CN110059601B - 一种多特征提取与融合的智能故障诊断方法 - Google Patents

一种多特征提取与融合的智能故障诊断方法 Download PDF

Info

Publication number
CN110059601B
CN110059601B CN201910283838.9A CN201910283838A CN110059601B CN 110059601 B CN110059601 B CN 110059601B CN 201910283838 A CN201910283838 A CN 201910283838A CN 110059601 B CN110059601 B CN 110059601B
Authority
CN
China
Prior art keywords
feature
fusion
features
model
training
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910283838.9A
Other languages
English (en)
Other versions
CN110059601A (zh
Inventor
朱永生
任智军
岳义
闫柯
洪军
傅亚敏
高大为
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201910283838.9A priority Critical patent/CN110059601B/zh
Publication of CN110059601A publication Critical patent/CN110059601A/zh
Application granted granted Critical
Publication of CN110059601B publication Critical patent/CN110059601B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/08Feature extraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/12Classification; Matching

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

一种多特征提取与融合的智能故障诊断方法,首先利用数据采集系统和传感器采集机械设备运行过程中的数据;然后以确定的长度截取不经任何处理的原始信号,将其分为训练样本和测试样本,做各段信号的频谱并归一化;基于自编码器构建多特征提取器,基于动态路由算法构建多特征融合器,基于softmax构建健康状态分类器;之后利用训练样本训练模型,提取区分各类健康状态的有效特征以及自适应地学习特征融合方法;最终将测试样本输入至模型中,验证模型的有效性;本发明实现了小样本情况下设备故障特征的自适应提取与故障状态的智能诊断,训练时间短,结果准确可靠。

Description

一种多特征提取与融合的智能故障诊断方法
技术领域
本发明属于故障诊断技术领域,特别涉及一种多特征提取与融合的智能故障诊断方法。
背景技术
随着技术的进步,现代机械正朝着高速、高精和智能的方向发展,但其必须满足可靠性和可用性的要求;而作为机械设备的重要组成部分,关键零部件对保证设备的平稳运行至关重要,其一旦发生故障,就会导致设备可靠性降低,重则还会引起设备意外停机,产生巨大的生产成本和产能损失;因此,基于关键零部件的运行数据,发展一种能够有效识别健康状态的故障诊断方法是必要的。
在故障诊断领域,对零部件健康状态进行识别主要分为基于信号处理的传统识别方法和基于机器学习的智能识别方法;传统识别方法利用各种信号处理技术,如快速傅里叶变换,小波及小波包分解,经验模式分解等,对采集到的信号进行预处理,通过人为观察处理后的结果,提取有用信息进行零部件健康状态的识别;传统识别方法在进行故障诊断时需要大量的信号处理知识以及丰富的故障诊断经验,受人的主观影响较大;而智能故障诊断在很大程度上改善了传统识别方法的这一缺陷。
经过数十年的发展,智能故障诊断共经历了两个阶段,分别是传统智能故障诊断和基于深度学习的智能故障诊断;传统智能故障诊断通过提取多种领域的标量特征,例如时域、频域、时频域,然后选择部分敏感特征或者全部特征输入至浅层模型中,例如支持向量机、人工神经网络或者多种方法的混合等,通过这些方法实现设备健康状态识别;然而,传统智能诊断方法存在以下两个缺点:1)孤立了特征提取与故障识别的关系,提升了智能故障诊断的难度;2)在面对较为复杂的故障识别任务时,例如故障类别多、数据量大等,人为提取有效特征会消耗大量的时间,并且特征泛化能力较低,缩小了智能诊断的应用范围;由于强大的数据挖掘与自适应特征提取能力,深度学习表现出了克服传统智能诊断内在缺陷的潜力,极大地推动了智能故障诊断的发展与应用;研究者们通过堆叠多层基础的神经网络,例如受限玻尔兹曼机、自编码器或者它们的变体,构建一种深度学习模型,使其能够从时域数据、频域数据、时频域数据中自适应学习有效的标量特征;最终模型的分类器利用这些特征对轴承的健康状态进行识别。
然而基于深度学习的智能诊断方法仍有以下两个关键点急需解决:1)训练深度学习模型通常需要大量的训练本,但在实际中故障样本很少,不能满足这一要求;2)训练深度学习模型需要大量的时间,这会导致模型缺乏快速更新的能力;两个问题有时是相互矛盾的;因此,同时解决这两个问题需要特殊设计的智能诊断模型。
发明内容
为了克服上述现有技术的缺点,本发明的目的在于提供一种多特征提取与融合的智能故障诊断方法,以准确可靠地完成设备智能故障诊断。
为了达到上述目的,本发明的技术方案是这样实现的:
一种多特征提取与融合的智能故障诊断方法,包括以下步骤:
(1)利用数据采集系统和传感器采集机械设备运行过程中的数据,所述的数据包括振动数据,声音数据;
(2)以确定的长度截取不经任何处理的原始信号,并将其分为训练样本和测试样本,做各段信号的频谱并归一化;
(3)基于自编码器构建多特征提取器,然后利用提取到的多个特征基于动态路由算法构建多特征融合器;
(4)利用softmax分类器对融合后的特征进行轴承健康状态识别;
(5)利用训练样本训练模型,提取区分各轴承健康状态有效的特征以及自适应地学习特征融合方法;
(6)将测试样本输入至模型中,进行多特征提取与融合,实现设备故障的智能诊断。
步骤(3)中所述的基于自编码器构建的多特征提取器是通过n个权重矩阵W从输入中有效地提取向量特征,之后再利用n个权重矩阵U从向量特征中重构输入,这样就形成了具有输入层、特征层和重构层三层结构的多特征提取器。
步骤(3)中所述的基于动态路由算法构建的多特征融合器,首先通过仿射变换将多特征提取器提取到的多个向量特征转换成低级状态特征,低级状态特征通过动态路由算法合成高级状态特征,这些高级状态向量的长度可表示设备处于某一健康状态的可能性。
步骤(3)中所述的多特征提取器的计算过程如下:
给定一个无标签的训练样本
Figure BDA0002022590110000041
编码器使用映射函数h计算得到向量特征:
fl=h(x)=Ψact(Wx)
其中,Ψact是非线性激活函数ReLU;fl由n个向量特征组成,其可表示为:
Figure BDA0002022590110000042
W由n个权重矩阵组成,其可表示为:
Figure BDA0002022590110000043
被用来计算向量特征fli
多特征提取器的解码器使用映射函数g从向量特征中重构输入
Figure BDA0002022590110000044
Figure BDA0002022590110000045
其中,
Figure BDA0002022590110000046
步骤(5)中所述的训练过程具体是:通过优化目标函数C,让模型自适应地学习网络参数{W,U,V},目标函数由两部分组成,第一部分c1用于约束多特征提取器,使多特征提取器能够更好地提取特征;第二部分c2用于约束整个模型,使模型能够更好地对设备状态进行识别;
Figure BDA0002022590110000047
c2=Tk(max(0,m+-||vk||))2+(1-Tk)(max(0,||vk||-m-))2
C=c1+λc2
其中,当预测的状态与实际状态一致时,Tk=1,否则,Tk=0;
重复执行步骤(5),直至循环次数达到设定值。
本发明的优点为:
本发明采用的多特征提取器,能够摆脱以往自编码器只能够提取标量特征的缺陷,实现了多向量特征的提取,提取到的向量特征能够利用方向和长度同时记录对故障诊断有效信息;这样,就能够充分的挖掘隐含在输入中的信息,提升方法特征提取的能力;利用这一优势,显著地降低了智能诊断模型对样本数量的依赖,同时减少了智能诊断模型的层数,进而减少训练时间。
附图说明
图1是本发明的主要流程图。
图2是本发明的多特征提取器。
图3是本发明的多特征融合器。
图4是本发明样本数量依赖性实验的实验结果及训练时间统计。
图5是本发明对轴承健康状态分类结果的可视化。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明;应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
参照图1,一种多特征提取与融合的智能故障诊断方法,包括以下步骤:
(1)利用数据采集系统和各种传感器采集机械设备运行过程中的数据,例如振动数据和声音数据;
(2)以确定的长度截取不经任何处理的原始信号,并将其分为训练样本和测试样本;做各段信号的频谱并归一化;样本集(训练、测试)表示为
Figure BDA0002022590110000061
xn是第n个频谱,dn是第n个频谱对应的故障类型,N是样本的总数;
(3)基于自编码器构建多特征提取器,然后利用提取到的多个特征基于动态路由算法构建多特征融合器;具体是:基于自编码器构建一个三层学习模型,输入层与特征层组成编码器,特征层与重构层组成解码器;与其他基于自编码器构建的模型不同,此处构建的模型包含多个权重矩阵W,因此可以提取到多个向量特征;相应的,重构过程也包含了多个权重矩阵U;多特征提取器的结构如图2所示;提取到多个向量特征fl后,将其作为多特征融合器的输入,如图3所示;向量特征经放射矩阵V变换后,即可生成低级状态特征uj|i,低级状态特征表示了向量特征i对设备状态j的诊断结果;为了综合每个特征对设备状态的诊断,利用权重系数cij对各类低级状态特征进行融合,得到高级状态特征sj,此时,高级状态特征sj的长度代表了设备处于状态j的可能性,为了将可能性转换成概率,利用squash函数对其进行非线性变换,得到vj;为了提高模型的有效性,采用动态路由算法实时更新权重系数cij,使得到的结果更具鲁棒性;多特征提取器、多特征融合器、动态路由算法的计算过程如下:
(3.1)多特征提取器的计算过程如下:
给定一个无标签的训练样本
Figure BDA0002022590110000062
编码器使用映射函数h计算得到向量特征;
fl=h(x)=Ψact(Wx)
其中,Ψact是非线性激活函数ReLU;fl由n个向量特征组成,其可表示为:
Figure BDA0002022590110000071
W由n个权重矩阵组成,其可表示为:
Figure BDA0002022590110000072
被用来计算向量特征fli
多特征提取器的解码器使用映射函数g从向量特征中重构输入
Figure BDA0002022590110000073
Figure BDA0002022590110000074
其中,
Figure BDA0002022590110000075
(3.2)多特征融合器的计算过程如下:
得到向量特征fl后,利用仿射矩阵V对其进行仿射变换,得到低级状态特征uj|i
uj|i=Vijf1i
之后,再利用权重系数cij,对得到的低级状态特征进行加权求和,使这些低级状态特征融合得到高级状态特征sj
sj=∑icijuj|i
此时,向量sj的长度表示设备处于状态j的可能性,为了将可能性转化为概率表示,利用非线性压缩函数squash对sj进行变换,得到方向不变而长度压缩至(0,1)的vj
(3.3)动态路由算法的计算过程如下:
第一次特征融合得到的vj所使用的权重系数cij其大小均相等,但这不是最佳的融合方式,因此采用相似性来对权重系数进行更新;
bij=0(初始化,只执行一次)
bij=bij+uj|i·vj
cij=softmax(bij)
得到更新后的权重系数cij后,重复执行步骤3.2)和步骤3.3),直到重复次数到达设定的重复次数,得到最终的状态特征vj
(4)利用softmax分类器对融合后的特征进行设备健康状态识别;
由于状态特征vj的长度代表了设备处于状态j的可能性,因此对每一个状态特征求其模长,组成全局特征;
fg=[||v1||,||v2||,...,||vq||]T
之后再利用softmax分类器和全局特征进行设备状态识别;
(5)利用训练样本训练模型,提取区分各种健康状态有效的特征以及自适应地学习特征融合方法;具体是,通过优化目标函数C,让模型自适应地学习网络参数{W,U,V},目标函数由两部分组成,第一部分c1用于约束多特征提取器,使多特征提取器能够更好地提取特征;第二部分c2用于约束整个模型,使模型能够更好地对设备状态进行识别;
Figure BDA0002022590110000081
c2=Tk(max(0,m+-||vk||))2+(1-Tk)(max(0,||vk||-m-))2
C=c1+λc2
其中,m+=0.9,m-=0.1,当预测的状态与实际状态一致时,Tk=1,否则,Tk=0;
重复执行步骤(5),直至循环次数达到设定值;
(6)将测试样本输入至模型中,进行多特征提取与融合,实现设备故障的智能诊断。
下面结合轴承故障智能诊断,对本发明作进一步描述;
轴承共有10中健康状态,分别为:正常,内圈故障(故障程度分别为:0.1778、0.3556、0.5334mm),滚动体故障(故障程度分别为:0.1778、0.3556、0.5334mm),外圈故障(故障程度分别为:0.1778、0.3556、0.5334mm);测试时,每种健康状态都分别在4种不同负载(0、1、2、3hp)下采集数据;振动传感器安装于被测轴承的附近,采样频率为12kHz。
使用本发明的方法,对采集到的数据进行分割,分割后的信号长度为1024;之后,对每段信号进行快速傅里叶变换并归一化;最终,每种健康状态的样本个数为800个。
针对该数据集,设定提取的向量特征的个数为5,维度为250;设定融合后的状态特征维度为50;设定动态路由循环次数为2;设定正则化系数为1。
采用八种不同比例的训练样本对模型进行训练,每种比例的实验重复10次以排除随机误差的影响,平均训练准确率、平均测试准确率、相应的标准差以及训练时间如图4所示;可以看到,本发明能够准确地对轴承的健康状态进行诊断,即使训练样本比例为1%,测试准确率仍可以达到99%以上,并且,训练模型所消耗的时间也较少,当训练样本比例为25%时,模型训练仅需8s即可完成;上述结果表明,本发明与其他神经网络相比在不损失诊断准确率的前提下,仅需少量的样本以及极短的训练时间即可完成训练,是一种有效的设备健康状态识别方法。
图5是使用本发明方法对轴承10种健康状态分类结果的可视化,可以看出,该方法能够有效并自适应地提取到每种健康状态的特征,进而达到良好的分类效果。
通过以上实施例以及实验结果可以发现,本发明可以有效地对设备健康状态进行特征提取,并融合这些特征,实现准确可靠的智能诊断。

Claims (4)

1.一种多特征提取与融合的智能故障诊断方法,其特征在于,包括以下步骤:
(1)利用数据采集系统和传感器采集机械设备运行过程中的数据,所述的数据包括振动数据,声音数据;
(2)以确定的长度截取不经任何处理的原始信号,并将其分为训练样本和测试样本,做各段信号的频谱并归一化;
(3)基于自编码器构建多特征提取器,然后利用提取到的多个特征基于动态路由算法构建多特征融合器;
所述的多特征提取器的计算过程如下:
给定一个无标签的训练样本
Figure FDA0002937764390000011
编码器使用映射函数h计算得到向量特征:
fl=h(x)=Ψact(Wx)
其中,Ψact是非线性激活函数;fl由n个向量特征组成,其表示为:
Figure FDA0002937764390000012
W由n个权重矩阵组成,其表示为:
Figure FDA0002937764390000013
Figure FDA0002937764390000014
被用来计算向量特征fli
多特征提取器的解码器使用映射函数g从向量特征中重构输入
Figure FDA0002937764390000015
Figure FDA0002937764390000016
其中,
Figure FDA0002937764390000017
(4)利用softmax分类器对融合后的特征进行轴承健康状态识别;
(5)利用训练样本训练模型,提取区分各轴承健康状态有效的特征以及自适应地学习特征融合方法;
(6)将测试样本输入至模型中,进行多特征提取与融合,实现设备故障的智能诊断。
2.根据权利要求1所述的一种多特征提取与融合的智能故障诊断方法,其特征在于,步骤(3)中所述的基于自编码器构建的多特征提取器是通过n个权重矩阵W从输入中有效地提取向量特征,之后再利用n个权重矩阵U从向量特征中重构输入,这样就形成了具有输入层、特征层和重构层三层结构的多特征提取器。
3.根据权利要求1所述的一种多特征提取与融合的智能故障诊断方法,其特征在于,步骤(3)中所述的基于动态路由算法构建的多特征融合器,首先通过仿射变换将多特征提取器提取到的多个向量特征转换成低级状态特征,低级状态特征通过动态路由算法合成高级状态特征,这些高级状态向量的长度表示设备处于某一健康状态的可能性。
4.根据权利要求1所述的一种多特征提取与融合的智能故障诊断方法,其特征在于,步骤(5)中所述的训练过程具体是:通过优化目标函数C,让模型自适应地学习网络参数{W,U,V},目标函数由两部分组成,第一部分c1用于约束多特征提取器,使多特征提取器能够更好地提取特征;第二部分c2用于约束整个模型,使模型能够更好地对设备状态进行识别;
Figure FDA0002937764390000031
c2=Tk(max(0,m+-‖vk‖))2+(1-Tk)(max(0,‖vk‖-m-))2
C=c1+λc2
其中,当预测的状态与实际状态一致时,Tk=1,否则,Tk=0;
重复执行步骤(5),直至循环次数达到设定值。
CN201910283838.9A 2019-04-10 2019-04-10 一种多特征提取与融合的智能故障诊断方法 Active CN110059601B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910283838.9A CN110059601B (zh) 2019-04-10 2019-04-10 一种多特征提取与融合的智能故障诊断方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910283838.9A CN110059601B (zh) 2019-04-10 2019-04-10 一种多特征提取与融合的智能故障诊断方法

Publications (2)

Publication Number Publication Date
CN110059601A CN110059601A (zh) 2019-07-26
CN110059601B true CN110059601B (zh) 2021-04-13

Family

ID=67318672

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910283838.9A Active CN110059601B (zh) 2019-04-10 2019-04-10 一种多特征提取与融合的智能故障诊断方法

Country Status (1)

Country Link
CN (1) CN110059601B (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110852154B (zh) * 2019-09-29 2022-10-14 广东石油化工学院 一种基于深度学习和声音波形图像的滚动轴承故障诊断方法、装置和可读存储介质
CN110779722B (zh) * 2019-10-23 2021-01-19 西安交通大学 一种基于编码器信号局部加权的滚动轴承故障诊断方法
CN110926782B (zh) * 2019-12-06 2022-03-29 国网河南省电力公司三门峡供电公司 断路器故障类型判断方法、装置、电子设备及存储介质
CN110766011B (zh) * 2019-12-26 2020-04-28 南京智莲森信息技术有限公司 一种基于深度多级优化的接触网螺母异常识别方法
CN111504676B (zh) * 2020-04-23 2021-03-30 中国石油大学(北京) 基于多源监控数据融合的设备故障诊断方法、装置及系统
CN111523509B (zh) * 2020-05-08 2023-08-29 江苏迪赛司自动化工程有限公司 融合物理和深度表达特征的设备故障诊断及健康监测方法
CN111595584B (zh) * 2020-06-11 2022-04-22 河海大学常州校区 一种基于1-dcnn联合特征提取的轴承故障在线检测方法
CN111898644B (zh) * 2020-07-02 2022-10-25 西安交通大学 一种无故障样本下航天液体发动机健康状态智能识别方法
CN112216085B (zh) * 2020-09-15 2022-05-10 青岛科技大学 一种基于边缘计算和在线更新样本智能识别的装备关键承力结构件健康监测系统
CN112419301A (zh) * 2020-12-03 2021-02-26 国网山西省电力公司大同供电公司 一种基于多源数据融合的电力设备缺陷诊断装置及方法
CN112668754B (zh) * 2020-12-03 2024-07-26 国网山西省电力公司大同供电公司 一种基于多源特征信息融合的电力设备缺陷诊断方法
CN112362368A (zh) * 2021-01-14 2021-02-12 西门子交通技术(北京)有限公司 列车牵引电机的故障诊断方法、装置、系统和可读介质
CN113505817A (zh) * 2021-06-17 2021-10-15 浙江优特轴承有限公司 不均衡数据下轴承故障诊断模型样本自适应加权训练方法
CN113432877B (zh) * 2021-06-26 2023-08-18 郑州航空工业管理学院 基于视觉特征融合的复杂旋转机械设备故障诊断方法
CN113591625B (zh) * 2021-07-16 2022-12-09 西安交通大学 一种不平衡样本重要性加权的齿轮箱故障诊断方法
CN113822139B (zh) * 2021-07-27 2023-08-25 河北工业大学 一种基于改进1DCNN-BiLSTM的设备故障诊断方法
CN113792602B (zh) * 2021-08-13 2022-12-09 西安交通大学 一种基于多传感器信息融合的机械故障智能诊断方法
CN115096627B (zh) * 2022-06-16 2023-04-07 中南大学 一种液压成形智能装备制造过程故障诊断与运维方法及系统
CN116625689B (zh) * 2023-05-24 2023-12-22 石家庄铁道大学 基于smder的滚动轴承故障诊断方法及系统
CN117556344B (zh) * 2024-01-08 2024-05-14 浙江大学 基于多源信息融合的球磨机传动系统故障诊断方法与系统
CN117991082B (zh) * 2024-04-07 2024-06-11 垣矽技术(青岛)有限公司 一种适用于电流频率转换芯片的故障诊断监管系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106555788A (zh) * 2016-11-11 2017-04-05 河北工业大学 基于模糊处理的深度学习在液压装备故障诊断中的应用
CN108182452A (zh) * 2017-12-29 2018-06-19 哈尔滨工业大学(威海) 基于分组卷积自编码器的航空发动机故障检测方法及系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104819846B (zh) * 2015-04-10 2017-03-22 北京航空航天大学 一种基于短时傅里叶变换和稀疏层叠自动编码器的滚动轴承声音信号故障诊断方法
CN106323636A (zh) * 2016-08-16 2017-01-11 重庆交通大学 栈式稀疏自动编码深度神经网络的机械故障程度特征自适应提取与诊断方法
CN107957551A (zh) * 2017-12-12 2018-04-24 南京信息工程大学 基于振动和电流信号的堆叠降噪自编码电机故障诊断方法
CN109241287B (zh) * 2018-09-21 2021-10-15 中山大学 基于强化学习和胶囊网络的文本分类模型及方法
CN109145886A (zh) * 2018-10-12 2019-01-04 西安交通大学 一种多源信息融合的异步电机故障诊断方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106555788A (zh) * 2016-11-11 2017-04-05 河北工业大学 基于模糊处理的深度学习在液压装备故障诊断中的应用
CN108182452A (zh) * 2017-12-29 2018-06-19 哈尔滨工业大学(威海) 基于分组卷积自编码器的航空发动机故障检测方法及系统

Also Published As

Publication number Publication date
CN110059601A (zh) 2019-07-26

Similar Documents

Publication Publication Date Title
CN110059601B (zh) 一种多特征提取与融合的智能故障诊断方法
Hu et al. Data-driven fault diagnosis method based on compressed sensing and improved multiscale network
CN105738109B (zh) 基于稀疏表示与集成学习的轴承故障分类诊断方法
CN110398369A (zh) 一种基于1-dcnn和lstm融合的滚动轴承故障诊断方法
CN111103139A (zh) 基于grcmse与流形学习的滚动轴承故障诊断方法
CN109858352B (zh) 一种基于压缩感知与改进多尺度网络的故障诊断方法
CN111582320B (zh) 一种基于半监督学习的动态个体识别方法
CN111721536A (zh) 一种改进模型迁移策略的滚动轴承故障诊断方法
CN105841961A (zh) 一种基于Morlet小波变换和卷积神经网络的轴承故障诊断方法
CN111753891B (zh) 一种无监督特征学习的滚动轴承故障诊断方法
CN110657984A (zh) 一种基于强化胶囊网络的行星齿轮箱故障诊断方法
CN111751133A (zh) 一种基于非局部均值嵌入的深度卷积神经网络模型的智能故障诊断方法
CN116793682A (zh) 基于iCORAL-MMD和对抗迁移学习的轴承故障诊断方法
CN110991471B (zh) 一种高速列车牵引系统故障诊断方法
CN112284735A (zh) 基于一维卷积与动态路由的多传感器滚动轴承故障诊断
Islam et al. Motor bearing fault diagnosis using deep convolutional neural networks with 2d analysis of vibration signal
CN113008559A (zh) 基于稀疏自编码器和Softmax的轴承故障诊断方法及系统
CN113537152A (zh) 一种基于深度神经网络的流场状态故障检测方法
Sun et al. Curvature enhanced bearing fault diagnosis method using 2D vibration signal
CN111310719B (zh) 一种未知辐射源个体识别及检测的方法
CN117113170A (zh) 一种基于多尺度信息融合的轻量化旋转机械故障诊断方法
Jiang et al. Anomaly detection of industrial multi-sensor signals based on enhanced spatiotemporal features
Wang et al. An automatic feature extraction method and its application in fault diagnosis
CN117516939A (zh) 基于改进EfficientNetV2的轴承跨工况故障检测方法及系统
CN111783941B (zh) 一种基于概率置信度卷积神经网络的机械设备诊断分类方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant