CN110057915B - 渠道工程水下全断面三维基础成像检测方法 - Google Patents

渠道工程水下全断面三维基础成像检测方法 Download PDF

Info

Publication number
CN110057915B
CN110057915B CN201910396036.9A CN201910396036A CN110057915B CN 110057915 B CN110057915 B CN 110057915B CN 201910396036 A CN201910396036 A CN 201910396036A CN 110057915 B CN110057915 B CN 110057915B
Authority
CN
China
Prior art keywords
underwater
ultrasonic
imaging
internal structure
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910396036.9A
Other languages
English (en)
Other versions
CN110057915A (zh
Inventor
姜文龙
李斌
郭玉松
谢向文
毋光荣
张宪君
周锡芳
张亚玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yellow River Engineering Consulting Co Ltd
Original Assignee
Yellow River Engineering Consulting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yellow River Engineering Consulting Co Ltd filed Critical Yellow River Engineering Consulting Co Ltd
Priority to CN201910396036.9A priority Critical patent/CN110057915B/zh
Publication of CN110057915A publication Critical patent/CN110057915A/zh
Application granted granted Critical
Publication of CN110057915B publication Critical patent/CN110057915B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0654Imaging
    • G01N29/069Defect imaging, localisation and sizing using, e.g. time of flight diffraction [TOFD], synthetic aperture focusing technique [SAFT], Amplituden-Laufzeit-Ortskurven [ALOK] technique

Abstract

本发明公开了一种渠道工程水下全断面三维基础成像检测方法,1,在渠道工程水下间隔排列多个防水型收发一体式超声波探头;2,当对渠道工程水下混凝土面板内部结构检测时,调整每个超声波探头发射波的发射频率范围为1KHz‑10Khz、水中波长为0.15m‑1.5m;当对渠道工程水下基础内部结构检测时,调整每个超声波探头发射波的发射频率范围为10KHz‑100Khz、水中波长为15mm‑0.15m;3,将每个超声波探头接收到的超声波反射信号特征、介质的速度参数和声波的传播路径,进行波场的叠加和成像处理,得到被检测区域的基础内部结构三维图像和面板内部结构图像。本发明优点在于实现了对混凝土面板衬砌内部及其壁后基础内部缺陷的检测。

Description

渠道工程水下全断面三维基础成像检测方法
技术领域
本发明涉及水库大坝、渠道、渡槽等水利工程混凝土结构水下无损检测,尤其是涉及渠道工程水下全断面三维基础成像检测方法。
背景技术
水利水电工程运行期间,受水流冲刷、大颗粒冲刷、泥沙冲刷等因素的影响,水电站部分区域存在一定的安全隐患,如发电洞洞口及洞内的泥沙剥蚀、冲砂洞等的泥沙磨蚀、水下混凝土面板的脱空、水下钢筋的锈蚀、坝后消力池受水流等冲击的破坏等问题,均影响工程的安全运行。因此,水下检测技术对于水利工程的安全和不断水运行起到极大的安全保障作用。
目前,水下检测方法主要包括水下光学成像检测和水下声学成像检测。1、水下光学成像检测多采取水下照相检测和水下录像检测。由于相应水下定位等诸多问题,水下照相存在图片拼接较难等技术难点;所以目前大都以水下机器人搭载录像设备水下录像为主。由于光学的频率远高于声学,因此其对水下细节的分辨能力也强于声学,水下光学成像也广泛应用于水下细节部分的检测需求。但受光学在水下穿透能力影象,对于水下混凝土衬砌则无有效的穿透能力,因此一般用于水下重点部位表面精细检测。2、水下声学成像检测同其它的声成像一样,也是通过物体对声波的后向散射作用来成像的,可用于测绘声速场和流场、探测海底地形和海洋表面粗糙度。但考虑声学的传播特点,依然无法有效的对水下衬砌及基础内部破损进行检测;目前主要用于对水下表观的破损进行大规模快速检测。
发明内容
本发明目的在于提供一种渠道工程水下全断面三维基础成像检测方法,实现对水下衬砌结构内部及其基础破损的检测。
为实现上述目的,本发明采取下述技术方案:
本发明所述渠道工程水下全断面三维基础成像检测方法,包括下述步骤:
步骤1,在渠道工程水下沿需要检测的区域间隔排列多个防水型收发一体式超声波探头;
步骤2,当对所述渠道工程水下需要检测区域的混凝土面板内部结构检测时,调整每个所述超声波探头发射波的发射频率范围为1KHz-10Khz、水中波长为0.15m-1.5m;当对所述渠道工程水下需要检测区域的基础内部结构检测时,调整每个所述超声波探头发射波的发射频率范围为10KHz-100Khz、水中波长为15mm-0.15m;
步骤3,将每个所述超声波探头接收到的超声波反射信号特征、介质的速度参数和声波的传播路径,进行波场的叠加和成像处理,得到被检测区域的基础内部结构三维图像和面板内部结构图像。
所述波场的叠加和成像处理步骤为:
步骤3.1,首先分析超声波信号频率范围为1KHz-100Khz、水中波长为15mm-1.5m在水下的传播特征,所述传播特征包括信号随频率的衰减特征、在不同流速下的信号衰减特征、信号源发射能量不一致、信号的球面扩赛衰减特征,建立标准检测信号模型数据,并对所述模型数据进行时频分析,得到所述超声波信号的能量特征,所述能量特征包括模型数据的主频分布、不同频率的能量分布;
步骤3.2,将所述超声波探头采集的实际反射波数据进行道头编辑,使其与模型数据一致,得到道头编辑后的实际数据,对所述实际数据进行时频分析;
步骤3.3,对模型数据与实际数据的时频分析结果进行对比,分析实际数据能量变化,包括主频特征、不同频率所对应的能量特征特点,利用模型数据的能量特征对实际数据进行校正;所述校正是指对实际数据进行DFT变换后的实部和虚部统一进行,即只调整超声波信号在不同频率区间的反射能量而不调整超声波信号的相位,以保证信号不失真,从而保障超声波信号振幅一致,实现保幅处理;
步骤3.4,以水体波速1500m/s作为成像波速,采用Kirchhoff叠前偏移成像算法进行偏移成像,完成二维图像的采集;
步骤3.5,将多个所述二维图像连续采集,即完成三维数据的拼接成图。
本发明优点在于实现了对混凝土面板衬砌内部及其壁后基础内部缺陷的检测,并可为水下修复工作提供缺陷部位的三维成果图,精确划分出内部缺陷的分布范围,保证了水下修复工作的质量,提高了水下修复工作效率。同时,由于采用阵列式反射和接收,因此一次发射和采集的数据可以快速的进行叠加成像,以此获取较高的工作效率。且大幅度提高了信号的信噪比,有效保障了信号的分辨率。
附图说明
图1是本发明所述超声阵列成像的工作原理示意图。
图2是本发明所述波场的叠加和成像处理流程图。
图3是本发明所述的阵列层析成像成果图。
图4是本发明所述的三维成果图。
具体实施方式
下面结合附图对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述实施例。
本发明所述的渠道工程水下全断面三维基础成像检测方法,包括下述步骤:
步骤1,如图1所示,在渠道工程水下沿需要检测的区域间隔排列12个防水型收发一体式超声波探头,组成超声阵列成像布置;
步骤2,当对所述渠道工程水下需要检测区域的混凝土面板内部结构检测时,调整每个所述超声波探头发射波的发射频率范围为1KHz-10Khz、水中波长为0.15m-1.5m;当对所述渠道工程水下需要检测区域的基础内部结构检测时,调整每个所述超声波探头发射波的发射频率范围为10KHz-100Khz、水中波长为15mm-0.15m;
步骤3,将每个所述超声波探头接收到的超声波反射信号特征、介质的速度参数和声波的传播路径,进行波场的叠加和成像处理,得到被检测区域的基础内部结构三维图像和面板内部结构图像。
如图2所示,所述波场的叠加和成像处理按照下述步骤进行:
步骤3.1,首先分析超声波信号频率范围为1KHz-100Khz、水中波长为15mm-1.5m在水下的传播特征,包括信号随频率的衰减特征、在不同流速下的信号衰减特征、信号源发射能量不一致、信号的球面扩赛衰减特征等,建立标准检测信号模型数据,并对所述模型数据进行时频分析,得到所述超声波信号的能量特征,包括模型数据的主频分布、不同频率的能量分布等;
步骤3.2,将所述超声波探头采集的实际反射波数据进行道头编辑,使其与模型数据一致,得到道头编辑后的实际数据,对所述实际数据进行时频分析;
步骤3.3,对模型数据与实际数据的时频分析结果进行对比,分析实际数据能量变化特点,包括主频特征、不同频率所对应的能量特征等特点,利用模型数据的能量特征对实际数据进行校正;所述校正是指对实际数据进行DFT变换后的实部和虚部统一进行,即只调整超声波信号在不同频率区间的反射能量而不调整超声波信号的相位,以保证信号不失真,从而保障超声波信号振幅一致,实现保幅处理;
步骤3.4,以水体波速1500m/s作为成像波速,采用Kirchhoff叠前偏移成像算法进行偏移成像,完成二维图像的采集,即阵列层析成像成果图,如图3所示;
步骤3.5,将多个所述二维图像连续采集,完成三维数据的拼接,即三维成果图,如图4所示。
本发明检测原理简述如下;
本发明依据水利工程中的渠道、水库大坝、渡槽等混凝土面板下部主要为堆积的细料过渡区域,属于声学信号穿透的优势区域。水本身是声学的天然耦合剂,且声波在水中几乎无衰减,不会衍生诸如横波、面波等复杂干扰波。因混凝土面板本身防渗条件有限,混凝土面板下部细料堆积区一般含水性较大,因此基于高频的Chrip声学编码信号穿透深度均能大于2m,最深处探测深度可达到5m。
当混凝土面板内部存在缺陷时,即混凝土面板内部或者壁后存在脱空(水或空气)界面时,均导致混凝土与缺陷区域之间产生强烈的反射界面,根据反射界面反射信号的强弱、大小即可判断混凝土内部是否存有缺陷及缺陷大小。

Claims (1)

1.一种渠道工程水下全断面三维基础成像检测方法,其特征在于:包括下述步骤:
步骤1,在渠道工程水下沿需要检测的区域间隔排列多个防水型收发一体式超声波探头;
步骤2,当对所述渠道工程水下需要检测区域的混凝土面板内部结构检测时,调整每个所述超声波探头发射波的发射频率范围为1KHz-10Khz、水中波长为0.15m-1.5m;当对所述渠道工程水下需要检测区域的基础内部结构检测时,调整每个所述超声波探头发射波的发射频率范围为10KHz-100Khz、水中波长为15mm-0.15m;
步骤3,将每个所述超声波探头接收到的超声波反射信号特征、介质的速度参数和声波的传播路径,进行波场的叠加和成像处理,得到被检测区域的基础内部结构三维图像和面板内部结构图像;
所述波场的叠加和成像处理步骤为:
步骤3.1,首先分析超声波信号频率范围为1KHz-100Khz、水中波长为15mm-1.5m在水下的传播特征,包括信号随频率的衰减特征、在不同流速下的信号衰减特征、信号源发射能量不一致、信号的球面扩赛衰减特征,建立标准检测信号模型数据,并对所述模型数据进行时频分析,得到所述超声波信号的能量特征,包括模型数据的主频分布、不同频率的能量分布;
步骤3.2,将所述超声波探头采集的实际反射波数据进行道头编辑,使其与模型数据一致,得到道头编辑后的实际数据,对所述实际数据进行时频分析;
步骤3.3,对模型数据与实际数据的时频分析结果进行对比,分析实际数据能量变化,包括主频特征、不同频率所对应的能量特征特点,利用模型数据的能量特征对实际数据进行校正;所述校正是指对实际数据进行DFT变换后的实部和虚部统一进行,即只调整超声波信号在不同频率区间的反射能量而不调整超声波信号的相位,以保证信号不失真,从而保障超声波信号振幅一致,实现保幅处理;
步骤3.4,以水体波速1500m/s作为成像波速,采用Kirchhoff叠前偏移成像算法进行偏移成像,完成二维图像的采集;
步骤3.5,将多个所述二维图像连续采集,完成三维数据的拼接成图。
CN201910396036.9A 2019-05-14 2019-05-14 渠道工程水下全断面三维基础成像检测方法 Active CN110057915B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910396036.9A CN110057915B (zh) 2019-05-14 2019-05-14 渠道工程水下全断面三维基础成像检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910396036.9A CN110057915B (zh) 2019-05-14 2019-05-14 渠道工程水下全断面三维基础成像检测方法

Publications (2)

Publication Number Publication Date
CN110057915A CN110057915A (zh) 2019-07-26
CN110057915B true CN110057915B (zh) 2021-08-17

Family

ID=67323087

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910396036.9A Active CN110057915B (zh) 2019-05-14 2019-05-14 渠道工程水下全断面三维基础成像检测方法

Country Status (1)

Country Link
CN (1) CN110057915B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110632131B (zh) * 2019-10-16 2021-11-30 黄河勘测规划设计研究院有限公司 监测渠道堤防工程渗漏的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101477085A (zh) * 2004-06-14 2009-07-08 株式会社东芝 三维超声波成像装置
CN103364408A (zh) * 2013-07-10 2013-10-23 三峡大学 一种采用水下机器人系统对水工混凝土结构水下表面裂缝检测的方法
CN106198741A (zh) * 2016-08-13 2016-12-07 黄河勘测规划设计有限公司 隧洞管片回填灌浆质量无损检测的工程b超方法
CN107102335A (zh) * 2017-06-20 2017-08-29 河北工业大学 一种超声波三维成像装置
CN107340334A (zh) * 2017-07-21 2017-11-10 中国计量大学 一种水下桥墩体内损伤检测方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4012233B1 (ja) * 2006-05-19 2007-11-21 泰一郎 楠瀬 水底三次元画像作成システムおよび水底三次元画像作成方法
US9335412B2 (en) * 2013-03-14 2016-05-10 Navico Holding As Sonar transducer assembly

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101477085A (zh) * 2004-06-14 2009-07-08 株式会社东芝 三维超声波成像装置
CN103364408A (zh) * 2013-07-10 2013-10-23 三峡大学 一种采用水下机器人系统对水工混凝土结构水下表面裂缝检测的方法
CN106198741A (zh) * 2016-08-13 2016-12-07 黄河勘测规划设计有限公司 隧洞管片回填灌浆质量无损检测的工程b超方法
CN107102335A (zh) * 2017-06-20 2017-08-29 河北工业大学 一种超声波三维成像装置
CN107340334A (zh) * 2017-07-21 2017-11-10 中国计量大学 一种水下桥墩体内损伤检测方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
利用水声纳稀疏条带测量数据进行水下地形三维重建方法;李冬平;《科技创新导报》;20181231;全文 *
水下成像法在水下铺排施工动态检测中的应用研究;徐强;《河南科技》;20181231;全文 *
钻孔灌注桩桩底溶洞声呐探测方法及应用研究;石振明;《岩石力学与工程学报》;20160131 *

Also Published As

Publication number Publication date
CN110057915A (zh) 2019-07-26

Similar Documents

Publication Publication Date Title
CN103364408B (zh) 一种采用水下机器人系统对水工混凝土结构水下表面裂缝检测的方法
US11640007B2 (en) System and method for phased array sound wave advanced geological exploration for shield tunneling machine
CN111239246B (zh) 一种分步筛选有效信号的曲面结构缺陷全聚焦成像方法
CN111044569B (zh) 一种隧道混凝土结构缺陷检测方法
CN103234990A (zh) 一种焊缝中气孔形态及分布的无损检测新方法
CN107085216A (zh) 一种基于单水听器的深海水声被动测距测深方法
CN110057915B (zh) 渠道工程水下全断面三维基础成像检测方法
CN102759744B (zh) 洞室钢衬混凝土脱空厚度的检测方法
CN111452830B (zh) 一种实现轨道板裂缝自动检测的成像方法及装置
CN104749253A (zh) 一种圆柱型工件内缺陷超声背散射成像方法及装置
CN107340334A (zh) 一种水下桥墩体内损伤检测方法
CN115420328A (zh) 一种风电桩基冲刷检测方法
CN109239198B (zh) 一种风力发电机主轴横向裂纹衍射波检测方法
CN111158050B (zh) 数据采集系统、方法及隧道地震波超前预报方法
CN114859420B (zh) 一种浅海中目标分选及水下目标运动态势和深度判断方法
CN207180585U (zh) 一种地下管道尺寸测量装置
CN113219054B (zh) 一种磁瓦内部缺陷检测装置及检测方法
CN115371952A (zh) 一种浅埋海底管道冲刷测试装置及方法
CN111119870B (zh) 一种基于声波周向扫描的钻孔围岩结构探测装置及方法
CN114544768A (zh) 一种混凝土防渗墙体连续完整性及入岩深度的单孔超声检测装置及方法
CN209103356U (zh) 一种基于超声ct的风力发电机基础质量数据采集系统
CN103543199A (zh) 一种纯钛板坯铸件缺陷探伤方法
CN113960653B (zh) 相控阵声波超前探测仪器及超前地质预报方法
CN213398343U (zh) 一种用于热挤压三通肩部内部缺陷检测的超声探头
Wu et al. Non-recursive synthetic aperture imaging for multilayered media with irregular boundary

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant