CN110078490A - 一种Bi2Fe4O9- MgFe2O4复合陶瓷及其制备方法 - Google Patents

一种Bi2Fe4O9- MgFe2O4复合陶瓷及其制备方法 Download PDF

Info

Publication number
CN110078490A
CN110078490A CN201910484308.0A CN201910484308A CN110078490A CN 110078490 A CN110078490 A CN 110078490A CN 201910484308 A CN201910484308 A CN 201910484308A CN 110078490 A CN110078490 A CN 110078490A
Authority
CN
China
Prior art keywords
solution
citric acid
mgfe
composite ceramics
aqueous citric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910484308.0A
Other languages
English (en)
Inventor
余贵波
朱长明
王丽光
孔文婕
刘富池
吕凤珍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangxi Normal University
Original Assignee
Guangxi Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangxi Normal University filed Critical Guangxi Normal University
Priority to CN201910484308.0A priority Critical patent/CN110078490A/zh
Publication of CN110078490A publication Critical patent/CN110078490A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2683Other ferrites containing alkaline earth metals or lead
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种Bi2Fe4O9‑MgFe2O4复合陶瓷及其制备方法,所述复合陶瓷的化学组成表达为:(1‑x)Bi2Fe4O9‑xMgFe2O9,0.1≤x≤0.5,该复合陶瓷由以下方法制得:1)制得Bi2Fe4O9溶液;2)制得MgFe2O4溶液;3)制得黑色干凝胶;4)制得Bi2Fe4O9‑MgFe2O4复合陶瓷。这种复合陶瓷具备纯相结构,且磁性和介电常数易于调控。这种方法操作简单,周期短,成本低廉,环保无毒,无需还原气氛。

Description

一种Bi2Fe4O9- MgFe2O4复合陶瓷及其制备方法
技术领域
本发明涉及信息功能材料制备技术领域,具体是一种Bi2Fe4O9- MgFe2O4复合陶瓷及其制备方法。
背景技术
多铁性材料的多种不同铁性有序及其之间产生的耦合作用,使得多铁性材料作为当前量子功能材料研究领域中的首选。其中,电极化和磁化的多铁性磁电材料备受关注,因为铁电和铁磁两种铁性有序相共存及其两者间的磁电耦合效应能使得改变电场控制磁性或改变磁场控制电性成为可能。从多铁性磁电材料的组成上分类,有单相、复合磁电材料两类。对于单相磁电材料,在 BiFeO3、 PbFe1/2Nb1/2O3、 稀土锰氧化物EMnO3 以及 RMn2O5(R=Y,Tb, Ho,…) 等多种单相材料中虽然能观测到存在磁电效应,但因为单相材料的居里温度或奈尔温度往往比较低,室温条件下明显的磁电共存与强磁电耦合效应是难以实现的。实际上, W.F. Brown 等人1968 年就发现了单相材料磁电耦合系数的上限,也使得人们认识到强大的磁电耦合系数的材料必定为铁电性和铁磁性共存的材料。随着对多铁性材料研究的深入,铁电与铁磁材料复合的多铁性材料逐渐进入人们的视野当中。当今为止,已经能制备出室温条件下的磁电耦合系数的数量级为的3~5 倍的多铁性复合材料。近年来量子功能材料发展中,不同结构或不同物相以及不同功能的材料进行复合已经成为其特点之一。
铁酸铋(Bi2Fe4O9)是一种经典的反铁磁材料,它的奈尔转变温度(T N )约为260 K,作为一种重要的功能材料,它在光催化以及传感器方面都有着可观的潜在应用价值。上世纪60年代Bi2Fe4O9的磁性结构、磁学性质就被人们利用穆斯堡尔谱、中子衍射以及磁导率等技术研究了。反尖晶石立方结构的铁酸镁(MgFe2O4)是一种在室温条件下也具有软磁性的n型的半导体,常被应用于微波器件、存储器以及电池负极材料的研究当中。因此,Bi2Fe4O9与MgFe2O4的复合材料,可在信息功能材料领域具有较好的潜在应用价值。但至今,对Bi2Fe4O9与 MgFe2O4复合固溶体陶瓷的制备,国内和国外的文献中均没有记载。
发明内容
本发明的目的是针对现有技术的不足,而提供一种Bi2Fe4O9- MgFe2O4复合陶瓷及其制备方法。这种复合陶瓷具备纯相结构,且磁性和介电常数易于调控。这种方法操作简单,周期短,成本低廉,环保无毒,无需还原气氛。
实现本发明目的的技术方案是:
一种Bi2Fe4O9- MgFe2O4复合陶瓷,所述复合陶瓷的化学组成表达为:(1-x)Bi2Fe4O9-xMgFe2O9 ,0.1≤x≤0.5,该复合陶瓷由以下方法制得:
1)在室温下将0.045mol~0.081mol的柠檬酸倒入烧杯中,再加入20~50mL去离子水,得到透明的柠檬酸水溶液,然后将分析纯的Fe(NO3)3·9H2O:Bi(NO3)3·5H2O按2:1的化学计量比,在不断搅拌下加入到柠檬酸水溶液中溶解,得到透明的Bi2Fe4O9溶液溶液,其中Bi2Fe4O9溶液中金属离子总物质的量为0.03mol~0.054mol,柠檬酸与Bi和Fe两种金属离子之和的摩尔比为1.5:1;
2)在室温下将0.0045mol~0.0225mol的柠檬酸倒入烧杯中,再加入20~50mL去离子水,得到透明的柠檬酸水溶液,然后将分析纯的Fe(NO3)3·9H2O:MgCO3按2:1化学计量比,在不断搅拌下一次加入到柠檬酸水溶液中,得到透明的MgFe2O4溶液,其中MgFe2O4溶液中金属离子总物质的量为0.003mol~0.015mol,柠檬酸与Mg和Fe两种金属离子之和的摩尔比为1.5:1;
3)将步骤1)中的Bi2Fe4O9溶液与 步骤2)中的MgFe2O4溶液按1:1化学计量比混合,得到混合溶液,然后用氨水调节混合溶液的PH值到7.5-8,搅拌10~12小时,在90oC~100oC水浴中将混合溶液蒸干去除水分,然后在140oC的烘箱中进行干燥,直至混合溶液成黑色干凝胶;
4)将黑色干凝胶研磨,在空气中用400oC~450oC的温度热处理4~6小时,排除有机物得到前驱粉体,然后将前驱粉体研磨、压片烧结,烧结温度为850oC,烧结时间为2小时,得到Bi2Fe4O9- MgFe2O4复合陶瓷。
步骤1)和步骤2)中所述的柠檬酸为一水合柠檬酸。
这种复合陶瓷具备纯相结构,且磁性和介电常数易于调控。这种方法操作简单,周期短,成本低廉,环保无毒,无需还原气氛。
附图说明
图1为实施例中陶瓷的XRD图谱;
图2a为实施例中x=0.1时陶瓷的SEM表征图,其中,x为组分;
图2b为实施例中x=0.2时陶瓷的SEM表征图,其中,x为组分;
图2c为实施例中x=0.3时陶瓷的SEM表征图,其中,x为组分;
图2d为实施例中x=0.4时陶瓷的SEM表征图,其中,x为组分;
图2e为实施例中x=0.5时陶瓷的SEM表征图,其中,x为组分;
图3为实施例中陶瓷室温磁滞回线示意图;
图4为实施例中陶瓷的饱和磁化强度与剩余磁化强度示意图;
图5为实施例中陶瓷的介电常数与频率关系图;
图6为实施例中陶瓷的100 Hz介电常数示意图。
具体实施方式
下面结合附图和实施例对本发明内容作进一步的详细说明,但不是对本发明的限定。
实施例1:
一种Bi2Fe4O9- MgFe2O4复合陶瓷,所述复合陶瓷的化学组成表达为:(1-x)Bi2Fe4O9-xMgFe2O9 ,(x=0.1),该复合陶瓷由以下方法制得:
1)在室温下称取0.081mol的一水合柠檬酸倒入容积为100ml的烧杯中,再加入30mL去离子水,搅拌得到透明的柠檬酸水溶液,然后称取0.036mol Fe(NO3)3·9H2O和0.018mol Bi(NO3)3·5H2O,在不断搅拌下加入到柠檬酸水溶液中溶解,得到透明的Bi2Fe4O9溶液;
2)在室温下称取0.0045mol的一水合柠檬酸倒入容积为100ml的烧杯中,再加入30mL去离子水,搅拌得到透明的柠檬酸水溶液,然后称取0.002mol Fe(NO3)3·9H2O和0.001molMgCO3,在不断搅拌下加入到柠檬酸水溶液中,得到透明的MgFe2O4溶液;
3)将步骤1)中的Bi2Fe4O9溶液与 步骤2)中的MgFe2O4溶液按1:1化学计量比混合,得到混合溶液,然后用氨水调节混合溶液的PH值到7.5-8,搅拌12小时,在90oC水浴中将混合溶液蒸干去除水分,然后在140oC的烘箱中进行干燥,直至混合溶液成黑色干凝胶;
4)将黑色干凝胶研磨,在空气中用400oC的温度热处理5小时,排除有机物得到前驱粉体,然后将前驱粉体研磨、压片烧结,烧结温度为850oC,烧结时间为2小时,得到0.9Bi2Fe4O9-0.1 MgFe2O4复合陶瓷。
实施例2:
一种Bi2Fe4O9- MgFe2O4复合陶瓷,该复合陶瓷的化学组成表达为:(1-x)Bi2Fe4O9-xMgFe2O9 ,(x=0.2);该复合陶瓷由以下方法制得:
1)在室温下称取0.072mol的一水合柠檬酸倒入容积为100ml的烧杯中,再加入30mL去离子水,搅拌得到透明的柠檬酸水溶液,然后称取0.032mol Fe(NO3)3·9H2O和0.016mol Bi(NO3)3·5H2O,在不断搅拌下加入到柠檬酸水溶液中溶解,得到透明的Bi2Fe4O9溶液;
2)在室温下称取0.009mol的一水合柠檬酸倒入容积为100ml的烧杯中,再加入30mL去离子水,搅拌得到透明的柠檬酸水溶液,然后称取0.004molFe(NO3)3·9H2O和0.002molMgCO3,在不断搅拌下一次加入到柠檬酸水溶液中,得到透明的MgFe2O4溶液;
其余步骤同实施例1。
实施例3:
一种Bi2Fe4O9- MgFe2O4复合陶瓷,该复合陶瓷的化学组成表达为:(1-x)Bi2Fe4O9-xMgFe2O9 ,(x=0.3);该复合陶瓷由以下方法制得:
1)在室温下称取0.063mol的一水合柠檬酸倒入容积为100ml的烧杯中,再加入30mL去离子水,搅拌得到透明的柠檬酸水溶液,然后称取0.028mol Fe(NO3)3·9H2O和0.014mol Bi(NO3)3·5H2O,在不断搅拌下加入到柠檬酸水溶液中溶解,得到透明的Bi2Fe4O9溶液;
2)在室温下称取0.0135mol的一水合柠檬酸倒入容积为100ml的烧杯中,再加入30mL去离子水,搅拌得到透明的柠檬酸水溶液,然后称取0.006mol Fe(NO3)3·9H2O和0.003molMgCO3,在不断搅拌下一次加入到柠檬酸水溶液中,得到透明的MgFe2O4溶液;
其余步骤同实施例1。
实施例4:
一种Bi2Fe4O9- MgFe2O4复合陶瓷,该复合陶瓷的化学组成表达为:(1-x)Bi2Fe4O9-xMgFe2O9 ,(x=0.4);该复合陶瓷由以下方法制得:
1)在室温下称取0.054mol的一水合柠檬酸倒入容积为100ml的烧杯中,再加入30mL去离子水,搅拌得到透明的柠檬酸水溶液,然后称取0.024mol Fe(NO3)3·9H2O和0.012mol Bi(NO3)3·5H2O,在不断搅拌下加入到柠檬酸水溶液中溶解,得到透明的Bi2Fe4O9溶液;
2)在室温下称取0.018mol的一水合柠檬酸倒入容积为100ml的烧杯中,再加入30mL去离子水,搅拌得到透明的柠檬酸水溶液,然后称取0.008molFe(NO3)3·9H2O和0.004molMgCO3,在不断搅拌下一次加入到柠檬酸水溶液中,得到透明的MgFe2O4溶液;
其余步骤同实施例1。
实施例5:
一种Bi2Fe4O9- MgFe2O4复合陶瓷,该复合陶瓷的化学组成表达为:(1-x)Bi2Fe4O9-xMgFe2O9 ,(x=0.5);该复合陶瓷由以下方法制得:
1)在室温下称取0.045mol的一水合柠檬酸倒入容积为100ml的烧杯中,再加入30mL去离子水,搅拌得到透明的柠檬酸水溶液,然后称取0.02mol Fe(NO3)3·9H2O和0.01mol Bi(NO3)3·5H2O,在不断搅拌下加入到柠檬酸水溶液中溶解,得到透明的Bi2Fe4O9溶液;
2)在室温下称取0.0225mol的一水合柠檬酸倒入容积为100ml的烧杯中,再加入30mL去离子水,搅拌得到透明的柠檬酸水溶液,然后称取0.01mol Fe(NO3)3·9H2O和0.005molMgCO3,在不断搅拌下一次加入到柠檬酸水溶液中,得到透明的MgFe2O4溶液;
其余步骤同实施例1。
对实施例1-实施例5制得的复合陶瓷的微观结构、微观形貌、介电性能和磁性进行分析测量,其中微观结构采用X射线衍射仪(XRD)进行物相分析,微观形貌采用扫描电子显微镜(SEM)对其进行形貌分析,介电性能采用高温介电测量系统(PST-2000)测量,磁性采用综合物性测试系统(PPMS-9 T)测量。
如图1所示,给出了(1-x)Bi2Fe4O9-xMgFe2O4 (x=0.1,0.2,0.3,0.4,0.5)复合陶瓷的XRD图谱,在图谱中可以观测到Bi2Fe4O9与MgFe2O4两种相的共存,且不存在第三种相,另外随着MgFe2O4组分的增加,MgFe2O4的衍射峰逐渐增强。
如图2a-图2e所示,给出了(1-x)Bi2Fe4O9-xMgFe2O4 (x=0.1,0.2,0.3,0.4,0.5)复合陶瓷的SEM表征图,从图中可知随着MgFe2O4组分的增加,晶粒的平均尺寸逐渐减小。
如图3、图4所示,给出了(1-x) Bi2Fe4O9-xMgFe2O4 (x=0.1,0.2,0.3,0.4,0.5)复合陶瓷的磁性测量结果,可知在室温下(1-x) Bi2Fe4O9-x MgFe2O4表现出铁磁性,随着MgFe2O4组分的增加,矫顽力逐渐减小,剩余磁化强度与饱和磁化强度逐渐升高,且变化幅度较大。例如x=0.1时,矫顽力Hc≈220 Oe、饱和磁化强度Ms≈1emu/g、剩余磁化强度Mr≈1emu/g;x=0.5时,矫顽力Hc≈120 Oe、饱和磁化强度Ms≈6emu/g、剩余磁化强度Mr≈6emu/g。
如图5所示,给出了(1-x) Bi2Fe4O9-xMgFe2O4 (x=0.1,0.2,0.3,0.4,0.5)复合陶瓷介电常数与频率的关系,随着测试频率的增加,(1-x) Bi2Fe4O9-xMgFe2O4(x=0.1,0.2,0.3,0.4,0.5)复合陶瓷均表现出介电常数快速下降的特性。
如图6所示,为(1-x) Bi2Fe4O9-x MgFe2O4 (x=0.1,0.2,0.3,0.4,0.5)复合陶瓷在100Hz下的介电常数结果,从图中可以看出组分比例对实施例1-实施例5中制得的复合陶瓷的介电常数有重要影响,例如x=0.2时,复合陶瓷有较高的介电常数ε≈3000。

Claims (2)

1. 一种Bi2Fe4O9- MgFe2O4复合陶瓷,其特征在于,所述复合陶瓷的化学组成表达为:(1-x)Bi2Fe4O9-xMgFe2O9 ,0.1≤x≤0.5,该复合陶瓷由以下方法制得:
1)在室温下将0.045mol~0.081mol的柠檬酸倒入烧杯中,再加入20~50mL去离子水,得到透明的柠檬酸水溶液,然后将分析纯的Fe(NO3)3·9H2O: Bi(NO3)3·5H2O按2:1的化学计量比,在不断搅拌下加入到柠檬酸水溶液中溶解,得到透明的Bi2Fe4O9溶液,其中Bi2Fe4O9溶液中金属离子总物质的量为0.03mol~0.054mol,柠檬酸与Bi和Fe两种离子之和的摩尔比为1.5:1;
2)在室温下将0.0045mol~0.0225mol的柠檬酸倒入烧杯中,再加入20~50mL去离子水,得到透明的柠檬酸水溶液,然后将分析纯的Fe(NO3)3·9H2O:MgCO3按2:1化学计量比,在不断搅拌下一次加入到柠檬酸水溶液中,得到透明的MgFe2O4溶液,其中MgFe2O4溶液中金属离子总物质的量为0.003mol~0.015mol,柠檬酸与Mg和Fe两种离子之和的摩尔比为1.5:1;
3)将步骤1)中的Bi2Fe4O9溶液与 步骤2)中的MgFe2O4溶液按1:1化学计量比混合,得到混合溶液,然后用氨水调节混合溶液的PH值到7.5-8,搅拌10~12小时,在90oC~100oC水浴中将混合溶液蒸干去除水分,然后在140oC的烘箱中进行干燥,直至混合溶液成黑色干凝胶;
4)将黑色干凝胶研磨,在空气中用400oC~450oC的温度热处理4~6小时,排除有机物得到前驱粉体,然后将前驱粉体研磨、压片烧结,烧结温度为850oC,烧结时间为2小时,得到Bi2Fe4O9- MgFe2O4复合陶瓷。
2.根据权利要求1所述的复合陶瓷的制备方法,其特征在于,步骤1)和步骤2)中所述的柠檬酸为一水合柠檬酸。
CN201910484308.0A 2019-06-05 2019-06-05 一种Bi2Fe4O9- MgFe2O4复合陶瓷及其制备方法 Pending CN110078490A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910484308.0A CN110078490A (zh) 2019-06-05 2019-06-05 一种Bi2Fe4O9- MgFe2O4复合陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910484308.0A CN110078490A (zh) 2019-06-05 2019-06-05 一种Bi2Fe4O9- MgFe2O4复合陶瓷及其制备方法

Publications (1)

Publication Number Publication Date
CN110078490A true CN110078490A (zh) 2019-08-02

Family

ID=67423713

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910484308.0A Pending CN110078490A (zh) 2019-06-05 2019-06-05 一种Bi2Fe4O9- MgFe2O4复合陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN110078490A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102086119A (zh) * 2010-12-09 2011-06-08 华中科技大学 一种室温多铁性BiFeO3-SrTiO3固溶体陶瓷的制备方法
KR101122631B1 (ko) * 2010-09-17 2012-03-09 한국기계연구원 우수한 상온 다강성을 가지는 복합 페롭스카이트 계 세라믹스 및 필름, 및 이의 제조방법
CN104556997A (zh) * 2015-01-14 2015-04-29 陕西科技大学 一种NiFe2O4/Bi2Fe4O9两相磁性复合粉体及其制备方法
CN104591717A (zh) * 2015-01-14 2015-05-06 陕西科技大学 一种CoFe2O4/Bi2Fe4O9两相磁性复合粉体及其制备方法
CN107978754A (zh) * 2017-12-24 2018-05-01 江西理工大学 一种锂离子电池用铁酸盐-钛酸锂复合负极材料及其制备方法
CN109003821A (zh) * 2018-08-14 2018-12-14 东北大学 一种超高介电常数复合材料、其制备方法及应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101122631B1 (ko) * 2010-09-17 2012-03-09 한국기계연구원 우수한 상온 다강성을 가지는 복합 페롭스카이트 계 세라믹스 및 필름, 및 이의 제조방법
CN102086119A (zh) * 2010-12-09 2011-06-08 华中科技大学 一种室温多铁性BiFeO3-SrTiO3固溶体陶瓷的制备方法
CN104556997A (zh) * 2015-01-14 2015-04-29 陕西科技大学 一种NiFe2O4/Bi2Fe4O9两相磁性复合粉体及其制备方法
CN104591717A (zh) * 2015-01-14 2015-05-06 陕西科技大学 一种CoFe2O4/Bi2Fe4O9两相磁性复合粉体及其制备方法
CN107978754A (zh) * 2017-12-24 2018-05-01 江西理工大学 一种锂离子电池用铁酸盐-钛酸锂复合负极材料及其制备方法
CN109003821A (zh) * 2018-08-14 2018-12-14 东北大学 一种超高介电常数复合材料、其制备方法及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
夏德贵等: "《软磁铁氧体制造原理与技术》", 31 December 2010, 西安:陕西科学技术出版社 *

Similar Documents

Publication Publication Date Title
Zubair et al. Structural, morphological and magnetic properties of Eu-doped CoFe2O4 nano-ferrites
Yousaf et al. Preparations, optical, structural, conductive and magnetic evaluations of RE's (Pr, Y, Gd, Ho, Yb) doped spinel nanoferrites
Manikandan et al. Microwave combustion synthesis, structural, optical and magnetic properties of Zn1− xSrxFe2O4 nanoparticles
Kadam et al. Structural, morphological, electrical and magnetic properties of Dy doped Ni–Co substitutional spinel ferrite
Liu et al. Influences of La3+ substitution on the structure and magnetic properties of M-type strontium ferrites
Dong et al. Charge defects and highly enhanced multiferroic properties in Mn and Cu co-doped BiFeO3 thin films
Li et al. Electrical and magnetic properties of La1− xSrxMnO3 (0.1≤ x≤ 0.25) ceramics prepared by sol–gel technique
Chen et al. Enhanced multiferroic characteristics in Fe-doped Bi4Ti3O12 ceramics
Trukhanov et al. Microstructure evolution and magnetoresistance of the A-site ordered Ba-doped manganites
Gao et al. A comparative study of the dielectric, ferroelectric and anomalous magnetic properties of Mn0. 5Mg0. 5Fe2O4/Ba0. 8Sr0. 2Ti0. 9Zr0. 1O3 composite ceramics
Nguyen et al. Structural and magnetic properties of YFe _1-x Co _x O _3 (0.1\leqslantx\leqslant0.5) perovskite nanomaterials synthesized by co-precipitation method
Liu et al. Effect of Cu doping on the structural, magnetic and magnetocaloric properties of La0. 7Sr0. 25Na0. 05Mn1− xCuxO3 manganites
Mosivand et al. A novel synthesis method for manganese ferrite nanopowders: The effect of manganese salt as inorganic additive in electrosynthesis cell
Li et al. Structural, magnetic and electrical properties of CuZn ferrite nanopowders
Doi et al. Crystal structures and magnetic properties of the 6H-perovskites Ba3LnRu2O9 (Ln= Ce, Pr and Tb)
Kaswan et al. Crystal structure refinement, enhanced magnetic and dielectric properties of Na0. 5Bi0. 5TiO3 modified Bi0. 8Ba0. 2FeO3 ceramics
Chandel et al. Investigation of excess and deficiency of iron in BiFeO3
Sasaki et al. Magnetic and calorimetric studies of double perovskites Ba 2 Ln ReO 6 (Ln= Y, Nd, Sm–Lu)
Khan et al. Spinel M0. 5Zn0. 5Fe2O4 (M= Ni, Co, and Cu) ferrites for energy storage applications: Dielectric, magnetic and electrochemical properties
Agrawal et al. Mn doped multiferroic in Ga0. 97Nd0. 03FeO3electroceramics
Ghozza et al. Impact of gadolinium doping on structure, electrical and magnetic properties of Gd x Cd1− x MnO3 manganite nanoparticles
Choudhry et al. Synthesis, characterization and study of magnetic, electrical and dielectric properties of La1− xDyxCo1− yFeyO3 nanoparticles prepared by wet chemical route
CN110078490A (zh) 一种Bi2Fe4O9- MgFe2O4复合陶瓷及其制备方法
Hossain et al. Synthesis and characterization of structural, magnetic and electrical properties of Mn substituted Co-Zn ferrite
Li et al. Microstructure and magnetic properties of La1—xSrxFeO3 nanoparticles

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190802