CN110060225B - 一种基于快速有限剪切波变换与稀疏表示的医学图像融合法 - Google Patents

一种基于快速有限剪切波变换与稀疏表示的医学图像融合法 Download PDF

Info

Publication number
CN110060225B
CN110060225B CN201910240921.8A CN201910240921A CN110060225B CN 110060225 B CN110060225 B CN 110060225B CN 201910240921 A CN201910240921 A CN 201910240921A CN 110060225 B CN110060225 B CN 110060225B
Authority
CN
China
Prior art keywords
source image
image
neural network
fusion
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910240921.8A
Other languages
English (en)
Other versions
CN110060225A (zh
Inventor
谈玲
于欣
张健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Information Science and Technology
Original Assignee
Nanjing University of Information Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Information Science and Technology filed Critical Nanjing University of Information Science and Technology
Priority to CN201910240921.8A priority Critical patent/CN110060225B/zh
Publication of CN110060225A publication Critical patent/CN110060225A/zh
Application granted granted Critical
Publication of CN110060225B publication Critical patent/CN110060225B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/50Image enhancement or restoration using two or more images, e.g. averaging or subtraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20172Image enhancement details
    • G06T2207/20192Edge enhancement; Edge preservation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20212Image combination
    • G06T2207/20221Image fusion; Image merging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Image Processing (AREA)

Abstract

本发明公开了一种基于快速有限剪切波变换与稀疏表示的医学图像融合法,包括如下方法:S1:通过FFST将源图像A和源图像B进行分解,获取所述源图像A和源图像B的低频系数和高频系数;S2:通过稀疏表示融合法将所述源图像A和源图像B的低频系数进行融合,确定融合低频系数;S3:根据PCNN融合法将所述源图像A和源图像B的高频系数进行融合,获取融合高频系数;S4:将所述融合低频系数和融合高频系数通过FFST逆变换进行重构,获取融合图像。本发明可以使融合图像在边缘清晰度、变化剧烈度和对比度方面均得到较好的融合性能,从而融合图像的细节更加清晰,边缘更加平滑,进而具有良好的主观视觉效果。

Description

一种基于快速有限剪切波变换与稀疏表示的医学图像融合法
技术领域
本发明涉及数字图像处理技术领域,尤其涉及一种基于快速有限剪切波变换与稀疏表示的医学图像融合法。
背景技术
随着各种成像设备的发展,不同类型的传感器从同一个场景的图像中获取的信息不同。CT图像对骨骼成像非常清楚,但是对软组织的对比度很低。MRI图像可以很好的显示软组织以及有关脉管。PET图像能够呈现人体细胞的代谢活动。在医学上,需要将不同模态的图像进行适当的融合,使源图像进行信息互补,从而得到信息更丰富的图像。其中临床诊断对医学图像的视觉效果要求更高。
近年来,基于多尺度几何分析的图像融合方法由于其具有的多分辨率特点,被广泛应用于图像处理领域。小波变换是最典型的多尺度分析工具,但是小波变换不能较好地表示图像的线奇异性,容易产生伪吉布斯现象。为了解决这个问题,曲波变换(curvelettransform)、轮廓波变换(contourlet transform)、剪切波变换(shearlet transform)等多尺度几何分析的方法先后被提出,但是各自仍存在有不足。
发明内容
发明目的:针对现有医学图像融合中存在的源图像细节信息保留不够充分的问题,本发明提出一种基于快速有限剪切波变换与稀疏表示的医学图像融合法。
技术方案:为实现本发明的目的,本发明所采用的技术方案是:
一种基于快速有限剪切波变换与稀疏表示的医学图像融合法,所述医学图像融合法包括如下方法:
S1:通过FFST将源图像A和源图像B进行分解,获取所述源图像A和源图像B的低频系数和高频系数;
S2:通过稀疏表示融合法将所述源图像A和源图像B的低频系数进行融合,确定融合低频系数;
S3:根据PCNN融合法将所述源图像A和源图像B的高频系数进行融合,获取融合高频系数;
S4:将所述融合低频系数和融合高频系数通过FFST逆变换进行重构,获取融合图像。
进一步地讲,所述步骤S2确定融合低频系数,具体如下:
S2.1:所述源图像A和源图像B的低频系数通过K-SVD算法,确定过完备字典矩阵;
S2.2:根据OMP优化算法获取融合图像的稀疏系数矩阵;
S2.3:根据所述过完备字典矩阵和融合图像的稀疏系数矩阵,确定融合样本训练矩阵,具体为:
VF=DαF
其中:VF为融合样本训练矩阵,D为过完备字典矩阵,αF为融合图像的稀疏系数矩阵;
S2.4:通过融合样本训练矩阵确定所述融合低频系数。
进一步地讲,所述步骤S2.1确定过完备字典矩阵,具体如下:
S2.1.1:通过滑动窗口对所述源图像A和源图像B的低频系数进行分块处理,获取源图像A和源图像B的低频系数的图像子块;
S2.1.2:根据所述源图像A和源图像B的低频系数的图像子块,获取源图像A和源图像B的低频系数的样本训练矩阵;
S2.1.3:通过K-SVD算法将所述源图像A和源图像B的低频系数的样本训练矩阵进行迭代运算,确定过完备字典矩阵。
进一步地讲,所述步骤S2.2根据OMP优化算法获取融合图像的稀疏系数矩阵,具体如下:
S2.2.1:通过OMP优化算法估计源图像A和源图像B的低频系数的样本训练矩阵的稀疏系数,获取源图像A和源图像B的低频系数的稀疏系数矩阵;
S2.2.2:根据所述源图像A和源图像B的低频系数的稀疏系数矩阵,获取融合图像的稀疏系数矩阵的列向量,具体为:
Figure BDA0002009618900000021
其中:
Figure BDA0002009618900000022
为融合图像的稀疏系数矩阵的列向量,/>
Figure BDA0002009618900000023
为源图像A的低频系数的稀疏系数矩阵的列向量,/>
Figure BDA0002009618900000024
为源图像B的低频系数的稀疏系数矩阵的列向量,||αA||1为源图像A的低频系数的稀疏系数矩阵中列向量各个元素绝对值之和,||αB||1为源图像B的低频系数的稀疏系数矩阵中列向量各个元素绝对值之和;
S2.2.3:根据所述融合图像的稀疏系数矩阵的列向量,确定所述融合图像的稀疏系数矩阵。
进一步地讲,所述步骤S3获取融合高频系数,具体如下:
S3.1:设置PCNN神经网络;
S3.2:累计PCNN神经网络迭代运行的输出,获取源图像A和源图像B的高频系数对应的新点火映射图,具体为:
Figure BDA0002009618900000031
其中:
Figure BDA0002009618900000032
OA为源图像A的高频系数对应的新点火映射图,OB为源图像B的高频系数对应的新点火映射图,OAE为源图像A的高频系数的拉普斯能量作为PCNN神经网络的链接强度值时的输出,OAS为源图像A的高频系数的拉普斯能量作为PCNN神经网络的链接强度值时的输出,OBE为源图像B的高频系数的拉普斯能量作为PCNN神经网络的链接强度值时的输出,OBS为源图像B的高频系数的拉普斯能量作为PCNN神经网络的链接强度值时的输出;
S3.3:根据所述源图像A和源图像B的高频系数对应的新点火映射图,获取融合高频系数,具体为:
Figure BDA0002009618900000033
其中:HF(i,j)为融合高频系数,HA(i,j)为源图像A的高频系数,HB(i,j)为源图像B的高频系数,OA(i.j)为源图像A的高频系数对应的新点火映射图,OB(i.j)为源图像B的高频系数对应的新点火映射图。
进一步地讲,所述步骤S3.1设置PCNN神经网络,具体如下:
S3.1.1:将PCNN神经网络模型初始化;
S3.1.2:根据PCNN神经网络模型的链接输入、内部状态、变阈值输入和外部输入,设置所述PCNN神经网络,具体为:
Figure BDA0002009618900000041
其中:Fij[n]为PCNN神经网络的反馈输入,Iij为PCNN神经网络的刺激信号,Lij[n]和Lij[n-1]为PCNN神经网络的链接输入,αL为PCNN神经网络的定值,VL为PCNN神经网络的链接输入的放大系数,Wijkl为PCNN神经网络的神经元之间的连接权系数,Yij[n]和Yij[n-1]为PCNN神经网络的外部输入,Uij[n]为PCNN神经网络的内部状态,β为PCNN神经网络的链接强度,θij[n]和θij[n-1]为PCNN神经网络的变阈值输入,αθ为PCNN神经网络的变阈值衰减时间常数,Vθ为PCNN神经网络的变阈值的放大系数,k为源图像的分解尺度,l为源图像的分解方向数。
进一步地讲,所述步骤S3.2累计PCNN神经网络迭代运行的输出,具体如下:
S3.2.1:获取源图像A和源图像B的高频系数的拉普斯能量和标准差,具体为:
Figure BDA0002009618900000042
其中:SD为源图像A和源图像B的高频系数的标准差,EOL为源图像A和源图像B的高频系数的拉普斯能量,f(i,j)为像素值,mk为像素均值,W为滑动窗口,n为滑动窗口的长或宽,fii为在活动窗口内对i进行求导的结果,fjj为在活动窗口内对j进行求导的结果,(i,j)为源图像中像素点的位置;
S3.2.2:将所述源图像A和源图像B的高频系数的拉普斯能量和标准差分别作为PCNN神经网络的链接强度值,获取所述PCNN神经网络迭代运行的输出。
有益效果:与现有技术相比,本发明的技术方案具有以下有益技术效果:
(1)本发明的医学图像融合法可以有效的提取出图像中的特征信息,同时还可以将图像中不同的特征信息融合在一起,具有优良的细节表现特征,从而提高了融合结果的综合性能;
(2)本发明的医学图像融合法得到的融合图像能够有效地表达出图像的边缘信息,使得融合图像在边缘清晰度、变化剧烈度和对比度方面均得到了较好的融合性能,从而融合图像的细节更加清晰,边缘更加平滑,进而具有良好的主观视觉效果。
附图说明
图1是本发明的整体流程示意图;
图2是本发明的低频系数融合过程的流程示意图;
图3是本发明的高频系数融合过程的流程示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。其中,所描述的实施例是本发明一部分实施例,而不是全部的实施例。因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。
实施例1
本实施例提供了一种基于快速有限剪切波变换与稀疏表示的医学图像融合法,参考图1,具体包括如下步骤:
步骤S1:通过FFST将源图像进行分解,其中源图像包括源图像A和源图像B,在本实施例中,源图像A和源图像B的大小均为:M×N,其中:M为源图像A和源图像B的长,N为源图像A和源图像B的宽。
更进一步地讲,源图像A分解得到的低频系数LA和高频系数HA如下:
Figure BDA0002009618900000051
其中:LA为源图像A的低频系数,k0为源图像A的分解层数,HA为源图像A的高频系数,k为源图像A的分解尺度,l为源图像A的分解方向数。
源图像B分解得到的低频系数LB和高频系数HB如下:
Figure BDA0002009618900000052
其中:LB为源图像B的低频系数,k0为源图像B的分解层数,HB为源图像B的高频系数,k为源图像B的分解尺度,l为源图像B的分解方向数。
具体地讲,源图像A的分解层数k0和源图像B的分解层数k0均为常数,且大小均为1。同时源图像A的分解尺度k和源图像B的分解尺度k均不为常数,且大小均不小于0。
步骤S2:通过稀疏表示融合法将源图像A的低频系数LA和源图像B的低频系数LB进行融合,确定低频系数LA和LB的融合系数,具体如下:
步骤S2.1:源图像A的低频系数LA和源图像B的低频系数LB通过K-SVD算法获取过完备字典矩阵,具体如下:
步骤S2.1.1:通过滑动窗口对源图像A的低频系数LA和源图像B的低频系数LB分别进行分块处理,其中滑动窗口的步长为S个像素,大小为n×n,获取得到(N+n-1)×(M+n-1)个图像子块,即源图像A的低频系数LA和源图像B的低频系数LB均被分成(N+n-1)×(M+n-1)个图像子块。同时滑动窗口在选取的过程中不宜选取过大,这是由于窗口过大会导致样本过少,进而会增加计算的复杂度,降低准确率。在本实施例中,具体地讲,滑动窗口的步长为S=4,大小为8×8。即图像子块数目为(N+7)×(M+7)。
步骤S2.1.2:将步骤S2.1.1中源图像A的低频系数LA的图像子块转换成列向量,即将源图像A的低频系数LA的图像子块从左到右从上到下依次重新进行排序,组成列向量,获取得到样本训练矩阵VA
同样地,源图像B的低频系数LB的图像子块也需转换成列向量,即将源图像B的低频系数LB的图像子块从左到右从上到下依次重新进行排序,组成列向量,获取得到样本训练矩阵VB
步骤S2.1.3:通过K-SVD算法对样本训练矩阵整体进行迭代计算,获取得到低频系数整体的过完备字典矩阵D。其中样本训练矩阵整体指代的是样本训练矩阵VA和样本训练矩阵VB两者合在一起后的样本训练矩阵,即样本训练矩阵VB设置在样本训练矩阵VA的后面,行数不变,按列向量直接接在后面。低频系数整体指代的是源图像A的低频系数LA和源图像B的低频系数LB两者合在一起后的低频系数。
步骤S2.2:通过OMP优化算法获取融合图像的稀疏系数矩阵αF,具体如下:
步骤S2.2.1:通过OMP优化算法估计源图像A的低频系数LA和源图像B的低频系数LB的稀疏系数,同时通过稀疏系数获取得到源图像A的稀疏系数矩阵αA和源图像B的稀疏系数矩阵αB
在本实施例中,具体地讲,从步骤S2.1.3中的过完备字典矩阵D中,选择一个与样本训练矩阵VA的列向量和样本训练矩阵VB的列向量最匹配的列向量,构建一个稀疏逼近,并获取样本训练矩阵VA的列向量和其最匹配的列向量之间的差值,即源图像A的低频系数LA的信号残差,同时还获取样本训练矩阵VB的列向量和其最匹配的列向量之间的差值,即源图像B的低频系数LB的信号残差。之后从过完备字典矩阵D中选择与信号残差最匹配的列向量,并进行反复迭代。
更进一步地,源图像A的稀疏系数矩阵αA为从过完备字典矩阵D中选择与源图像A的低频系数LA的信号残差最匹配的列向量进行线性和之后,加上源图像A的低频系数LA的信号残差。
源图像B的稀疏系数矩阵αB为从过完备字典矩阵D中选择与源图像B的低频系数LB的信号残差最匹配的列向量进行线性和之后,加上源图像B的低频系数LB的信号残差。
步骤S2.2.2:根据源图像A的稀疏系数矩阵αA和源图像B的稀疏系数矩阵αB,获取融合图像的稀疏系数矩阵αF的列向量,具体为:
Figure BDA0002009618900000071
其中:
Figure BDA0002009618900000072
为融合图像的稀疏系数矩阵的列向量,/>
Figure BDA0002009618900000073
为源图像A的低频系数的稀疏系数矩阵的列向量,/>
Figure BDA0002009618900000074
为源图像B的低频系数的稀疏系数矩阵的列向量,||αA||1为源图像A的低频系数的稀疏系数矩阵中列向量各个元素绝对值之和,||αB||1为源图像B的低频系数的稀疏系数矩阵中列向量各个元素绝对值之和。
步骤S2.2.3:根据融合图像的稀疏系数矩阵αF的列向量,确定融合图像的稀疏系数矩阵αF
步骤S2.3:将步骤S2.1.3中的低频系数整体的过完备字典矩阵D和步骤S2.2.3中的融合稀疏系数矩阵αF进行相乘,得到融合样本训练矩阵VF,具体为:
VF=DαF
其中:D为过完备字典矩阵,αF为稀疏系数矩阵,VF为融合样本训练矩阵。
步骤S2.4:将融合样本训练矩阵VF的列向量转化为数据子块,再将数据子块进行重构,进而获取低频系数的融合系数,即融合低频系数。
步骤S3:根据PCNN融合法将源图像A的高频系数HA和源图像B的高频系数HB进行融合,获取融合高频系数,具体如下:
步骤S3.1:设置PCNN神经网络,具体如下:
步骤S3.1.1:将PCNN神经网络模型初始化,也就是说,PCNN神经网络模型的链接输入Lij、内部状态Uij和变阈值输入θij的大小均为0,即
Lij(0)=Uij(0)=θij(0)=0
其中:Lij(0)为PCNN神经网络模型的链接输入,Uij(0)为PCNN神经网络模型的内部状态,θij(0)为PCNN神经网络模型的变阈值输入。
此时PCNN神经网络模型中的神经元处于熄火状态,即PCNN神经网络模型的外部输入:Yij(0)=0,其输出结果为0,即产生的脉冲数:Oij(0)=0。
步骤S3.1.2:根据PCNN神经网络模型的链接输入、内部状态、变阈值输入和外部输入,设置PCNN神经网络,具体为:
Figure BDA0002009618900000081
其中:Fij[n]为PCNN神经网络的反馈输入,Iij为PCNN神经网络的刺激信号,Lij[n]和Lij[n-1]为PCNN神经网络的链接输入,αL为PCNN神经网络的定值,VL为PCNN神经网络的链接输入的放大系数,Wijkl为PCNN神经网络的神经元之间的连接权系数,Yij[n]和Yij[n-1]为PCNN神经网络的外部输入,Uij[n]为PCNN神经网络的内部状态,β为PCNN神经网络的链接强度,θij[n]和θij[n-1]为PCNN神经网络的变阈值输入,αθ为PCNN神经网络的变阈值衰减时间常数,Vθ为PCNN神经网络的变阈值的放大系数,k为源图像的分解尺度,l为源图像的分解方向数。
在本实施例中,具体地讲,PCNN神经网络的定值:αL=1。
PCNN神经网络的变阈值衰减时间常数:αθ=0.2。
PCNN神经网络的链接输入的放大系数:VL=1。
PCNN神经网络的变阈值的放大系数:Vθ=20。
PCNN神经网络的神经元之间的连接权系数:
Figure BDA0002009618900000091
步骤S3.2:累计PCNN神经网络迭代运行的输出,获取源图像A和源图像B的高频系数对应的新点火映射图,具体为:
Figure BDA0002009618900000092
其中:
Figure BDA0002009618900000093
OA为源图像A的高频系数对应的新点火映射图,OB为源图像B的高频系数对应的新点火映射图,OAE为源图像A的高频系数的拉普斯能量作为PCNN神经网络的链接强度值时的输出,OAS为源图像A的高频系数的拉普斯能量作为PCNN神经网络的链接强度值时的输出,OBE为源图像B的高频系数的拉普斯能量作为PCNN神经网络的链接强度值时的输出,OBS为源图像B的高频系数的拉普斯能量作为PCNN神经网络的链接强度值时的输出。
在本实施例中,累计PCNN神经网络迭代运行的输出,具体过程如下:
步骤S3.2.1:获取源图像A的高频系数HA和源图像B的高频系数HB的拉普斯能量EOL和标准差SD,具体为:
Figure BDA0002009618900000094
其中:SD为源图像A和源图像B的高频系数的标准差,EOL为源图像A和源图像B的高频系数的拉普斯能量,f(i,j)为像素值,mk为像素均值,W为滑动窗口,n为滑动窗口的长或宽,fii为在活动窗口内对i进行求导的结果,fjj为在活动窗口内对j进行求导的结果,(i,j)为源图像中像素点的位置。
步骤S3.2.2:将源图像A的高频系数HA和源图像B的高频系数HB的拉普斯能量EOL和标准差SD分别作为PCNN神经网络的链接强度值,获取PCNN神经网络迭代运行的输出,即源图像A的高频系数HA的拉普斯能量EOL作为PCNN神经网络的链接强度值时的输出OAE,源图像A的高频系数HA的拉普斯能量SD作为PCNN神经网络的链接强度值时的输出OAS,源图像B的高频系数HB的拉普斯能量EOL作为PCNN神经网络的链接强度值时的输出OBE,源图像B的高频系数HB的拉普斯能量SD作为PCNN神经网络的链接强度值时的输出OBS
步骤S3.3:根据PCNN神经网络迭代运行的输出,获取源图像A的高频系数HA对应的新点火映射图OA和源图像B的高频系数HB对应的新点火映射图OB,获取融合高频系数HF(i,j),具体为:
Figure BDA0002009618900000101
其中:HF(i,j)为融合高频系数,HA(i,j)为源图像A的高频系数,HB(i,j)为源图像B的高频系数,OA(i.j)为源图像A的高频系数对应的新点火映射图,OB(i.j)为源图像B的高频系数对应的新点火映射图。
步骤S4:将步骤S2.4获取的融合低频系数和步骤S3.3获取的融合高频系数通过FFST逆变换进行重构,获取最终的融合图像。
以上结合附图对本发明的实施方式做出了详细说明,但本发明不局限于所描述的实施方式。对于本领域技术人员而言,在不脱离本发明的原理和精神的情况下,对这些实施方式进行各种变化、修改、替换和变型仍落入本发明的保护范围内。

Claims (1)

1.一种基于快速有限剪切波变换与稀疏表示的医学图像融合法,其特征在于,所述医学图像融合法包括如下方法:
S1:通过FFST将源图像A和源图像B进行分解,获取所述源图像A和源图像B的低频系数和高频系数;
S2:通过稀疏表示融合法将所述源图像A和源图像B的低频系数进行融合,确定融合低频系数;
S2.1:所述源图像A和源图像B的低频系数通过K-SVD算法,确定过完备字典矩阵,具体如下:
S2.1.1:通过滑动窗口对所述源图像A和源图像B的低频系数进行分块处理,获取源图像A和源图像B的低频系数的图像子块;
S2.1.2:根据所述源图像A和源图像B的低频系数的图像子块,获取源图像A和源图像B的低频系数的样本训练矩阵;
S2.1.3:通过K-SVD算法将所述源图像A和源图像B的低频系数的样本训练矩阵进行迭代运算,确定过完备字典矩阵;
S2.2:根据OMP优化算法获取融合图像的稀疏系数矩阵,具体如下:
S2.2.1:通过OMP优化算法估计源图像A和源图像B的低频系数的样本训练矩阵的稀疏系数,获取源图像A和源图像B的低频系数的稀疏系数矩阵;
S2.2.2:根据所述源图像A和源图像B的低频系数的稀疏系数矩阵,获取融合图像的稀疏系数矩阵的列向量,具体为:
Figure FDA0004267031580000011
其中:
Figure FDA0004267031580000012
为融合图像的稀疏系数矩阵的列向量,/>
Figure FDA0004267031580000013
为源图像A的低频系数的稀疏系数矩阵的列向量,/>
Figure FDA0004267031580000014
为源图像B的低频系数的稀疏系数矩阵的列向量,||αA||1为源图像A的低频系数的稀疏系数矩阵中列向量各个元素绝对值之和,||αB||1为源图像B的低频系数的稀疏系数矩阵中列向量各个元素绝对值之和;
S2.2.3:根据所述融合图像的稀疏系数矩阵的列向量,确定所述融合图像的稀疏系数矩阵;
S2.3:根据所述过完备字典矩阵和融合图像的稀疏系数矩阵,确定融合样本训练矩阵,具体为:
VF=DαF
其中:VF为融合样本训练矩阵,D为过完备字典矩阵,αF为融合图像的稀疏系数矩阵;
S2.4:通过融合样本训练矩阵确定所述融合低频系数;
S3:根据PCNN融合法将所述源图像A和源图像B的高频系数进行融合,获取融合高频系数,具体如下:
S3.1:设置PCNN神经网络,具体如下:
S3.1.1:将PCNN神经网络模型初始化;
S3.1.2:根据PCNN神经网络模型的链接输入、内部状态、变阈值输入和外部输入,设置所述PCNN神经网络,具体为:
Figure FDA0004267031580000021
其中:Fij[n]为PCNN神经网络的反馈输入,Iij为PCNN神经网络的刺激信号,Lij[n]和Lij[n-1]为PCNN神经网络的链接输入,αL为PCNN神经网络的定值,VL为PCNN神经网络的链接输入的放大系数,Wijkl为PCNN神经网络的神经元之间的连接权系数,Yij[n]和Yij[n-1]为PCNN神经网络的外部输入,Uij[n]为PCNN神经网络的内部状态,β为PCNN神经网络的链接强度,θij[n]和θij[n-1]为PCNN神经网络的变阈值输入,αθ为PCNN神经网络的变阈值衰减时间常数,Vθ为PCNN神经网络的变阈值的放大系数,k为源图像的分解尺度,l为源图像的分解方向数;
S3.2:累计PCNN神经网络迭代运行的输出,获取源图像A和源图像B的高频系数对应的新点火映射图,具体为:
Figure FDA0004267031580000022
其中:
Figure FDA0004267031580000031
OA为源图像A的高频系数对应的新点火映射图,OB为源图像B的高频系数对应的新点火映射图,OAE为源图像A的高频系数的拉普斯能量作为PCNN神经网络的链接强度值时的输出,OAS为源图像A的高频系数的拉普斯能量作为PCNN神经网络的链接强度值时的输出,OBE为源图像B的高频系数的拉普斯能量作为PCNN神经网络的链接强度值时的输出,OBS为源图像B的高频系数的拉普斯能量作为PCNN神经网络的链接强度值时的输出;
其中,累计PCNN神经网络迭代运行的输出,具体如下:
获取源图像A和源图像B的高频系数的拉普斯能量和标准差,具体为:
Figure FDA0004267031580000032
其中:SD为源图像A和源图像B的高频系数的标准差,EOL为源图像A和源图像B的高频系数的拉普斯能量,f(x,y)为像素值,mk为像素均值,W为滑动窗口,n为滑动窗口的长或宽,fxx为在活动窗口内对x进行求导的结果,fyy为在活动窗口内对y进行求导的结果,(x,y)为源图像中像素点的位置;
将所述源图像A和源图像B的高频系数的拉普斯能量和标准差分别作为PCNN神经网络的链接强度值,获取所述PCNN神经网络迭代运行的输出;
S3.3:根据所述源图像A和源图像B的高频系数对应的新点火映射图,获取融合高频系数,具体为:
Figure FDA0004267031580000033
其中:HF(x,y)为融合高频系数,HA(x,y)为源图像A的高频系数,HB(x,y)为源图像B的高频系数,OA(x,y)为源图像A的高频系数对应的新点火映射图,OB(x,y)为源图像B的高频系数对应的新点火映射图;
S4:将所述融合低频系数和融合高频系数通过FFST逆变换进行重构,获取融合图像。
CN201910240921.8A 2019-03-28 2019-03-28 一种基于快速有限剪切波变换与稀疏表示的医学图像融合法 Active CN110060225B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910240921.8A CN110060225B (zh) 2019-03-28 2019-03-28 一种基于快速有限剪切波变换与稀疏表示的医学图像融合法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910240921.8A CN110060225B (zh) 2019-03-28 2019-03-28 一种基于快速有限剪切波变换与稀疏表示的医学图像融合法

Publications (2)

Publication Number Publication Date
CN110060225A CN110060225A (zh) 2019-07-26
CN110060225B true CN110060225B (zh) 2023-07-14

Family

ID=67317483

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910240921.8A Active CN110060225B (zh) 2019-03-28 2019-03-28 一种基于快速有限剪切波变换与稀疏表示的医学图像融合法

Country Status (1)

Country Link
CN (1) CN110060225B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110717910B (zh) * 2019-10-16 2020-09-08 太原华瑞星辰医药科技有限公司 基于卷积神经网络的ct图像目标检测方法及ct扫描仪
CN110874581B (zh) * 2019-11-18 2023-08-01 长春理工大学 细胞工厂生物反应器图像融合方法
CN111429392A (zh) * 2020-04-13 2020-07-17 四川警察学院 基于多尺度变换和卷积稀疏表示的多聚焦图像融合方法
CN117408905B (zh) * 2023-12-08 2024-02-13 四川省肿瘤医院 基于多模态特征提取的医学图像融合方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Medical Image Fusion Based on Fast Finite Shearlet Transform and Sparse Representation;Ling Tan等;《https://www.hindawi.com/journals/cmmm/2019/3503267/》;20190303;第1-15页 *

Also Published As

Publication number Publication date
CN110060225A (zh) 2019-07-26

Similar Documents

Publication Publication Date Title
CN110060225B (zh) 一种基于快速有限剪切波变换与稀疏表示的医学图像融合法
Liang et al. MCFNet: Multi-layer concatenation fusion network for medical images fusion
Guo et al. An efficient SVD-based method for image denoising
Chang et al. Two-stage convolutional neural network for medical noise removal via image decomposition
CN110827216A (zh) 图像去噪的多生成器生成对抗网络学习方法
CN109033945B (zh) 一种基于深度学习的人体轮廓提取方法
CN107194912B (zh) 基于稀疏表示的改进耦合字典学习的脑部ct/mr图像融合方法
CN110992292B (zh) 一种增强型低秩稀疏分解模型医学ct图像去噪方法
CN113379661B (zh) 红外与可见光图像融合的双分支卷积神经网络装置
CN110415198B (zh) 一种基于拉普拉斯金字塔与参数自适应脉冲耦合神经网络的医学图像融合方法
CN107301630B (zh) 一种基于排序结构组非凸约束的cs-mri图像重构方法
CN109118487B (zh) 基于非下采样轮廓波变换和卷积神经网络的骨龄评估方法
Li et al. A multiscale double-branch residual attention network for anatomical–functional medical image fusion
CN114299185A (zh) 磁共振图像生成方法、装置、计算机设备和存储介质
CN114219719A (zh) 基于双重注意力和多尺度特征的cnn医学ct图像去噪方法
CN111696042B (zh) 基于样本学习的图像超分辨重建方法
Wang et al. Medical image fusion based on hybrid three-layer decomposition model and nuclear norm
CN115457359A (zh) 基于自适应对抗生成网络的pet-mri图像融合方法
CN109035137B (zh) 一种基于最优传输理论的多模态医学图像融合方法
CN112819740B (zh) 一种基于多成份低秩字典学习的医学图像融合方法
CN116309221A (zh) 一种多光谱图像融合模型的构建方法
Aslan et al. Fusion of CT and MR liver images by SURF-based registration
CN115731444A (zh) 一种基于人工智能和超像素分割的医学影像融合方法
CN115205308A (zh) 一种基于线状滤波和深度学习的眼底图像血管分割方法
Yang et al. X-Ray Breast Images Denoising Method Based on the Convolutional Autoencoder

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant