CN110060305B - High-precision simplified linear array camera calibration method - Google Patents
High-precision simplified linear array camera calibration method Download PDFInfo
- Publication number
- CN110060305B CN110060305B CN201910294845.9A CN201910294845A CN110060305B CN 110060305 B CN110060305 B CN 110060305B CN 201910294845 A CN201910294845 A CN 201910294845A CN 110060305 B CN110060305 B CN 110060305B
- Authority
- CN
- China
- Prior art keywords
- scan camera
- matrix
- parameter matrix
- line scan
- parameters
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 30
- 239000011159 matrix material Substances 0.000 claims abstract description 65
- 238000003384 imaging method Methods 0.000 claims abstract description 39
- 238000004364 calculation method Methods 0.000 claims abstract description 4
- 238000009795 derivation Methods 0.000 claims description 7
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/80—Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
Landscapes
- Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Studio Devices (AREA)
- Image Processing (AREA)
Abstract
Description
技术领域technical field
本发明属于相机标定领域,具体说的是一种高精度简化式线阵相机标定方法。The invention belongs to the field of camera calibration, in particular to a high-precision simplified line array camera calibration method.
背景技术Background technique
摄像机的标定是确定空间摄像机标定是非常关键的环节,其标定结果的精度及算法的稳定性将直接影响摄像机工作产生结果的准确性。因此,提高摄像机标定精度是摄像机标定的重点。The calibration of the camera is a very critical link to determine the calibration of the space camera. The accuracy of the calibration results and the stability of the algorithm will directly affect the accuracy of the results produced by the camera work. Therefore, improving the camera calibration accuracy is the focus of camera calibration.
由于线阵相机每次成像只能成像一行,线阵成像模型不同于传统的面阵相机成像模型,导致适用于面阵相机的内外参数计算方法不适用于线阵相机。现有的线阵相机内外参数约束方程较复杂,因此,根据线阵相机的成像模型建立简单有效的约束方程,具有现实的研究价值和实际应用价值。Because the line scan camera can only image one line at a time, the line scan imaging model is different from the traditional area scan camera imaging model, so the calculation method of internal and external parameters suitable for the area scan camera is not suitable for the line scan camera. Existing line scan camera internal and external parameter constraint equations are relatively complex. Therefore, establishing a simple and effective constraint equation based on the imaging model of the line scan camera has practical research value and practical application value.
发明专利《单线阵相机内外参数标定方法》所用求取3个单应性矩阵H时,需要知道标定板中特征点的在世界坐标系中的空间坐标,目前常用的标定板为平面标定板,空间坐标中的(X,Y)容易确定,但在Z方向的坐标需要运用精密定位设备才能得到;或运用立体标定物,但此类标定制作复杂,也不容易达到精度要求。When the three homography matrices H are obtained in the invention patent "Single-Line Array Camera Internal and External Parameters Calibration Method", it is necessary to know the spatial coordinates of the feature points in the calibration plate in the world coordinate system. At present, the commonly used calibration plate is a plane calibration plate. The (X, Y) in the space coordinates are easy to determine, but the coordinates in the Z direction need to be obtained by using precision positioning equipment; or using a three-dimensional calibration object, but such calibration is complicated to make and it is not easy to meet the accuracy requirements.
本发明通过理论推导,摒弃对特征点Z方向的精度要求,运用平面标定板可达到同样的高精度标定效果,对标定物的需求低,标定过程方便。如何摒弃特征点Z方向的精度要求,不影响标定后的高精度,是目前所要解决的技术问题。Through theoretical derivation, the invention abandons the precision requirement for the Z direction of the feature point, and can achieve the same high-precision calibration effect by using a plane calibration plate, has low demand for calibration objects, and facilitates the calibration process. How to abandon the accuracy requirements of the feature point Z direction, without affecting the high accuracy after calibration, is a technical problem to be solved at present.
发明内容SUMMARY OF THE INVENTION
为解决上述技术问题,本发明提供一种高精度简化式线阵相机标定方法,对原有的标定方法进行简化,在不影响标定精度的同时,只利用容易确定的空间坐标完成线阵相机标定。In order to solve the above technical problems, the present invention provides a high-precision simplified line scan camera calibration method, which simplifies the original calibration method, and only uses easily determined spatial coordinates to complete the line scan camera calibration without affecting the calibration accuracy. .
为实现上述技术目的,所采用的技术方案是:一种高精度简化式线阵相机标定方法,包括以下步骤:In order to achieve the above technical purpose, the adopted technical solution is: a high-precision simplified line scan camera calibration method, comprising the following steps:
步骤1、根据面阵相机成像模型,推导出线阵相机成像模型,得到单应性矩阵H模型Step 1. According to the imaging model of the area scan camera, deduce the imaging model of the line scan camera, and obtain the homography matrix H model
步骤2、根据线阵相机成像模型,推导出线阵相机的内参数矩阵A和外参数矩阵[r1r2 t];Step 2. According to the imaging model of the line scan camera, derive the internal parameter matrix A and the external parameter matrix [r 1 r 2 t] of the line scan camera;
步骤3、根据外参数矩阵中旋转参数矩阵r1 Tr1=r2 Tr2=1和r1 Tr1=0,推导出内参数A中参数与单应性矩阵H中参数的联系 Step 3. According to the rotation parameter matrix r 1 T r 1 =r 2 T r 2 =1 and r 1 T r 1 =0 in the external parameter matrix, deduce the relationship between the parameters in the internal parameter A and the parameters in the homography matrix H
步骤4、计算A-TA-1的矩阵,并设B11、B12、B22替换A-TA-1矩阵中的参数,代入得到步骤5、选取2副以上不同角度或不同距离标定板目标点坐标(X,Y)到成像点坐标(u),计算得到2个以上的H矩阵,代入式,运用最小二乘法得到B11、B12、B22的值;Step 4. Calculate the matrix of A- T A -1 , and set B 11 , B 12 , and B 22 to replace the parameters in the A- T A -1 matrix, and substitute them into get Step 5. Select more than 2 pairs of different angles or different distances from the target point coordinates (X, Y) of the calibration plate to the imaging point coordinates (u), calculate and obtain more than 2 H matrices, and substitute them into formula, use the least squares method to obtain the values of B 11 , B 12 , and B 22 ;
步骤6、根据B11、B12、B22计算内参数矩阵A,再根据内参数矩阵A,任取一个步骤五得到的H矩阵,计算外参数矩阵[r1 r2 t]。Step 6: Calculate the internal parameter matrix A according to B 11 , B 12 , and B 22 , and then according to the internal parameter matrix A, take any H matrix obtained in step 5, and calculate the external parameter matrix [r 1 r 2 t].
本发明所述的步骤1中单应性矩阵H模型的构成方法为:The composition method of the homography matrix H model in step 1 of the present invention is:
步骤1.1、面阵相机成像模型 Step 1.1, area scan camera imaging model
s为任意的实数;s is any real number;
步骤1.2、线阵相机的每次成像一行,根据面阵相机成像模型,可得到Step 1.2. The line scan camera images one line at a time. According to the imaging model of the area scan camera, we can get
步骤1.3、对步骤1.2中的成像模型再逆推,可得Step 1.3. Reverse the imaging model in step 1.2 to get
步骤1.4、假设z=0,因此Step 1.4. Assume z=0, so
本发明所述的步骤2中内参数矩阵A和外参数矩阵[r1r2t]推导方法为:The derivation method of the internal parameter matrix A and the external parameter matrix [r 1 r 2 t] in step 2 of the present invention is:
步骤2.1、面阵相机的包括内外参数的成像模型Step 2.1. Imaging model of area scan camera including internal and external parameters
m=[u v 1]T,M=[x y z 1]T m=[uv 1] T , M=[xyz 1] T
步骤2.2、由于线阵相机的每次成像只能成像一行,因此根据面阵相机成像模型,假设z=0,可得到Step 2.2. Since each imaging of the line scan camera can only image one line, according to the imaging model of the area scan camera, assuming z=0, we can get
步骤2.3、假设z=0,因此Step 2.3. Assume z=0, so
本发明所述的步骤3中推导方法为:In step 3 of the present invention The derivation method is:
步骤3.1、由于[h1 h2 h4]=sA[r 1r2 t],可得Step 3.1. Since [h 1 h 2 h 4 ]=sA[r 1 r 2 t], we can get
h1=sAr1或r1=λA-1h1 h 1 =sAr 1 or r 1 =λA −1 h 1
h2=sAr2或r2=λA-1h2 h 2 =sAr 2 or r 2 =λA −1 h 2
h4=sAt或t=λA-1h4 h 4 =sAt or t=λA -1 h 4
步骤3.2、由于r1 Tr1=r2 Tr2=1和r1 Tr2=0,将r1,r2代入,可得Step 3.2. Since r 1 T r 1 =r 2 T r 2 =1 and r 1 T r 2 =0, substituting r 1 and r 2 into
本发明所述的步骤4中推导方法为:In step 4 of the present invention The derivation method is:
步骤4.1、计算A-TA-1 Step 4.1. Calculate A -T A -1
步骤4.2、设定B11、B12、B22三参数替换A-TA-1矩阵中的参数;Step 4.2, set the three parameters of B 11 , B 12 and B 22 to replace the parameters in the A- T A -1 matrix;
步骤4.3、将B代入得Step 4.3. Substitute B into have to
本发明所述的步骤6中的内参数矩阵A以及外参数矩阵[r1r2t]的计算方法如下:The calculation methods of the internal parameter matrix A and the external parameter matrix [r 1 r 2 t] in step 6 of the present invention are as follows:
步骤6.1设由得Step 6.1 set Depend on have to
cu=-B12/B11 c u = -B 12 /B 11
步骤6.2、将fu,cu代入A,得内参数矩阵A;Step 6.2. Substitute f u and c u into A to obtain the internal parameter matrix A;
步骤6.3、任取步骤5得到的H矩阵,将A、H代入λ=1/s=1/||A-1h1||=1/||A-1h2||,可得λ,进一步代入r1=λA-1h1,r2=λA-1h2,t=λA-1h4,可得外参数矩阵[r1 r2 t]。Step 6.3. Take the H matrix obtained in step 5 arbitrarily, and substitute A and H into λ=1/s=1/||A -1 h 1 ||=1/||A -1 h 2 ||, to obtain λ , and further substitute r 1 =λA -1 h 1 , r 2 =λA -1 h 2 , t=λA -1 h 4 , the external parameter matrix [r 1 r 2 t] can be obtained.
本发明的有益效果是:采用本发明推出的线阵相机成像模型旋转矩阵中的内在联系r1 Tr1=r2 Tr2=1和r1 Tr2=0,以及A-TA-1形成的对称矩阵,形成超限方程只要选取2副以上不同角度或不同距离标定板中目标点坐标(X,Y)到成像点坐标(u),就可得到2个以上的H矩阵,建立方程,求取参数B11,B12,B22,进而得到线阵相机的内外参数。本方法系统简单,未知参数求取少,对于线阵相机标定的应用具有重要意义和实用价值。The beneficial effects of the present invention are: adopting the intrinsic relationship r 1 T r 1 =r 2 T r 2 =1 and r 1 T r 2 =0 in the rotation matrix of the imaging model of the line scan camera deduced by the present invention, and A - T A A symmetric matrix formed by -1 forms a transfinite equation As long as two or more pairs of different angles or different distances are selected from the target point coordinates (X, Y) in the calibration plate to the imaging point coordinates (u), more than two H matrices can be obtained, the equations can be established, and the parameters B 11 and B 12 can be obtained. , B 22 , and then obtain the internal and external parameters of the line scan camera. The method is simple in system, less unknown parameters are obtained, and has important significance and practical value for the application of line scan camera calibration.
附图说明Description of drawings
图1是本发明方法流程示意图。Fig. 1 is the schematic flow chart of the method of the present invention.
具体实施方式Detailed ways
为了更好地理解本发明的技术方案,下面结合附图对本发明的实施方式进行详细的说明。In order to better understand the technical solutions of the present invention, the embodiments of the present invention are described in detail below with reference to the accompanying drawings.
如图1所示,本发明根据外参数矩阵中旋转参数矩阵r1 Tr1=r2 Tr2=1和r1 Tr2=0,推导出内参数中参数与单应性矩阵中参数的联系,建立约束方程,利用标定板目标点坐标(X,Y)到成像点坐标(u),求出多个目标点到成像点单应性矩阵,代入约束方程,进而计算出线阵相机的内外参数。As shown in Fig. 1, the present invention derives the parameters in the internal parameters and the homography matrix according to the rotation parameter matrix r 1 T r 1 =r 2 T r 2 =1 and r 1 T r 2 =0 in the external parameter matrix. The relationship between the parameters, establish the constraint equation, use the target point coordinates (X, Y) of the calibration board to the imaging point coordinates (u), obtain the homography matrix from multiple target points to the imaging point, substitute the constraint equation, and then calculate the line array camera internal and external parameters.
本发明的具体实施如下:The specific implementation of the present invention is as follows:
一种高精度简化式线阵相机标定方法,包括以下步骤:A high-precision simplified line scan camera calibration method, comprising the following steps:
步骤1、根据面阵相机成像模型,推导出线阵相机成像模型,得到单应性矩阵H模型 Step 1. According to the imaging model of the area scan camera, deduce the imaging model of the line scan camera, and obtain the homography matrix H model
步骤1.1、面阵相机成像模型 Step 1.1, area scan camera imaging model
s为任意的实数。s is an arbitrary real number.
步骤1.2、线阵相机的每次成像一行,根据面阵相机成像模型,可得到Step 1.2. The line scan camera images one line at a time. According to the imaging model of the area scan camera, we can get
步骤1.3、对步骤1.2中的成像模型再逆推,可得Step 1.3. Reverse the imaging model in step 1.2 to get
步骤1.4、假设z=0,因此Step 1.4. Assume z=0, so
步骤2、根据线阵相机成像模型,推导出线阵相机的内参数矩阵A和外参数矩阵[r1r2t];Step 2. According to the imaging model of the line scan camera, derive the internal parameter matrix A and the external parameter matrix [r 1 r 2 t] of the line scan camera;
步骤2.1、面阵相机的包括内外参数的成像模型Step 2.1. Imaging model of area scan camera including internal and external parameters
m=[u v 1]T,M=[x y z 1]T m=[uv 1] T , M=[xyz 1] T
步骤2.2、由于线阵相机的每次成像只能成像一行,因此根据面阵相机成像模型,假设z=0,可得到Step 2.2. Since each imaging of the line scan camera can only image one line, according to the imaging model of the area scan camera, assuming z=0, we can get
步骤2.3、假设z=0,因此Step 2.3. Assume z=0, so
步骤3、根据外参数矩阵中旋转参数矩阵r1 Tr1=r2 Tr2=1和r1 Tr20推导出内参数A中参数与单应性矩阵H中参数的联系 Step 3. According to the rotation parameter matrix r 1 T r 1 =r 2 T r 2 =1 and r 1 T r 2 0 in the external parameter matrix, deduce the relationship between the parameters in the internal parameter A and the parameters in the homography matrix H
步骤3.1、由于[h1 h2 h4]=sA[r1 r2 t],可得Step 3.1. Since [h 1 h 2 h 4 ]=sA[r 1 r 2 t], we can get
h1=sAr1或r1=λA-1h1 h 1 =sAr 1 or r 1 =λA −1 h 1
h2=sAr2或r2=λA-1h2 h 2 =sAr 2 or r 2 =λA −1 h 2
h4=sAt或t=λA-1h4 h 4 =sAt or t=λA -1 h 4
步骤3.2、由于r1 Tr1=r2 Tr2=1和r1 Tr2=0,将r1,r2代入,可得Step 3.2. Since r 1 T r 1 =r 2 T r 2 =1 and r 1 T r 2 =0, substituting r 1 and r 2 into
步骤4、计算A-TA-1的矩阵,并设B11,B12,B22替换A-TA-1矩阵中的参数,代入得到Step 4. Calculate the matrix of A- T A -1 , and set B 11 , B 12 , B 22 to replace the parameters in the A- T A -1 matrix, and substitute them into get
步骤4.1、计算A-TA-1 Step 4.1. Calculate A -T A -1
步骤4.2、设定B11、B12、B22三参数替换A-TA-1矩阵中的参数;Step 4.2, set the three parameters of B 11 , B 12 and B 22 to replace the parameters in the A- T A -1 matrix;
步骤4.3、将B代入得Step 4.3. Substitute B into have to
步骤5、选取2副以上不同角度或不同距离标定板目标点坐标(X,Y)到成像点坐标(u),计算得到2个以上的H矩阵,代入式,运用最小二乘法得到B11、B12、B22的值。Step 5. Select more than 2 pairs of different angles or different distances from the target point coordinates (X, Y) of the calibration plate to the imaging point coordinates (u), calculate and obtain more than 2 H matrices, and substitute them into Formula, use the least squares method to obtain the values of B 11 , B 12 , and B 22 .
步骤6根据B11,B12,B22计算内参数矩阵A,再内参数矩阵A,任取一得到的H矩阵,计算外参数矩阵[r1 r2 t];Step 6: Calculate the internal parameter matrix A according to B 11 , B 12 , and B 22 , then the internal parameter matrix A, take any one of the obtained H matrices, and calculate the external parameter matrix [r 1 r 2 t];
步骤6.1设得Step 6.1 set have to
cu=-B12/B11 c u = -B 12 /B 11
步骤6.2、将fu、cu代入A,得内参数矩阵A;Step 6.2. Substitute f u and c u into A to obtain the internal parameter matrix A;
步骤6.3、任取步骤5得到的H矩阵,将A、H代入λ=1/s=1/||A-1h1||=1/||A-1h2||,可得λ,进一步代入r1=λA-1h1,r2=λA-1h2,t=λA-1h4,可得外参数矩阵[r1 r2 t]。Step 6.3. Take the H matrix obtained in step 5 arbitrarily, and substitute A and H into λ=1/s=1/||A -1 h 1 ||=1/||A -1 h 2 ||, to obtain λ , and further substitute r 1 =λA -1 h 1 , r 2 =λA -1 h 2 , t=λA -1 h 4 , the external parameter matrix [r 1 r 2 t] can be obtained.
尽管实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,对本发明的技术方案进行修改或者等同替换,都不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。Although the embodiments describe the present invention in detail, those of ordinary skill in the art should understand that any modification or equivalent replacement of the technical solutions of the present invention will not depart from the spirit and scope of the technical solutions of the present invention, and should be included within the scope of the present invention. within the scope of the claims.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910294845.9A CN110060305B (en) | 2019-04-12 | 2019-04-12 | High-precision simplified linear array camera calibration method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910294845.9A CN110060305B (en) | 2019-04-12 | 2019-04-12 | High-precision simplified linear array camera calibration method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110060305A CN110060305A (en) | 2019-07-26 |
CN110060305B true CN110060305B (en) | 2022-09-30 |
Family
ID=67318873
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910294845.9A Active CN110060305B (en) | 2019-04-12 | 2019-04-12 | High-precision simplified linear array camera calibration method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110060305B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104123725A (en) * | 2014-07-14 | 2014-10-29 | 河南科技大学 | Homography matrix H computing method of single line array camera |
CN104182969A (en) * | 2014-08-08 | 2014-12-03 | 河南科技大学 | Internal and external parameter calibration method of single-scanline camera |
CN104958061A (en) * | 2015-07-28 | 2015-10-07 | 北京信息科技大学 | Fundus OCT imaging method utilizing three-dimensional imaging of binocular stereo vision and system thereof |
WO2018228013A1 (en) * | 2017-06-12 | 2018-12-20 | 北京航空航天大学 | Front coated plane mirror-based structured light parameter calibration device and method |
-
2019
- 2019-04-12 CN CN201910294845.9A patent/CN110060305B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104123725A (en) * | 2014-07-14 | 2014-10-29 | 河南科技大学 | Homography matrix H computing method of single line array camera |
CN104182969A (en) * | 2014-08-08 | 2014-12-03 | 河南科技大学 | Internal and external parameter calibration method of single-scanline camera |
CN104958061A (en) * | 2015-07-28 | 2015-10-07 | 北京信息科技大学 | Fundus OCT imaging method utilizing three-dimensional imaging of binocular stereo vision and system thereof |
WO2018228013A1 (en) * | 2017-06-12 | 2018-12-20 | 北京航空航天大学 | Front coated plane mirror-based structured light parameter calibration device and method |
Non-Patent Citations (2)
Title |
---|
二轴转台测角法用于线阵相机几何参数标定;周梓聪等;《中国图象图形学报》;20170916(第09期);全文 * |
线扫描相机标定及畸变矫正方法;朱瑶等;《航天返回与遥感》;20171215(第06期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN110060305A (en) | 2019-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103530880B (en) | Based on the camera marking method of projection Gaussian network pattern | |
CN105913439B (en) | A kind of large-field shooting machine scaling method based on laser tracker | |
CN107358631B (en) | A Binocular Vision Reconstruction Method Considering 3D Distortion | |
CN104851104B (en) | Using the flexible big view calibration method of target high speed camera close shot | |
CN106981083B (en) | The substep scaling method of Binocular Stereo Vision System camera parameters | |
CN107886547B (en) | Fisheye camera calibration method and system | |
CN103837869B (en) | Based on single line laser radar and the CCD camera scaling method of vector relations | |
CN102034238B (en) | Multi-camera system calibrating method based on optical imaging probe and visual graph structure | |
CN107367229B (en) | Free binocular stereo vision rotating shaft parameter calibration method | |
CN105139411B (en) | Big visual field camera calibration method based on four sets of conllinear constraint demarcation chis | |
CN102622747B (en) | Camera parameter optimization method for vision measurement | |
CN1971206A (en) | Calibration method for binocular vision sensor based on one-dimension target | |
CN104182982A (en) | Overall optimizing method of calibration parameter of binocular stereo vision camera | |
CN101231750A (en) | A Calibration Method for Binocular Stereo Measuring System | |
CN106092057B (en) | A kind of helicopter rotor blade dynamic trajectory measuring method based on four item stereo visions | |
CN106600647A (en) | Binocular visual multi-line projection structured light calibration method | |
CN111047649A (en) | A high-precision camera calibration method based on optimal polarization angle | |
CN101582165A (en) | Camera array calibration algorithm based on gray level image and spatial depth data | |
CN104697463B (en) | The blanking feature constraint scaling method and device of a kind of binocular vision sensor | |
CN104182969B (en) | Internal and external parameter calibration method of single-scanline camera | |
CN109272555B (en) | A method of obtaining and calibrating external parameters of RGB-D camera | |
CN106949851A (en) | A kind of line structured light vision sensor calibration method based on SVMs | |
CN103617649A (en) | Camera self-calibration technology-based river model topography measurement method | |
CN104048649B (en) | A kind of multi-view images and the rapid registering method of threedimensional model | |
CN106157322B (en) | A method of camera installation position calibration based on plane mirror |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20190726 Assignee: Luoyang Lingxiang computer technology development Co.,Ltd. Assignor: HENAN University OF SCIENCE AND TECHNOLOGY Contract record no.: X2023980038641 Denomination of invention: A high-precision simplified calibration method for linear array cameras Granted publication date: 20220930 License type: Common License Record date: 20230727 |