical Treatment And Welfare Office Work (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
发明的一种面向用户偏好演化的移动应用推荐方法,首先从在线应用商店中获取移动应用的相关数据,构建线性模型获得关于用户与未安装移动应用的评分矩阵;然后针对用户偏好随时间演化过程,建立用户偏好随时间变化的LSTM模型;然后基于用户与移动应用的复杂交互构建DNN模型;最后基于建立的深度广度框架的移动应用推荐模型,预测用户对移动应用的评分。本发明可以更加全面地利用智能手机使用数据提供给用户安装移动应用的建议,进一步地为应用商店平台给用户精准推荐移动应用提供辅助决策。
Description
技术领域
本发明涉及移动应用数据分析领域,特别是涉及一种面向用户偏好演化的移动应用推荐方法。
背景技术
近年来,随着移动应用的发展,移动应用的种类和数量越来越多。移动应用逐渐改变了人们的生活方式,为人们提供了许多便捷的服务。随着移动APP数量的快速增长,人们也迫切需要以一种智能化和自动化的方式在正确的时间向需要的用户推荐合适的应用。在应用市场中,人们通常可以找到应用基本信息,包括APP描述,下载量,评分,评论以及一些关于短视频的介绍信息。但是这些信息是静态的,并且要求用户在市场上手动查看。因此,寻找适合安装的应用是一项非常重要的任务。
发明内容
针对以上缺陷,本发明提供一种面向用户偏好演化的移动应用推荐方法,用于提供给用户安装移动应用的建议。
本发明的技术方案为:一种面向用户偏好演化的移动应用推荐方法,包括以下步骤:
S1:获取移动应用的数据,构建线性模型,获得关于用户与未安装移动应用的评分矩阵,得到用户对移动应用的一般偏好;
S2:将过往的移动应用用户使用数据获取用户t时刻对应用的使用兴趣,使用LSTM模型刻画用户偏好随时间变化的过程;
S3:将LSTM的输出结果输入到DNN模型中,基于用户与移动应用的复杂交互构建DNN模型,获取深度部分用户当前时刻对移动应用的使用兴趣得分;
S4:结合S1的评分矩阵和S3的使用兴趣得分,构建移动应用推荐模型;
S5:基于建立的模型,预测用户对移动应用的评分,为用户推荐评分高的移动应用。
进一步的,一种面向用户偏好演化的移动应用推荐方法,所述移动应用的数据包括:应用名称、应用类别、应用标签;所述用户使用数据,包括用户名称,移动应用程序名称,在无线网络下移动应用的使用时间以及蜂窝网络下移动应用的使用时间。
进一步的,一种面向用户偏好演化的移动应用推荐方法,获取所有移动应用的类别和标签数据,构成App-Label矩阵;对于每个用户,将该用户的App-Label矩阵输入到线性模型中,得到该用户的User-App评分矩阵;将所述User-App评分矩阵中将该用户已安装的移动应用移除,得到关于用户与未安装移动应用的评分矩阵R,该评分矩阵将作为显示特征反馈指导深度部分的结果输出,防止深度部分模型过拟合。
进一步的,一种面向用户偏好演化的移动应用推荐方法,S2中将用户数据以隐式反馈方式处理为输入特征,表示用户t时刻对应用的使用兴趣。
进一步的,一种面向用户偏好演化的移动应用推荐方法,所述S2使用LSTM模型刻画用户偏好随时间变化的过程,包括:将数据整理成四元组<用户名,移动应用名称,无线网络使用时间,蜂窝网络使用时间>的格式。
进一步的,一种面向用户偏好演化的移动应用推荐方法,所述S2中,使用LSTM模型对使用数据进行处理,输出当前时刻用户对应用的使用兴趣的向量表示;
具体过程公式如下:
it=σ(Wiht-1+Vixt+bi)
ot=σ(W0ht-1+V0xt+b0)
ft=σ(Wfht-1+Vfxt+bf)
[c1,h1]=LSTM(Tk-s,c0,h0) (3)
…
[cs-1,hs-1]=LSTM(Tk-1,cs-2,hs-2) (4)
Tk=φn(WThs-1+bT) (5)
其中,ht和ct表示隐层状态,和表示从上一LSTM单元到下一LSTM单元的权重矩阵;dx和ds分别表示输入向量和隐层状态的维度;为偏置向量;σ(·)和φ(·)表示sigmoid和tanh函数;it,ot,和ft表示输入门,输出门和忘记门;为了方便,我们将公式2记为[ct,ht]=LSTM(*,ct-1,ht-1)。
进一步的,一种面向用户偏好演化的移动应用推荐方法,所述S3中获取深度部分用户当前时刻对移动应用的使用兴趣得分,具体过程公式如下:
Z1=φ1(W1[Ui;Ij;Tk]+b1) (6)
…
Zn=φn(WLZn-1+bL) (7)
xi,j,k=WoZn+bo (8)
其中,U,I和T表示用户,移动应用和时间的嵌入向量;n表示隐层的层数,Zl层中的φl,Wl和bl对应表示DNN层使用的激活函数(ReLU或tanh函数),权重矩阵和偏置向量。
本发明的有益效果为:本发明的一种面向用户偏好演化的移动应用推荐方法,首先从在线应用商店中获取移动应用的相关数据,构建线性模型获得关于用户与未安装移动应用的评分矩阵;然后针对用户偏好随时间演化过程,建立用户偏好随时间变化的LSTM模型;然后基于用户与移动应用的复杂交互构建DNN模型;最后基于建立的深度广度框架的移动应用推荐模型,预测用户对移动应用的评分。本发明可以更加全面地利用智能手机使用数据提供给用户安装移动应用的建议,进一步地为应用商店平台给用户精准推荐移动应用提供辅助决策。
附图说明
图1为本发明实施例提供的一种面向用户偏好演化的移动应用推荐方法的流程图。
具体实施方式
下面结合附图来进一步描述本发明的技术方案:如图1所示,一种面向用户偏好演化的移动应用推荐方法包括以下步骤:
S1:获取移动应用的数据,构建线性模型,获得关于用户与未安装移动应用的评分矩阵,得到用户对移动应用的一般偏好;所述移动应用的数据包括:应用名称、应用类别、应用标签。
从应用商店中爬取包含238206移动应用的集合内的所有移动应用的类别和标签数据,移动应用有15个类别特征{影音播放,系统工具,通讯社交,手机美化,新闻阅读,摄影图像,考试学习,网上购物,金融理财,生活休闲,旅游出行,健康运动,办公商务,育儿亲子},每个类别包含5-8个标签特征,我们将移动应用和这些特征构成App-Label矩阵。对于每个用户,将该用户的App-Label矩阵输入到线性模型中,得到该用户的User-App评分矩阵。
S2:将过往的移动应用用户使用数据获取用户t时刻对应用的使用兴趣,使用LSTM模型刻画用户偏好随时间变化的过程;所述用户使用数据,包括用户名称,移动应用程序名称,在无线网络下移动应用的使用时间以及蜂窝网络下移动应用的使用时间。
具体为:获取所有移动应用的类别和标签数据,构成App-Label矩阵;对于每个用户,将该用户的App-Label矩阵输入到线性模型中,得到该用户的User-App评分矩阵;将所述User-App评分矩阵中将该用户已安装的移动应用移除,得到关于用户与未安装移动应用的评分矩阵R,该评分矩阵将作为显示特征反馈指导深度部分的结果输出,防止深度部分模型过拟合。
在此步中将用户数据以隐式反馈方式处理为输入特征,表示用户t时刻对应用的使用兴趣。
使用LSTM模型刻画用户偏好随时间变化的过程,包括:将数据整理成四元组<用户名,移动应用名称,无线网络使用时间,蜂窝网络使用时间>的格式。
使用LSTM模型对使用数据进行处理,输出当前时刻用户对应用的使用兴趣的向量表示;
具体过程公式如下:
it=σ(Wiht-1+Vixt+bi)
ot=σ(W0ht-1+V0xt+b0)
ft=σ(Wfht-1+Vfxt+bf)
[c1,h1]=LSTM(Tk-s,c0,h0) (3)
…
[cs-1,hs-1]=LSTM(Tk-1,cs-2,hs-2) (4)
Tk=φn(WThs-1+bT) (5)
其中,ht和ct表示隐层状态,和表示从上一LSTM单元到下一LSTM单元的权重矩阵;dx和ds分别表示输入向量和隐层状态的维度;为偏置向量;σ(·)和φ(·)表示sigmoid和tanh函数;it,ot,和ft表示输入门,输出门和忘记门;为了方便,我们将公式2记为[ct,ht]=LSTM(*,ct-1,ht-1)。
S3:将LSTM的输出结果输入到DNN模型中,基于用户与移动应用的复杂交互构建DNN模型,获取深度部分用户当前时刻对移动应用的使用兴趣得分;
获取深度部分用户当前时刻对移动应用的使用兴趣得分,具体过程公式如下:
Z1=φ1(W1[Ui;Ij;Tk]+b1) (6)
…
Zn=φn(WLZn-1+bL) (7)
xi,j,k=WoZn+bo (8)
其中,U,I和T表示用户,移动应用和时间的嵌入向量;n表示隐层的层数,Zl层中的φl,Wl和bl对应表示DNN层使用的激活函数(ReLU或tanh函数),权重矩阵和偏置向量。
S4:结合S1的评分矩阵和S3的使用兴趣得分,构建移动应用推荐模型;
S5:基于建立的模型,预测用户对移动应用的评分,为用户推荐评分高的移动应用。
Claims (7)
1.一种面向用户偏好演化的移动应用推荐方法,其特征在于:包括以下步骤:
S1:获取移动应用的数据,构建线性模型,获得关于用户与未安装移动应用的评分矩阵,得到用户对移动应用的一般偏好;
S2:将过往的移动应用用户使用数据获取用户t时刻对应用的使用兴趣,使用LSTM模型刻画用户偏好随时间变化的过程;
S3:将LSTM的输出结果输入到DNN模型中,基于用户与移动应用的复杂交互构建DNN模型,获取深度部分用户当前时刻对移动应用的使用兴趣得分;
S4:结合S1的评分矩阵和S3的使用兴趣得分,构建移动应用推荐模型;
S5:基于建立的模型,预测用户对移动应用的评分,为用户推荐评分高的移动应用。
2.根据权利要求1所述的一种面向用户偏好演化的移动应用推荐方法,其特征在于:所述移动应用的数据包括:应用名称、应用类别、应用标签;
所述用户使用数据,包括用户名称,移动应用程序名称,在无线网络下移动应用的使用时间以及蜂窝网络下移动应用的使用时间。
3.根据权利要求1所述的一种面向用户偏好演化的移动应用推荐方法,其特征在于:获取所有移动应用的类别和标签数据,构成App-Label矩阵;对于每个用户,将该用户的App-Label矩阵输入到线性模型中,得到该用户的User-App评分矩阵;
将所述User-App评分矩阵中将该用户已安装的移动应用移除,得到关于用户与未安装移动应用的评分矩阵R,该评分矩阵将作为显示特征反馈指导深度部分的结果输出,防止深度部分模型过拟合。
4.根据权利要求1所述的一种面向用户偏好演化的移动应用推荐方法,其特征在于:S2中将用户数据以隐式反馈方式处理为输入特征,表示用户t时刻对应用的使用兴趣。
5.根据权利要求1-2所述的一种面向用户偏好演化的移动应用推荐方法,其特征在于:所述S2使用LSTM模型刻画用户偏好随时间变化的过程,包括:将数据整理成四元组<用户名,移动应用名称,无线网络使用时间,蜂窝网络使用时间>的格式。
6.根据权利要求1所述的一种面向用户偏好演化的移动应用推荐方法,其特征在于:所述S2中,使用LSTM模型对使用数据进行处理,输出当前时刻用户对应用的使用兴趣的向量表示;
具体过程公式如下:
it=σ(Wiht-1+Vixt+bi)
ot=σ(W0ht-1+V0xt+b0)
ft=σ(Wfht-1+Vfxt+bf)
[c1,h1]=LSTM(Tk-s,c0,h0) (3)
…
[cs-1,hs-1]=LSTM(Tk-1,cs-2,hs-2) (4)
Tk=φn(WThs-1+bT) (5)
其中,ht和ct表示隐层状态,和表示从上一LSTM单元到下一LSTM单元的权重矩阵;dx和ds分别表示输入向量和隐层状态的维度;为偏置向量;σ(·)和φ(·)表示sigmoid和tanh函数;it,ot,和ft表示输入门,输出门和忘记门;为了方便,我们将公式2记为[ct,ht]=LSTM(*,ct-1,ht-1)。
7.根据权利要求1所述的一种面向用户偏好演化的移动应用推荐方法,其特征在于:所述S3中获取深度部分用户当前时刻对移动应用的使用兴趣得分,具体过程公式如下:
Z1=φ1(W1[Ui;Ij;Tk]+b1) (6)
…
Zn=φn(WLZn-1+bL) (7)
xi,j,k=WoZn+bo (8)
其中,U,I和T表示用户,移动应用和时间的嵌入向量;n表示隐层的层数,Zl层中的φl,Wl和bl对应表示DNN层使用的激活函数(ReLU或tanh函数),权重矩阵和偏置向量。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910354445.2A CN110083769B (zh) | 2019-04-29 | 2019-04-29 | 一种面向用户偏好演化的移动应用推荐方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910354445.2A CN110083769B (zh) | 2019-04-29 | 2019-04-29 | 一种面向用户偏好演化的移动应用推荐方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110083769A true CN110083769A (zh) | 2019-08-02 |
CN110083769B CN110083769B (zh) | 2023-04-18 |
Family
ID=67417688
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910354445.2A Expired - Fee Related CN110083769B (zh) | 2019-04-29 | 2019-04-29 | 一种面向用户偏好演化的移动应用推荐方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110083769B (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111753145A (zh) * | 2020-06-10 | 2020-10-09 | 西北工业大学 | 一种基于时序模式的移动应用使用预测方法 |
CN112818146A (zh) * | 2021-01-26 | 2021-05-18 | 山西三友和智慧信息技术股份有限公司 | 一种基于产品图像风格的推荐方法 |
CN113297418A (zh) * | 2020-04-17 | 2021-08-24 | 阿里巴巴集团控股有限公司 | 项目预测及推荐方法、装置和系统 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016191959A1 (zh) * | 2015-05-29 | 2016-12-08 | 深圳市汇游智慧旅游网络有限公司 | 一种时变的协同过滤推荐方法 |
CN107832426A (zh) * | 2017-11-13 | 2018-03-23 | 上海交通大学 | 一种基于使用序列上下文的app推荐方法及系统 |
CN108334638A (zh) * | 2018-03-20 | 2018-07-27 | 桂林电子科技大学 | 基于长短期记忆神经网络与兴趣迁移的项目评分预测方法 |
-
2019
- 2019-04-29 CN CN201910354445.2A patent/CN110083769B/zh not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016191959A1 (zh) * | 2015-05-29 | 2016-12-08 | 深圳市汇游智慧旅游网络有限公司 | 一种时变的协同过滤推荐方法 |
CN107832426A (zh) * | 2017-11-13 | 2018-03-23 | 上海交通大学 | 一种基于使用序列上下文的app推荐方法及系统 |
CN108334638A (zh) * | 2018-03-20 | 2018-07-27 | 桂林电子科技大学 | 基于长短期记忆神经网络与兴趣迁移的项目评分预测方法 |
Non-Patent Citations (1)
Title |
---|
李佳琪等: "应用商城中用户年龄的推断及在推荐中的应用", 《计算机科学与探索》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113297418A (zh) * | 2020-04-17 | 2021-08-24 | 阿里巴巴集团控股有限公司 | 项目预测及推荐方法、装置和系统 |
CN111753145A (zh) * | 2020-06-10 | 2020-10-09 | 西北工业大学 | 一种基于时序模式的移动应用使用预测方法 |
CN112818146A (zh) * | 2021-01-26 | 2021-05-18 | 山西三友和智慧信息技术股份有限公司 | 一种基于产品图像风格的推荐方法 |
Also Published As
Publication number | Publication date |
---|---|
CN110083769B (zh) | 2023-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110083769A (zh) | 一种面向用户偏好演化的移动应用推荐方法 | |
CN107341145B (zh) | 一种基于深度学习的用户情感分析方法 | |
CN102460431B (zh) | 行为和情境数据分析的系统和方法 | |
Chianese et al. | A smart system to manage the context evolution in the cultural heritage domain | |
CN110297848A (zh) | 基于联邦学习的推荐模型训练方法、终端及存储介质 | |
CN109597993A (zh) | 语句分析处理方法、装置、设备以及计算机可读存储介质 | |
CN103620592A (zh) | 用于推荐结果的灵活多样化的方法和装置 | |
CN107784390A (zh) | 用户生命周期的识别方法、装置、电子设备及存储介质 | |
CN106484766B (zh) | 基于人工智能的搜索方法和装置 | |
CN103295145A (zh) | 一种基于用户消费特征向量的手机广告投放方法 | |
CN105893609A (zh) | 一种基于加权混合的移动app推荐方法 | |
CN103620593A (zh) | 用于提供基于特征的协同过滤的方法和装置 | |
CN110069715A (zh) | 一种信息推荐模型训练的方法、信息推荐的方法及装置 | |
CN104133817A (zh) | 网络社区交互方法、装置及网络社区平台 | |
CN110119473A (zh) | 一种目标文件知识图谱的构建方法及装置 | |
CN103703488B (zh) | 智能信息提供系统和方法 | |
CN107622086A (zh) | 一种点击率预估方法和装置 | |
CN102939774A (zh) | 用于上下文索引的网络资源分段的方法和装置 | |
WO2019113648A1 (en) | User customised search engine using machine learning, natural language processing and readability analysis | |
Campanella | Mobile Learning: New forms of education | |
CN102664744B (zh) | 网络消息通信中群发推荐的方法 | |
Mohamed et al. | A context-aware recommender system for personalized places in mobile applications | |
CN110727864A (zh) | 一种基于手机App安装列表的用户画像方法 | |
CN103631813B (zh) | 场所搜索装置、场所搜索方法以及电子设备 | |
Xu | [Retracted] Intelligent Library Service and Management Based on IoT Assistance and Text Recommendation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20230418 |
|
CF01 | Termination of patent right due to non-payment of annual fee |