CN110047116A - Pet图像校正方法、装置、计算机设备和存储介质 - Google Patents

Pet图像校正方法、装置、计算机设备和存储介质 Download PDF

Info

Publication number
CN110047116A
CN110047116A CN201910306003.0A CN201910306003A CN110047116A CN 110047116 A CN110047116 A CN 110047116A CN 201910306003 A CN201910306003 A CN 201910306003A CN 110047116 A CN110047116 A CN 110047116A
Authority
CN
China
Prior art keywords
photon
pet image
photon pair
meet
event
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910306003.0A
Other languages
English (en)
Other versions
CN110047116B (zh
Inventor
邓子林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai United Imaging Healthcare Co Ltd
Original Assignee
Shanghai United Imaging Healthcare Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai United Imaging Healthcare Co Ltd filed Critical Shanghai United Imaging Healthcare Co Ltd
Priority to CN201910306003.0A priority Critical patent/CN110047116B/zh
Publication of CN110047116A publication Critical patent/CN110047116A/zh
Application granted granted Critical
Publication of CN110047116B publication Critical patent/CN110047116B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • G06T11/008Specific post-processing after tomographic reconstruction, e.g. voxelisation, metal artifact correction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2210/00Indexing scheme for image generation or computer graphics
    • G06T2210/41Medical

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Nuclear Medicine (AREA)

Abstract

本申请涉及一种PET图像校正方法、装置、计算机设备和存储介质。所述方法包括:基于蒙特卡洛模拟方法对放射性核素进行模拟;基于蒙特卡洛模拟方法模拟所述符合光子和非符合光子的传播过程;统计模拟过程中探测器接收到的光子对的总数量以及假符合事件光子对的数量;基于所述光子对的总数量以及假符合事件光子对的数量对原始PET图像进行校正。上述PET图像校正方法、装置、计算机设备和存储介质,通过蒙特卡洛方法模拟不同能量光子在湮灭过程中的运动过程,并进行追踪,得到模拟过程中PET探测器接收到的光子对的总数量和假符合事件光子对的数量,进而对原始PET图像进行校正,以消除prompt gamma效应和散射带来的偏差,提高重建出的PET图像质量和量化精度。

Description

PET图像校正方法、装置、计算机设备和存储介质
技术领域
本申请涉及医疗器械技术领域,特别是涉及一种PET图像校正方法、装置、计算机设备和存储介质。
背景技术
正电子发射计算机断层扫描(Positron Emission Tomography,PET)是一种利用向生物体内部注入正电子放射性同位素标记的化合物,而在体外测量它们的空间分布和时间特性的三维成像无损检测技术,具有灵敏度高、准确性好、定位准确的特点。
PET的工作原理为:将发射正电子的放射性核素标记到能够参与人体组织血流或代谢过程的化合物上,将标有带正电子化合物的放射性核素注射到受检者体内,让受检者在PET的有效视野范围内进行PET显像。在PET扫描过程中,放射核素发射出的正电子在体内移动大约1mm后与组织中的负电子结合发生湮灭辐射(即湮灭事件),产生两个能量相等、方向相反的γ光子。由于两个γ光子在体内的路程不同,到达两个探测器的时间也有一定差别,如果在规定的时间窗内(例如0-15us),位于响应线上的探头系统探测到两个互成180度(±0.25度)的光子时,构成一个符合事件,处理设备就会记录下响应的数据,原始数据通过图像重建技术,可获得所需要的图像。
目前PET成像中通常使用的放射性核素是F18,但是在某些特定检测成像比如心脏灌注成像中也会使用某些特殊的放射性核素如Rb82,Y90等;这些核素在衰变湮灭过程中除了产生511KeV的光子,也会产生更高能量的光子形成假符合事件,称之为prompt gamma效应,会导致在PET图像中产生伪影,影响图像质量和量化精度;同时,光子的散射也会导致PET图像的不准确。
发明内容
基于此,有必要针对prompt gamma效应会导致在PET图像中产生伪影,影响图像质量和量化精度;同时,光子的散射也会导致PET图像的不准确的问题,提供一种能够PET图像校正方法、装置、计算机设备和存储介质。
一种PET图像校正方法,所述方法包括:
基于蒙特卡洛模拟方法对放射性核素进行衰变和湮灭模拟,产生一定数量的符合光子和非符合光子;
基于蒙特卡洛模拟方法模拟所述符合光子和非符合光子的传播过程;
统计模拟过程中探测器接收到的光子对的总数量以及假符合事件光子对的数量;
基于所述光子对的总数量以及假符合事件光子对的数量对原始PET图像进行校正。
在其中一个实施例中,所述基于蒙特卡洛模拟方法对放射性核素进行衰变和湮灭模拟,产生一定数量的符合光子和非符合光子包括:
基于被检体的原始PET数据重建获得原始PET图像;
以所述原始PET图像的灰度值作为权重系数进行蒙特卡洛模拟,模拟放射性核素进行衰变和湮灭,产生一定数量的符合光子和非符合光子。
在其中一个实施例中,所述基于被检体的原始PET数据重建获得原始PET图像包括:
对原始PET数据进行衰减校正、归一化校正、死时间校正或随机校正后重建获得原始PET图像。
在其中一个实施例中,所述基于所述光子对的总数量以及假符合事件光子对的数量对原始PET图像进行校正包括:
基于所述光子对的总数量以及假符合事件光子对的数量建立假符合事件光子对的数据弦图,并得到对应的比例因子;
基于所述假符合事件光子对的数据弦图及对应的比例因子对原始PET图像进行校正。
在其中一个实施例中,基于所述假符合事件光子对的数据弦图及对应的比例因子对原始PET图像进行校正包括:
基于所述假符合事件光子对的数据弦图及对应的比例因子对原始PET数据进行校正;
基于校正后的PET数据重建PET图像,得到校正PET图像。
在其中一个实施例中,所述基于所述假符合事件光子对的数据弦图及对应的比例因子对原始PET数据进行校正包括:
对所述假符合事件光子对的数据弦图及对应的比例因子进行归一化处理,以转化到与所述原始PET数据同样的数量级;
基于转化后的数据弦图及对应的比例因子对原始PET数据进行校正。
在其中一个实施例中,所述基于所述光子对的总数量以及假符合事件光子对的数量对原始PET图像进行校正还包括:
基于所述光子对的总数量以及假符合事件光子对的数量对原始PET图像进行迭代校正,以使校正后的PET图像达到预设标准。
一种PET图像校正装置,所述装置包括:
光子产生模块,用于基于蒙特卡洛模拟方法对放射性核素进行衰变和湮灭模拟,产生一定数量的符合光子和非符合光子;
传播模拟模块,用于基于蒙特卡洛模拟方法模拟所述符合光子和非符合光子的传播过程;
统计模块,用于统计模拟过程中探测器接收到的光子对的总数量以及假符合事件光子对的数量;
校正模块,基于所述光子对的总数量以及假符合事件光子对的数量对原始PET图像进行校正。
一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现以下步骤:
基于蒙特卡洛模拟方法对放射性核素进行衰变和湮灭模拟,产生一定数量的符合光子和非符合光子;
基于蒙特卡洛模拟方法模拟所述符合光子和非符合光子的传播过程;
统计模拟过程中探测器接收到的光子对的总数量以及假符合事件光子对的数量;
基于所述光子对的总数量以及假符合事件光子对的数量对原始PET图像进行校正。
一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现以下步骤:
基于蒙特卡洛模拟方法对放射性核素进行衰变和湮灭模拟,产生一定数量的符合光子和非符合光子;
基于蒙特卡洛模拟方法模拟所述符合光子和非符合光子的传播过程;
统计模拟过程中探测器接收到的光子对的总数量以及假符合事件光子对的数量;
基于所述光子对的总数量以及假符合事件光子对的数量对原始PET图像进行校正。
上述PET图像校正方法、装置、计算机设备和存储介质,通过蒙特卡洛方法模拟不同能量光子在湮灭过程中的运动过程,并进行追踪,得到模拟过程中PET探测器接收到的光子对的总数量和假符合事件光子对的数量,进而对原始PET图像进行校正,以消除promptgamma效应和散射带来的偏差,提高重建出的PET图像质量和量化精度。
附图说明
图1为本发明一实施例的PET图像校正方法的流程示意图;
图2为本发明一实施例的校正方法的流程示意图;
图3为本发明一实施例的PET图像校正装置的结构框图;
图4为本发明一实施例的校正模块的结构框图;
图5为本发明一实施例的计算机设备的内部结构图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
目前PET成像中通常使用的放射性核素是F18,但是在某些特定检测成像比如心脏灌注成像中也会使用某些特殊的放射性核素如Rb82,Y90等;这些核素在衰变湮灭过程中除了产生511KeV的光子,也会产生更高能量的光子形成假符合事件,称之为prompt gamma效应,会导致在PET图像中产生伪影,影响图像质量和量化精度;同时,光子的散射也会导致PET图像的不准确。
现在对于prompt gamma进行校正的方法通常是采用拟合(tail fitting);假设prompt gamma效应产生的假符合事件形成的sinogram具有某种形状,然后通过实际数据sinogram的tail部分拟合出来,最后将拟合得到的校正代入最终迭代重建。
请参阅图1,图1为本发明一实施例的PET图像校正方法的流程示意图。
在本实施例中,所述PET图像校正方法包括:
步骤100,基于蒙特卡洛模拟方法对放射性核素进行衰变和湮灭模拟,产生一定数量的符合光子和非符合光子。
示例性地,所述基于蒙特卡洛模拟方法对放射性核素进行衰变和湮灭模拟,产生一定数量的符合光子和非符合光子包括基于被检体的原始PET数据重建获得原始PET图像,并以所述原始PET图像的灰度值作为权重系数进行蒙特卡洛模拟,模拟放射性核素进行衰变和湮灭,产生一定数量的符合光子和非符合光子。
可以理解的,基于被检体的原始PET数据重建获得原始PET图像包括对原始PET数据进行衰减校正、归一化校正、死时间校正、随机校正中的一项或多项校正后重建获得原始PET图像。可以理解的,在其它实施例中,还可以对所述原始PET数据进行其它校正,可以根据实际情况决定。
具体地,以所述原始PET图像的灰度值作为权重系数,通过蒙特卡洛模拟随机13%的777keV的单光子和87%的511keV的单光子,其中,511keV的单光子为符合光子,777keV的单光子为非符合光子。可以理解的,在其它实施例中,所述符合光子和非符合光子的比例取决于放射性核素的种类和原始PET图像的灰度值。
步骤110,基于蒙特卡洛模拟方法模拟所述符合光子和非符合光子的传播过程。
示例性地,所述基于蒙特卡洛模拟方法模拟所述符合光子和非符合光子的传播过程包括通过蒙特卡洛模拟追踪每个光子后面每一步与组织可能发生的吸收、散射和衰减效应。
步骤120,统计模拟过程中探测器接收到的光子对的总数量以及假符合事件光子对的数量。
可以理解的,模拟过程中探测器接收到的光子对包括真符合事件光子对和假符合事件光子对,其中假符合事件光子对包括散射光子对和非符合光子形成的光子对。
具体地,所述散射光子对即为由于散射原因形成的光子对,非符合光子形成的光子对即为包含777keV的单光子的光子对。
步骤130,基于所述光子对的总数量以及假符合事件光子对的数量对原始PET图像进行校正。
示例性地,基于所述光子对的总数量以及假符合事件光子对的数量校正所述原始PET数据,去除所述原始PET数据中的散射偏差以及非符合偏差,并基于校正后的PET数据重建PET图像,得到校正PET图像。
可以理解的,仅通过一次校正可能无法得到最优的或符合预设标准的校正结果,因此,所述基于所述光子对的总数量以及假符合事件光子对的数量对原始PET图像进行校正还包括基于所述光子对的总数量以及假符合事件光子对的数量对原始PET图像进行迭代校正,以使校正后的PET图像达到预设标准。
上述PET图像校正方法,通过蒙特卡洛方法模拟不同能量光子在湮灭过程中的运动过程,并进行追踪,得到模拟过程中PET探测器接收到的光子对的总数量和假符合事件光子对的数量,进而对原始PET图像进行校正,以消除prompt gamma效应和散射带来的偏差,提高重建出的PET图像质量和量化精度。
请参阅图2,图2为本发明一实施例的校正方法的流程示意图。
在本实施例中,所述校正方法包括:
步骤200,基于所述光子对的总数量以及假符合事件光子对的数量建立假符合事件光子对的数据弦图,并得到对应的比例因子。
可以理解的,基于所述光子对的总数量以及假符合事件光子对的数量建立假符合事件光子对的数据弦图即采用数据弦图的模式储存蒙特卡洛模拟得到的结果数据。具体地,所述比例因子即为假符合事件光子对的数量占光子对总数量的比例。
步骤210,基于所述假符合事件光子对的数据弦图及对应的比例因子对原始PET图像进行校正。
示例性地,所述基于所述假符合事件光子对的数据弦图及对应的比例因子对原始PET图像进行校正包括基于所述假符合事件光子对的数据弦图及对应的比例因子对原始PET数据进行校正,并基于校正后的PET数据重建PET图像,得到校正PET图像。可以理解的,数据弦图为一种数据存储模式,可直接用数据弦图对所述原始PET数据进行校正。
可以理解的,采用蒙特卡洛模拟方法模拟的光子总数量与原始PET数据中的光子总数量存在数量级的差别,因此,在基于所述假符合事件光子对的数据弦图及对应的比例因子对原始PET数据进行校正之前,还包括对所述假符合事件光子对的数据弦图及对应的比例因子进行归一化处理,以转化到与所述原始PET数据同样的数量级,并基于转化后的数据弦图及对应的比例因子对原始PET数据进行校正。
应该理解的是,虽然图1-2的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图1-2中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
在一个实施例中,如图3所示,提供了一种PET图像校正装置,包括:光子产生模块300、传播模拟模块310、统计模块320和校正模块330,其中:
光子产生模块300,用于基于蒙特卡洛模拟方法对放射性核素进行衰变和湮灭模拟,产生一定数量的符合光子和非符合光子。
光子产生模块300,还用于:
基于被检体的原始PET数据重建获得原始PET图像;
以所述原始PET图像的灰度值作为权重系数进行蒙特卡洛模拟,模拟放射性核素进行衰变和湮灭,产生一定数量的符合光子和非符合光子。
光子产生模块300,还用于对原始PET数据进行衰减校正、归一化校正、死时间校正、随机校正后重建获得原始PET图像。
传播模拟模块310,用于基于蒙特卡洛模拟方法模拟所述符合光子和非符合光子的传播过程。
统计模块320,用于统计模拟过程中探测器接收到的光子对的总数量以及假符合事件光子对的数量。
校正模块330,基于所述光子对的总数量以及假符合事件光子对的数量对原始PET图像进行校正。
校正模块330,还用于基于所述光子对的总数量以及假符合事件光子对的数量对原始PET图像进行迭代校正,以使校正后的PET图像达到预设标准。
在一个实施例中,如图4所示,提供了一种校正模块330,包括:数据弦图建立单元331和校正单元332,其中:
数据弦图建立单元331,用于基于所述光子对的总数量以及假符合事件光子对的数量建立假符合事件光子对的数据弦图,并得到对应的比例因子。
校正单元332,用于基于所述假符合事件光子对的数据弦图及对应的比例因子对原始PET图像进行校正。
校正单元332,还用于:
基于所述假符合事件光子对的数据弦图及对应的比例因子对原始PET数据进行校正;
基于校正后的PET数据重建PET图像,得到校正PET图像。
校正单元332,还用于:
对所述假符合事件光子对的数据弦图及对应的比例因子进行归一化处理,以转化到与所述原始PET数据同样的数量级;
基于转化后的数据弦图及对应的比例因子对原始PET数据进行校正。
关于PET图像校正装置的具体限定可以参见上文中对于PET图像校正方法的限定,在此不再赘述。上述PET图像校正装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
在一个实施例中,提供了一种计算机设备,该计算机设备可以是终端,其内部结构图可以如图5所示。该计算机设备包括通过系统总线连接的处理器、存储器、网络接口、显示屏和输入装置。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统和计算机程序。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的网络接口用于与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现一种PET图像校正方法。该计算机设备的显示屏可以是液晶显示屏或者电子墨水显示屏,该计算机设备的输入装置可以是显示屏上覆盖的触摸层,也可以是计算机设备外壳上设置的按键、轨迹球或触控板,还可以是外接的键盘、触控板或鼠标等。
本领域技术人员可以理解,图5中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
在一个实施例中,提供了一种计算机设备,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现以下步骤:
基于蒙特卡洛模拟方法对放射性核素进行衰变和湮灭模拟,产生一定数量的符合光子和非符合光子;
基于蒙特卡洛模拟方法模拟所述符合光子和非符合光子的传播过程;
统计模拟过程中探测器接收到的光子对的总数量以及假符合事件光子对的数量;
基于所述光子对的总数量以及假符合事件光子对的数量对原始PET图像进行校正。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:
基于被检体的原始PET数据重建获得原始PET图像;
以所述原始PET图像的灰度值作为权重系数进行蒙特卡洛模拟,模拟放射性核素进行衰变和湮灭,产生一定数量的符合光子和非符合光子。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:
对原始PET数据进行衰减校正、归一化校正、死时间校正、随机校正后重建获得原始PET图像。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:
基于所述光子对的总数量以及假符合事件光子对的数量建立假符合事件光子对的数据弦图,并得到对应的比例因子;
基于所述假符合事件光子对的数据弦图及对应的比例因子对原始PET图像进行校正。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:
基于所述假符合事件光子对的数据弦图及对应的比例因子对原始PET数据进行校正;
基于校正后的PET数据重建PET图像,得到校正PET图像。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:
对所述假符合事件光子对的数据弦图及对应的比例因子进行归一化处理,以转化到与所述原始PET数据同样的数量级;
基于转化后的数据弦图及对应的比例因子对原始PET数据进行校正。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:
基于所述光子对的总数量以及假符合事件光子对的数量对原始PET图像进行迭代校正,以使校正后的PET图像达到预设标准。
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现以下步骤:
基于蒙特卡洛模拟方法对放射性核素进行衰变和湮灭模拟,产生一定数量的符合光子和非符合光子;
基于蒙特卡洛模拟方法模拟所述符合光子和非符合光子的传播过程;
统计模拟过程中探测器接收到的光子对的总数量以及假符合事件光子对的数量;
基于所述光子对的总数量以及假符合事件光子对的数量对原始PET图像进行校正。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:
基于被检体的原始PET数据重建获得原始PET图像;
以所述原始PET图像的灰度值作为权重系数进行蒙特卡洛模拟,模拟放射性核素进行衰变和湮灭,产生一定数量的符合光子和非符合光子。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:
对原始PET数据进行衰减校正、归一化校正、死时间校正、随机校正后重建获得原始PET图像。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:
基于所述光子对的总数量以及假符合事件光子对的数量建立假符合事件光子对的数据弦图,并得到对应的比例因子;
基于所述假符合事件光子对的数据弦图及对应的比例因子对原始PET图像进行校正。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:
基于所述假符合事件光子对的数据弦图及对应的比例因子对原始PET数据进行校正;
基于校正后的PET数据重建PET图像,得到校正PET图像。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:
对所述假符合事件光子对的数据弦图及对应的比例因子进行归一化处理,以转化到与所述原始PET数据同样的数量级;
基于转化后的数据弦图及对应的比例因子对原始PET数据进行校正。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:
基于所述光子对的总数量以及假符合事件光子对的数量对原始PET图像进行迭代校正,以使校正后的PET图像达到预设标准。
上述PET图像校正方法、装置、计算机设备和存储介质,通过蒙特卡洛方法模拟不同能量光子在湮灭过程中的运动过程,并进行追踪,得到模拟过程中PET探测器接收到的光子对的总数量和假符合事件光子对的数量,进而对原始PET图像进行校正,以消除promptgamma效应和散射带来的偏差,提高重建出的PET图像质量和量化精度。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种PET图像校正方法,其特征在于,包括:
基于蒙特卡洛模拟方法对放射性核素进行衰变和湮灭模拟,产生一定数量的符合光子和非符合光子;
基于蒙特卡洛模拟方法模拟所述符合光子和非符合光子的传播过程;
统计模拟过程中探测器接收到的光子对的总数量以及假符合事件光子对的数量;
基于所述光子对的总数量以及假符合事件光子对的数量对原始PET图像进行校正。
2.根据权利要求1所述的方法,其特征在于,所述基于蒙特卡洛模拟方法对放射性核素进行衰变和湮灭模拟,产生一定数量的符合光子和非符合光子包括:
基于被检体的原始PET数据重建获得原始PET图像;
以所述原始PET图像的灰度值作为权重系数进行蒙特卡洛模拟,模拟放射性核素进行衰变和湮灭,产生一定数量的符合光子和非符合光子。
3.根据权利要求2所述的方法,其特征在于,所述基于被检体的原始PET数据重建获得原始PET图像包括:
对原始PET数据进行衰减校正、归一化校正、死时间校正或随机校正后重建获得原始PET图像。
4.根据权利要求1所述的方法,其特征在于,所述基于所述光子对的总数量以及假符合事件光子对的数量对原始PET图像进行校正包括:
基于所述光子对的总数量以及假符合事件光子对的数量建立假符合事件光子对的数据弦图,并得到对应的比例因子;
基于所述假符合事件光子对的数据弦图及对应的比例因子对原始PET图像进行校正。
5.根据权利要求4所述的方法,其特征在于,基于所述假符合事件光子对的数据弦图及对应的比例因子对原始PET图像进行校正包括:
基于所述假符合事件光子对的数据弦图及对应的比例因子对原始PET数据进行校正;
基于校正后的PET数据重建PET图像,得到校正PET图像。
6.根据权利要求5所述的方法,其特征在于,所述基于所述假符合事件光子对的数据弦图及对应的比例因子对原始PET数据进行校正包括:
对所述假符合事件光子对的数据弦图及对应的比例因子进行归一化处理,以转化到与所述原始PET数据同样的数量级;
基于转化后的数据弦图及对应的比例因子对原始PET数据进行校正。
7.根据权利要求1至6中任意一项所述的方法,其特征在于,所述基于所述光子对的总数量以及假符合事件光子对的数量对原始PET图像进行校正还包括:
基于所述光子对的总数量以及假符合事件光子对的数量对原始PET图像进行迭代校正,以使校正后的PET图像达到预设标准。
8.一种PET图像校正装置,其特征在于,所述装置包括:
光子产生模块,用于基于蒙特卡洛模拟方法对放射性核素进行衰变和湮灭模拟,产生一定数量的符合光子和非符合光子;
传播模拟模块,用于基于蒙特卡洛模拟方法模拟所述符合光子和非符合光子的传播过程;
统计模块,用于统计模拟过程中探测器接收到的光子对的总数量以及假符合事件光子对的数量;
校正模块,基于所述光子对的总数量以及假符合事件光子对的数量对原始PET图像进行校正。
9.一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求1至7中任一项所述方法的步骤。
10.一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1至7中任一项所述的方法的步骤。
CN201910306003.0A 2019-04-16 2019-04-16 Pet图像校正方法、装置、计算机设备和存储介质 Active CN110047116B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910306003.0A CN110047116B (zh) 2019-04-16 2019-04-16 Pet图像校正方法、装置、计算机设备和存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910306003.0A CN110047116B (zh) 2019-04-16 2019-04-16 Pet图像校正方法、装置、计算机设备和存储介质

Publications (2)

Publication Number Publication Date
CN110047116A true CN110047116A (zh) 2019-07-23
CN110047116B CN110047116B (zh) 2023-01-31

Family

ID=67277420

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910306003.0A Active CN110047116B (zh) 2019-04-16 2019-04-16 Pet图像校正方法、装置、计算机设备和存储介质

Country Status (1)

Country Link
CN (1) CN110047116B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110706175A (zh) * 2019-09-27 2020-01-17 上海联影医疗科技有限公司 Pet校正系数的生成方法、系统、可读存储介质和设备
CN111914393A (zh) * 2020-06-29 2020-11-10 上海联影医疗科技有限公司 死时间校正方法、装置、计算机设备和存储介质
CN112932515A (zh) * 2021-01-29 2021-06-11 明峰医疗系统股份有限公司 一种用于tof-pet的时间校正方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014167522A1 (en) * 2013-04-11 2014-10-16 Koninklijke Philips N.V. Method for modeling and accounting for cascade gammas in images
CN108615250A (zh) * 2018-05-31 2018-10-02 上海联影医疗科技有限公司 图像重建方法、装置、系统和计算机可读存储介质
CN108760787A (zh) * 2018-04-27 2018-11-06 南京航空航天大学 一种实现密闭腔体内喷雾形状检测和成像的系统及方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014167522A1 (en) * 2013-04-11 2014-10-16 Koninklijke Philips N.V. Method for modeling and accounting for cascade gammas in images
CN108760787A (zh) * 2018-04-27 2018-11-06 南京航空航天大学 一种实现密闭腔体内喷雾形状检测和成像的系统及方法
CN108615250A (zh) * 2018-05-31 2018-10-02 上海联影医疗科技有限公司 图像重建方法、装置、系统和计算机可读存储介质

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110706175A (zh) * 2019-09-27 2020-01-17 上海联影医疗科技有限公司 Pet校正系数的生成方法、系统、可读存储介质和设备
CN111914393A (zh) * 2020-06-29 2020-11-10 上海联影医疗科技有限公司 死时间校正方法、装置、计算机设备和存储介质
CN111914393B (zh) * 2020-06-29 2024-05-28 上海联影医疗科技股份有限公司 死时间校正方法、装置、计算机设备和存储介质
CN112932515A (zh) * 2021-01-29 2021-06-11 明峰医疗系统股份有限公司 一种用于tof-pet的时间校正方法

Also Published As

Publication number Publication date
CN110047116B (zh) 2023-01-31

Similar Documents

Publication Publication Date Title
CN110151210B (zh) 一种医学图像处理方法、系统、装置和计算机可读介质
CN106491151B (zh) Pet图像获取方法及系统
CN108615250A (zh) 图像重建方法、装置、系统和计算机可读存储介质
Ljungberg et al. 3D absorbed dose calculations based on SPECT: evaluation for 111-In/90-Y therapy using Monte Carlo simulations
CN107638188A (zh) 图像衰减校正方法及装置
CN107976706B (zh) 一种pet系统的计数丢失校正方法和装置
CN110047116A (zh) Pet图像校正方法、装置、计算机设备和存储介质
Stute et al. Monte Carlo simulations of clinical PET and SPECT scans: impact of the input data on the simulated images
US10245002B2 (en) Isotope specific calibration of a dose calibrator for quantitative functional imaging
EP3619686B1 (en) Generation of accurate hybrid datasets for quantitative molecular imaging
CN108932741A (zh) 动态pet参数成像方法、装置、系统和计算机可读存储介质
CN106659452B (zh) 在定量单光子发射计算机断层扫描中利用多个光电峰的重构
CN110584698A (zh) 探测器质量控制效验方法、装置、计算机设备和存储介质
CN109741411B (zh) 基于梯度域的低剂量pet图像重建方法、装置、设备及介质
CN110025329A (zh) 符合计数弦图生成方法、装置、计算机设备和存储介质
CN110136076A (zh) 医学扫描成像方法、装置、存储介质及计算机设备
HU231327B1 (hu) Többemissziós energiák egyfotonos emissziós komputertomográfiában
CN110215227A (zh) 时间窗设置方法、装置、计算机设备和存储介质
CN110717951A (zh) 一种基于cGANs的PET图像直接重建方法
CN110687585B (zh) 获取晶体效率的方法、装置、计算机设备和存储介质
CN110223247A (zh) 图像衰减校正方法、装置、计算机设备和存储介质
Onecha et al. Dictionary-based software for proton dose reconstruction and submilimetric range verification
CN110189387A (zh) Pet图像校正方法方法、装置、计算机设备和存储介质
CN112150378A (zh) 基于自逆卷积生成对抗网络的低剂量全身pet图像增强方法
CN108873047B (zh) 检测放射源活度的方法、系统、计算机设备和存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 201807 Shanghai City, north of the city of Jiading District Road No. 2258

Applicant after: Shanghai Lianying Medical Technology Co.,Ltd.

Address before: 201807 Shanghai City, north of the city of Jiading District Road No. 2258

Applicant before: SHANGHAI UNITED IMAGING HEALTHCARE Co.,Ltd.

GR01 Patent grant
GR01 Patent grant