CN110046412B - Circular grating angle measurement error correction method based on optimized BP neural network - Google Patents
Circular grating angle measurement error correction method based on optimized BP neural network Download PDFInfo
- Publication number
- CN110046412B CN110046412B CN201910261594.4A CN201910261594A CN110046412B CN 110046412 B CN110046412 B CN 110046412B CN 201910261594 A CN201910261594 A CN 201910261594A CN 110046412 B CN110046412 B CN 110046412B
- Authority
- CN
- China
- Prior art keywords
- neural network
- angle measurement
- measurement error
- circular grating
- optimized
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005259 measurement Methods 0.000 title claims abstract description 60
- 238000013528 artificial neural network Methods 0.000 title claims abstract description 42
- 238000000034 method Methods 0.000 title claims abstract description 37
- 238000012937 correction Methods 0.000 title claims abstract description 27
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 19
- 230000002068 genetic effect Effects 0.000 claims abstract description 15
- 238000002474 experimental method Methods 0.000 claims abstract description 8
- 238000012549 training Methods 0.000 claims description 15
- 238000010606 normalization Methods 0.000 claims description 3
- 230000006870 function Effects 0.000 description 7
- 210000002569 neuron Anatomy 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 238000005457 optimization Methods 0.000 description 3
- 238000010183 spectrum analysis Methods 0.000 description 3
- 210000000349 chromosome Anatomy 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000012897 Levenberg–Marquardt algorithm Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000011478 gradient descent method Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Data Mining & Analysis (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Computational Linguistics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Computer Hardware Design (AREA)
- Geometry (AREA)
- Feedback Control In General (AREA)
- Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)
Abstract
本发明属于测量仪器领域,公开一种基于优化BP神经网络的圆光栅测角误差修正方法,包括如下步骤,步骤一,准备实验装置,调整自准直仪和精密轴系的位置并固定,达到可正常使用状态;步骤二,标定测角误差值,进行重复实验多次;步骤三,分析谐波项,对该设定温度下的多组实验数据进行傅里叶变换,分析各个谐波项的幅值和相位,确定相对误差小于10%的谐波项,进行后续修正;步骤四,调整温控箱的温度,进行上述步骤二至步骤三的操作;步骤五,利用遗传算法优化BP神经网络方法,建立待修正的各个谐波项的幅值和相位同温度的关系,并验证修正模型,完成圆光栅测角误差修正。可显著提高平行双关节坐标测量机的测量精度。
The invention belongs to the field of measuring instruments, and discloses a circular grating angle measurement error correction method based on an optimized BP neural network, comprising the following steps. It can be used normally; step 2, calibrate the angle measurement error value, and repeat the experiment for many times; step 3, analyze the harmonic terms, perform Fourier transform on the multiple sets of experimental data at the set temperature, and analyze each harmonic term The amplitude and phase are determined, and the harmonic term with the relative error less than 10% is determined, and the subsequent correction is carried out; Step 4, adjust the temperature of the temperature control box, and perform the operations from the above steps 2 to 3; Step 5, use genetic algorithm to optimize the BP neural network. The network method is used to establish the relationship between the amplitude and phase of each harmonic item to be corrected and the temperature, and verify the correction model to complete the correction of the angle measurement error of the circular grating. It can significantly improve the measurement accuracy of the parallel double-joint coordinate measuring machine.
Description
技术领域technical field
本发明属于测量仪器领域,尤其涉及一种基于优化BP神经网络的圆光栅测角误差修 正方法。The invention belongs to the field of measuring instruments, in particular to a circular grating angle measurement error correction method based on an optimized BP neural network.
背景技术Background technique
关节类坐标测量机是一种广泛应用在现代制造业的精密测量仪器,主要应用在汽车制 造、航空航天、模具加工等领域。该类仪器采用串联型结构,由多个精密轴系和连杆结构 组成,因此该仪器的测量精度受到精密轴系角度测量精度的显著影响,然而精密轴系中圆 光栅的测角精度受到环境温度的显著影响。在不同的工业现场,环境温度的变化范围可能 达到30℃,若圆光栅测角误差模型中未包括环境温度参数,则当工业现场的环境温度与仪 器在标定间(通常是20℃)相差过大时,会引起显著的圆光栅测角误差,从而导致仪器测量精度显著下降。Joint coordinate measuring machine is a precision measuring instrument widely used in modern manufacturing, mainly used in automobile manufacturing, aerospace, mold processing and other fields. This type of instrument adopts a tandem structure and is composed of multiple precision shaft systems and connecting rod structures. Therefore, the measurement accuracy of the instrument is significantly affected by the angle measurement accuracy of the precision shaft system. However, the angle measurement accuracy of the circular grating in the precision shaft system is affected by the environment. significant effect of temperature. In different industrial sites, the variation range of the ambient temperature may reach 30°C. If the ambient temperature parameter is not included in the angle measurement error model of the circular grating, when the ambient temperature of the industrial site and the instrument are more than 20°C during calibration When it is large, it will cause a significant angle measurement error of the circular grating, which will lead to a significant decrease in the measurement accuracy of the instrument.
针对目前关节类坐标测量机因环境温度改变导致测量精度降低,采用的方法是整机标 定方法,即在关节类坐标测量机上安装温度传感器,将仪器整机放在大型温控箱内,在不 同的温度情况下,利用石英棒等标准件对仪器进行整机标定,得到仪器的连杆长度等结构 参数,并制成表格录入上位机系统,这种方法在一定程度上可以修正测量误差,但是没有 涉及修正温度变化导致的圆光栅测角误差,以及因此造成的仪器测量误差。目前没有修正 因环境温度变化引起圆光栅测角误差的方法,仅有对因光栅盘刻线误差、光栅盘安装偏心、 旋转轴晃动等几何结构和运动误差进行修正的方法,即通过使用自准直仪、多面棱体或更 高精度的圆光栅传感器作为标准量,获得待修正圆光栅的测角误差离散值,使用最小二乘 法等算法建立修正函数。In view of the decrease of measurement accuracy of the current joint coordinate measuring machine due to the change of ambient temperature, the method adopted is the whole machine calibration method, that is, a temperature sensor is installed on the joint coordinate measuring machine, and the whole instrument is placed in a large temperature control box. When the temperature of the instrument is high, use standard parts such as quartz rods to calibrate the instrument to obtain the structural parameters such as the length of the connecting rod of the instrument, and make a table and enter it into the upper computer system. This method can correct the measurement error to a certain extent, but There is no correction for the angle measurement error of the circular grating caused by the temperature change, and the instrument measurement error caused by it. At present, there is no method for correcting the angle measurement error of the circular grating caused by the change of the ambient temperature. There is only a method for correcting the geometric structure and motion errors caused by the grating disc engraving error, the grating disc installation eccentricity, and the shaking of the rotating shaft, that is, by using self-alignment. A straight meter, a polygonal prism or a high-precision circular grating sensor is used as a standard quantity to obtain the discrete value of the angle measurement error of the circular grating to be corrected, and a correction function is established using algorithms such as the least squares method.
发明内容SUMMARY OF THE INVENTION
本发明的目的是为了解决这一问题,提供一种基于优化BP神经网络的圆光栅测角误 差修正方法,单读数头基于傅里叶变换进行频谱分析,同时结合采用遗传算法修正包括环 境温度改变造成的圆光栅测角误差,对于提高关节类坐标测量机在工业现场使用时的测量 精度。The purpose of the present invention is to solve this problem, to provide a circular grating angle measurement error correction method based on an optimized BP neural network. The angle measurement error caused by the circular grating is used to improve the measurement accuracy of the joint coordinate measuring machine when it is used in the industrial field.
为实现上述发明目的,本发明的技术方案是:In order to realize the above-mentioned purpose of the invention, the technical scheme of the present invention is:
一种基于优化BP神经网络的圆光栅测角误差修正方法,其特征在于,包括如下步骤,A circular grating angle measurement error correction method based on an optimized BP neural network is characterized in that, comprising the following steps:
步骤一,准备实验装置,在精密轴系上安装单个读数头,将精密轴系中的旋转轴通过 夹具同23面棱体固定,调整自准直仪和精密轴系的位置并固定,达到可正常使用状态;
步骤二,标定测角误差值,在设定温度下,标定圆光栅的离散测角误差值,进行重复 实验多次;
步骤三,分析谐波项,对该设定温度下的多组实验数据进行傅里叶变换,分析各个谐 波项的幅值和相位,确定谐波项成分的相对误差,进行后续修正;Step 3, analyze harmonic term, carry out Fourier transform to many groups of experimental data under this setting temperature, analyze the amplitude and phase of each harmonic term, determine the relative error of harmonic term composition, carry out follow-up correction;
步骤四,调整温控箱的温度,在设定温度范围每隔5℃分别进行上述步骤二至步骤三 的操作;
步骤五,利用遗传算法优化BP神经网络方法,建立待修正的各个谐波项的幅值和相 位同温度的函数关系,并验证修正模型,完成圆光栅测角误差修正。Step 5: Use the genetic algorithm to optimize the BP neural network method, establish the functional relationship between the amplitude and phase of each harmonic term to be corrected and the temperature, and verify the correction model to complete the correction of the angle measurement error of the circular grating.
优选地,步骤2,重复实验为3次。Preferably, in
优选地,步骤3,实验数据数量与重复实验次数相同。Preferably, in step 3, the number of experimental data is the same as the number of repeated experiments.
优选地,步骤5,所述遗传算法优化BP神经网络方法,步骤如下,1)构建BP神经网络,2)训练BP神经网络,先训练数据归一化,再进行遗传算法优化初始参数,最后BP 神经网络训练。Preferably, in step 5, the genetic algorithm optimizes the BP neural network method, and the steps are as follows: 1) constructing the BP neural network, 2) training the BP neural network, first normalizing the training data, then optimizing the initial parameters by the genetic algorithm, and finally BP Neural network training.
与现有技术相比较,本发明的有益效果是:Compared with the prior art, the beneficial effects of the present invention are:
基于单读数,运用频谱分析遗传算法优化BP神经网络的圆光栅测角误差修正方法, 用于修正因环境温度、圆光栅结构和运动误差等引起的测角误差,通过重复实验,确定出 稳定的误差谐波项,并进行修正,修正了温度变化、光栅几何结构以及误差运动造成的测 角误差,极大地提高了圆光栅测角精度,从而提高了关节类坐标测量机的测量精度,增强 了该类仪器在工业现场的适用性,具有重大意义。Based on a single reading, the spectrum analysis genetic algorithm is used to optimize the BP neural network's circular grating angle measurement error correction method, which is used to correct the angle measurement errors caused by ambient temperature, circular grating structure and motion errors. The error harmonic term is corrected, and the angle measurement error caused by the temperature change, the grating geometry and the error motion is corrected, which greatly improves the angle measurement accuracy of the circular grating, thereby improving the measurement accuracy of the joint coordinate measuring machine. The applicability of such instruments in industrial sites is of great significance.
附图说明Description of drawings
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例, 并与说明书一起用于解释本发明的原理。The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments consistent with the invention and together with the description serve to explain the principles of the invention.
图1为本发明基于优化BP神经网络的圆光栅测角误差修正方法的实验装置示意图。FIG. 1 is a schematic diagram of the experimental device of the method for correcting the angle measurement error of the circular grating based on the optimized BP neural network of the present invention.
图2为本发明基于优化BP神经网络的圆光栅测角误差修正方法的遗传算法优化BP神 经网络算法的流程图。Fig. 2 is the flow chart of the genetic algorithm optimization of the BP neural network algorithm based on the optimization method of the circular grating angle measurement error correction method of the BP neural network of the present invention.
图3为本发明基于优化BP神经网络的圆光栅测角误差修正方法的测角误差修正效果 图。Fig. 3 is the angle measurement error correction effect diagram of the circular grating angle measurement error correction method based on the optimized BP neural network of the present invention.
图4为本发明基于优化BP神经网络的圆光栅测角误差修正方法的精密轴系示意图。FIG. 4 is a schematic diagram of a precise shaft system of the method for correcting the angle measurement error of a circular grating based on an optimized BP neural network according to the present invention.
具体实施方式Detailed ways
下面将结合附图对本发明实施例中的技术方案进行清楚、完整地描述。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings.
如图1、图4所示,一种基于优化BP神经网络的圆光栅测角误差修正方法,包括如下步骤:As shown in Figure 1 and Figure 4, a method for correcting the angle measurement error of a circular grating based on an optimized BP neural network includes the following steps:
步骤一,准备实验装置,在读数头7支架上安装单个读数头,在精密轴系中的旋转轴 1上通过螺钉固定连接夹具,并夹具通过螺母固定卡接有23面棱体2,将精密轴系放置在温控箱4中,调整自准直仪5和精密轴系的位置,使其光路通过温控箱的开口6垂直射入 23面棱体,调整23面棱体的位置,当圆光栅8示值接近0°时,23面棱体的第1个工作 面垂直于自准直仪光路,拧紧螺母,关上箱门,达到可正常使用状态。精密轴系内设有滚 珠轴承31和滚珠轴承套接的轴套32。
步骤二,标定测角误差值,在某一设定的环境温度下,通过电机转动旋转轴,使得从 23面棱体的第1工作面至第23工作面依次垂直于自准直仪光路,即自准直仪的十字靶标经23面棱体工作面反射回来后位于视场的中间位置;Step 2: Calibrate the angle measurement error value. Under a certain set ambient temperature, the rotating shaft is rotated by the motor, so that the first working face to the 23rd working face of the 23-face prism is perpendicular to the optical path of the autocollimator. That is, the cross target of the self-collimator is located in the middle of the field of view after being reflected by the working surface of the 23-sided prism;
在这23个位置处,同步记录圆光栅的角度测量数值Hk,k=1,2,…,23和自准直仪水平 方向示值γXk。对圆光栅测角数值Hk和γXk进行处理,得到当前温度下经23面棱体和自准 直仪标定的离散测角误差值ε(θk):At these 23 positions, the angle measurement values of the circular grating H k , k=1, 2, . . . , 23 and the autocollimator horizontal direction indication γ Xk are recorded simultaneously. The angle measurement values H k and γ Xk of the circular grating are processed to obtain the discrete angle measurement error value ε(θ k ) calibrated by the 23-sided prism and the autocollimator at the current temperature:
重复进行上述步骤二,得到在某一设定温度下的3组测量数据 εm(θk),m=1,2,3,k=1,2,…,23。Repeat the
根据公式:即对每组ε(θk)进 行傅里叶变换可以得到F(n)。由于使用23面棱体,实际有效的谐波项为0至11阶项,写 成三角函数形式为:According to the formula: That is, F(n) can be obtained by performing Fourier transform on each group of ε(θ k ). Since a 23-sided prism is used, the actual effective harmonic terms are 0 to 11th order terms, written in trigonometric form as:
其中,c0,ci为各阶幅值,为谐波相位。Among them, c 0 , c i are the amplitude values of each order, is the harmonic phase.
步骤三,分析谐波项,应用该温度下3组数据,针对各项谐波的幅值和相位进行傅里 叶变换频谱分析,若某阶谐波项的幅值和相位的相对误差都小于10%,即认为该项为稳定 的测角误差项。例如分析1阶项的幅值c10,c20,c30和相位如彼此间相对误差小 于10%的谐波项成分,即认为是稳定的测角误差项,后续进行建模修正。对经频谱分析得 到的稳定的谐波项的幅值和相位取算数平均值,得到cj,其中j是稳定谐波项的阶数。Step 3, analyze the harmonic term, apply 3 sets of data at this temperature, and perform Fourier transform spectrum analysis on the amplitude and phase of each harmonic. If the relative error of the amplitude and phase of a certain order harmonic term is less than 10%, that is, it is considered as a stable angle measurement error term. For example, analyze the magnitude c 10 , c 20 , c 30 and the phase of the 1st order term If the relative error between each other is less than 10% of the harmonic term components, it is considered as a stable angle measurement error term, and subsequent modeling correction is performed. Take the arithmetic mean of the amplitude and phase of the stable harmonic term obtained by spectrum analysis to obtain c j , where j is the order of the stable harmonic term.
步骤四,调整温控箱的温度,分别在10℃至40℃每隔5℃进行上述步骤二至步骤四, 得到在各个温度下稳定误差的幅值、相位关于温度T的离散点cTj, Step 4: Adjust the temperature of the temperature control box, and perform the
步骤五,由于在各个温度下的幅值、相位同温度的关系是较复杂且非线性的,因此使 用经遗传算法优化的BP神经网络方法,建立待修正的各个谐波项的幅值cj和相位和温 度T的函数关系,并验证模型,最终完成圆光栅测角误差修正。Step 5: Since the relationship between the amplitude and phase at each temperature is complex and nonlinear, the BP neural network method optimized by the genetic algorithm is used to establish the amplitude c j of each harmonic term to be corrected. and phase And the functional relationship of temperature T, and verify the model, and finally complete the angle measurement error correction of the circular grating.
如图2所示,所述遗传算法优化的BP神经网络方法的系统框图,步骤如下:As shown in Figure 2, the system block diagram of the BP neural network method optimized by the genetic algorithm, the steps are as follows:
1、构建BP神经网络1. Build BP neural network
采用单一隐含层结构,输入层有1个节点,对应温度T,隐含层使用17个节点层有2N个节点,N为谐波项稳定的项数。Using a single hidden layer structure, the input layer has 1 node, corresponding to the temperature T, the hidden layer uses 17 nodes, and the layer has 2N nodes, where N is the number of stable harmonic terms.
隐含层的传递函数为正切S型传递函数tansig: The transfer function of the hidden layer is the tangent sigmoid transfer function tansig:
输出层的传递函数为线性传递函数purelin:g(x)=x。The transfer function of the output layer is a linear transfer function purelin: g(x)=x.
令输出层第q个神经元阈值为θj,Let the threshold of the qth neuron in the output layer be θ j ,
第h个隐含层神经元阈值为γh,The threshold of the hth hidden layer neuron is γ h ,
输入层第i个节点与隐含层第h个节点之间的权重为vih,The weight between the ith node of the input layer and the hth node of the hidden layer is v ih ,
隐含层第h个节点与输出层第q个节点的权重为whq,The weight of the hth node of the hidden layer and the qth node of the output layer is w hq ,
隐含层第h个神经元接收到的输入为αh=vhT,The input received by the hth neuron in the hidden layer is α h = v h T,
隐含层第h个神经元的输出为bh=f(αh-γh),The output of the hth neuron in the hidden layer is b h =f(α h -γ h ),
输出层第q个神经元接收到的输入为 The input received by the qth neuron in the output layer is
输出层第q个神经元的输出为yq=g(βq-θq)。The output of the qth neuron in the output layer is y q =g(β q -θ q ).
其中,yq为cq,yq+1为 Among them, y q is c q , and y q+1 is
2、训练BP神经网络2. Training BP neural network
2.1训练数据归一化2.1 Normalization of training data
使用得到的数据作为网络训练数据,对训练进行归一化处理,使用归一化方法如下:Use the obtained data as network training data, and normalize the training. The normalization method is as follows:
xk=(xk-xmin)/(xmax-xmin) (3)x k =(x k -x min )/(x max -x min ) (3)
式中,xmin为数据序列中的最小数,xmax为序列中的最大数。配置网络参数,设置迭代次 数、学习率和目标。In the formula, x min is the minimum number in the data sequence, and x max is the maximum number in the sequence. Configure the network parameters, set the number of iterations, learning rate and target.
2.2遗传算法优化初始参数2.2 Genetic algorithm to optimize initial parameters
神经网络的初始参数为[0,1]内随机数,使用遗传算法来优化BP神经网络的初始权值和 阈值,使优化后的BP神经网络能够更好地预测函数输出。该方法主要包括适应度函数、 选择操作、交叉操作和变异操作。The initial parameters of the neural network are random numbers in [0,1], and the genetic algorithm is used to optimize the initial weights and thresholds of the BP neural network, so that the optimized BP neural network can better predict the function output. The method mainly includes fitness function, selection operation, crossover operation and mutation operation.
使用训练数据训练BP神经网络后预测系统输出,把预测输出和期望输出之间的误差 绝对值和E作为个体适应度值F,使用选择轮盘赌法进行选择操作,由于个体采用实数编码,所以交叉操作方法使用实数交叉法,第k个染色体ak和第l个染色体al在j位的交叉操 作方法如下:Use the training data to train the BP neural network to predict the system output, take the absolute value of the error between the predicted output and the expected output and E as the individual fitness value F, and use the selection roulette method to perform the selection operation. Since the individual is encoded by real numbers, so The crossover operation method uses the real number crossover method. The crossover operation method of the kth chromosome a k and the lth chromosome a l at the j position is as follows:
其中,b是[0,1]间的随机数。设置种群规模为10,进化次数为40次,交叉概率为0.3,变 异概率为0.2。经遗传算法优化后,得到神经网络算法的初始值。where b is a random number between [0,1]. Set the population size to 10, the evolution times to 40, the crossover probability to be 0.3, and the mutation probability to be 0.2. After optimization by genetic algorithm, the initial value of neural network algorithm is obtained.
2.3BP神经网络训练2.3 BP neural network training
经过神经网络的输出为其中对于训练数据集中的 单个数据其误差采用梯度下降法根据误差对神经网络中的参数进行反 馈学习,采用Levenberg-Marquardt算法对神经网络进行训练,提高网络的收敛速度,减少 训练误差,提高网络性能。The output of the neural network is in For a single data in the training data set its error Gradient descent method is used for feedback learning of the parameters in the neural network according to the error, and the Levenberg-Marquardt algorithm is used to train the neural network, which improves the convergence speed of the network, reduces the training error and improves the network performance.
在其它环境温度中,例如在温控箱为28℃时,进行步骤二所述的操作,得到离散的测 角误差值ε(θk),用于验证该算法效果。将通过遗传算法优化的BP神经网络方法得到的稳 定测角误差谐波项幅值和相位同温度的关系cj(T)、带入修正模型,得到:In other ambient temperatures, for example, when the temperature control box is 28°C, the operation described in
将23个角度值θk带入上式,并计算|Δθk|,其中如果|Δθ|≤1.5″即认 为满足指标要求。如果没有达到要住,则再次进行神经网络训练。Bring the 23 angle values θ k into the above equation, and calculate |Δθ k |, where If |Δθ|≤1.5″, it is considered that the index requirements are met. If it does not meet the requirements, the neural network training is performed again.
如图3所示,误差修正效果残余误差幅值最大为1.3″,即达到要求。As shown in Figure 3, the maximum residual error amplitude of the error correction effect is 1.3", which meets the requirements.
在各个温度下的重复实验的实验数据如表1-表7所示:The experimental data of repeated experiments at various temperatures are shown in Table 1-Table 7:
表1恒温箱10℃时圆光栅测角误差标定值Table 1 The calibration value of the angle measurement error of the circular grating when the incubator is 10 °C
表2恒温箱15℃时圆光栅测角误差标定值Table 2 The calibration value of the angle measurement error of the circular grating when the incubator is 15 ℃
表3恒温箱20℃时圆光栅测角误差标定值Table 3 The calibration value of the angle measurement error of the circular grating when the incubator is 20 ℃
表4恒温箱25℃时圆光栅测角误差标定值Table 4 The calibration value of the angle measurement error of the circular grating when the incubator is 25 ℃
表5恒温箱30℃时圆光栅测角误差标定值Table 5 The calibration value of the angle measurement error of the circular grating when the incubator is 30 ℃
表6恒温箱35℃时圆光栅测角误差标定值Table 6 The calibration value of the angle measurement error of the circular grating when the incubator is 35 ℃
表7恒温箱40℃时圆光栅测角误差标定值Table 7 The calibration value of the angle measurement error of the circular grating when the incubator is 40 ℃
将表中数据按照上述方法带入,计算得到幅值cj和相位和温度T的函数关系cj(T)、 Bring the data in the table according to the above method, and calculate the amplitude c j and phase and the functional relationship of temperature T c j (T),
以上所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明 中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施 例,都属于本发明保护的范围。The above-described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative work, all belong to the protection scope of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910261594.4A CN110046412B (en) | 2019-04-02 | 2019-04-02 | Circular grating angle measurement error correction method based on optimized BP neural network |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910261594.4A CN110046412B (en) | 2019-04-02 | 2019-04-02 | Circular grating angle measurement error correction method based on optimized BP neural network |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110046412A CN110046412A (en) | 2019-07-23 |
CN110046412B true CN110046412B (en) | 2022-10-25 |
Family
ID=67275800
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910261594.4A Active CN110046412B (en) | 2019-04-02 | 2019-04-02 | Circular grating angle measurement error correction method based on optimized BP neural network |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110046412B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111473755B (en) * | 2020-04-21 | 2022-05-17 | 福建汇川物联网技术科技股份有限公司 | Remote distance measurement method and device |
CN115355813B (en) * | 2022-10-21 | 2023-03-24 | 北京科技大学 | A high-precision three-axis non-magnetic test turntable system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011006344A1 (en) * | 2009-07-15 | 2011-01-20 | 北京航空航天大学 | Temperature regulating device and intelligent temperature control method for sand dust environment test system |
CN107909149A (en) * | 2017-10-26 | 2018-04-13 | 西北农林科技大学 | A kind of Temperature in Greenhouse Forecasting Methodology based on Genetic BP Neutral Network |
-
2019
- 2019-04-02 CN CN201910261594.4A patent/CN110046412B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011006344A1 (en) * | 2009-07-15 | 2011-01-20 | 北京航空航天大学 | Temperature regulating device and intelligent temperature control method for sand dust environment test system |
CN107909149A (en) * | 2017-10-26 | 2018-04-13 | 西北农林科技大学 | A kind of Temperature in Greenhouse Forecasting Methodology based on Genetic BP Neutral Network |
Non-Patent Citations (1)
Title |
---|
平行双关节坐标测量机圆光栅测角误差补偿技术;于连栋等;《南京理工大学学报(自然科学版)》;20091030(第05期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN110046412A (en) | 2019-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107703747B (en) | Friction stir welding application-oriented dynamic parameter self-calibration method for heavy-load robot | |
CN110296668B (en) | A Correction Method for Angle Measurement Error of Circular Grating Sensor Based on BP Neural Network | |
CN106881718B (en) | Error Calibration Method for Six Degrees of Freedom Serial Robot Based on Genetic Algorithm | |
CN110687352B (en) | A PMU-based T-line parameter identification method and system for distribution network | |
CN110046412B (en) | Circular grating angle measurement error correction method based on optimized BP neural network | |
CN110188321B (en) | Primary and secondary mirror calibration method based on neural network algorithm | |
CN104597842A (en) | BP neutral network heavy machine tool thermal error modeling method optimized through genetic algorithm | |
CN104034514A (en) | Large visual field camera nonlinear distortion correction device and method | |
CN111510500A (en) | Water quality monitoring data calibration method based on edge calculation | |
CN108871373B (en) | A star sensor calibration method based on pitch-roll table and nonlinear optimization | |
CN111397755A (en) | Correction method for absolute error of temperature measuring instrument | |
CN105043433B (en) | A kind of photoelectric encoder fast-compensation method based on neutral net | |
CN114166118B (en) | A self-calibration method for optical fiber shape sensing arrangement angle | |
CN113029512B (en) | Air flow field model correction control method for temporary transonic wind tunnel | |
CN108362911A (en) | A kind of current meter scaling method based on least square method and interpolation method | |
CN114260941A (en) | A method for calibrating parameters of manipulator based on laser displacement meter | |
CN111856072A (en) | A kind of airflow velocity calculation method, system, equipment and a kind of storage medium | |
CN109724778A (en) | Three-dimensional pose recovery method based on three-core fiber twist compensation | |
CN110807218B (en) | Vertical temperature gradient effect analysis method for large-span prestressed concrete box girder bridge | |
CN112284366A (en) | A Correction Method for Heading Angle Error of Polarized Light Compass Based on TG-LSTM Neural Network | |
CN106023146B (en) | For the related unilateral self-calibration bundle adjustment method in field in photogrammetric | |
CN118350109A (en) | Building steel structure virtual assembly method and device based on BIM platform | |
CN203965128U (en) | Large visual field camera nonlinear distortion means for correcting | |
CN110955013B (en) | Primary mirror position control method and device, large-caliber telescope and readable storage medium | |
CN116007654A (en) | Error testing method for positioning system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |