CN110044375B - 一种基于加速度计的新型计步方法 - Google Patents

一种基于加速度计的新型计步方法 Download PDF

Info

Publication number
CN110044375B
CN110044375B CN201910362761.4A CN201910362761A CN110044375B CN 110044375 B CN110044375 B CN 110044375B CN 201910362761 A CN201910362761 A CN 201910362761A CN 110044375 B CN110044375 B CN 110044375B
Authority
CN
China
Prior art keywords
peak
value
zero
valley
dtw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910362761.4A
Other languages
English (en)
Other versions
CN110044375A (zh
Inventor
潘雷
姚英彪
姚遥
冯维
许晓荣
严军荣
刘兆霆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Dianzi University
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN201910362761.4A priority Critical patent/CN110044375B/zh
Publication of CN110044375A publication Critical patent/CN110044375A/zh
Application granted granted Critical
Publication of CN110044375B publication Critical patent/CN110044375B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C22/00Measuring distance traversed on the ground by vehicles, persons, animals or other moving solid bodies, e.g. using odometers, using pedometers
    • G01C22/006Pedometers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Navigation (AREA)
  • Traffic Control Systems (AREA)

Abstract

本发明公开了一种基于加速度计的新型计步方法。本发明包括如下步骤:步骤1.加速度数据的预处理;步骤2.根据过零检测法获得加速度数据的零点集合S1;步骤3.根据周期约束,获得下一个峰谷值的预测范围;步骤4.根据动态时间规整约束,精炼步骤3获得的预测范围;步骤5.在步骤4获得的预测范围内搜索最值,即为下一个峰值或谷值;步骤6.将峰值和谷值的检测结果转化为零点的检测结果,获得预测零点;步骤7.根据预测零点,剔除S1中的假零点,获得真实零点集合S2,S2中的每两个零点记为一步。本发明解决了行人在不同运动模式的计步问题,在现实中具有很好的实用性和应用前景。

Description

一种基于加速度计的新型计步方法
技术领域
本发明属于室内定位领域,具体涉及一种基于加速度计的新型计步方法。
背景技术
行人航迹推算(Pedestrian Dead Reckoning,PDR)是一种室内定位技术,它随着微机电系统的发展越来越受到研究人员的重视。PDR技术利用内嵌在移动智能设备里的惯性传感器,如加速度计、磁力计和陀螺仪等进行定位。PDR技术的基本原理可划分为:计步算法、步长估计算法和航向角估计算法三个方面。由于计步的漏检或误检会直接导致一个或几个步长的定位误差,所以精准的计步算法是十分重要的。
目前,常用的计步算法主要包括峰值检测法和过零检测法这两大类。峰值检测法是通过检测人体行走时加速度信号出现的峰值来进行计步。过零检测法将加速度计的输出移除重力加速度分量后,通过检测零点的个数来进行计步。但这些计步方法基本是考虑行人处于某种特定的运动模式而建立的,而且大多数是考虑行人在进行正常的行走情况。所以当行人改变了运动模式后,计步结果的误差将会大大增加,所以传统的计步方法不仅计步精度低且无法适应行人的运动模式。
发明内容
本发明提出一种基于加速度计的新型计步方法,该方法能够实现行人在连续不同运动模式下准确检测每一步的起始时刻和终止时刻,从而实现精确计步。本发明可以应用于内置加速度计的智能终端设备中,如智能手机、掌上电脑、个人数字设备和智能佩戴设备等。技术原理简单,易于推广使用。
本发明公布的计步方法,具体包括下面7个步骤:
步骤1.加速度数据的预处理;
步骤2.根据过零检测法获得加速度数据的零点集合S1;
步骤3.根据周期约束,获得下一个峰谷值的预测范围;
步骤4.根据动态时间规整(DTW)约束,精炼步骤3获得的预测范围;
步骤5.在步骤4获得的预测范围内搜索最值,即为下一个峰值或谷值;
步骤6.将峰值和谷值的检测结果转化为零点的检测结果,获得预测零点;
步骤7.根据预测零点,剔除S1中的假零点,获得真实零点集合S2,S2中的每两个零点记为一步。
所述步骤1的特征在于包括以下步骤:
1.1通过加速度计收集的三轴加速度数据ax,ay,az来计算平均加速度atotal
1.2移除平均加速度atotal中的重力加速度分量;
1.3通过一个数字域截止频率fLP=0.2π的4阶巴特沃斯数字低通滤波器过滤加速度中的高频噪声分量,获得最终的加速度序列a;
所述步骤3包括以下步骤:
3.1第一个峰值(谷值)和第二个峰值(谷值)由峰值检测法获得。当检测到两个峰值(谷值)后,继续后续步骤。
3.2下一个峰值的候选点其所处时刻与上一个峰值时刻的差值(下一个谷值的候选点其所处时刻与上一个谷值时刻的差值)ti应该满足如下周期约束:
ti∈((1-γ)*T,(1+γ)*T)
其中γ为预测范围长度控制参数,根据实验经验设定。T为不断更新的周期模板,其更新方式如下:
Figure BDA0002047337190000021
Ti为当前周期模板,Ti-1为前一次的周期模板,t为当前峰值与下一个峰值之间的时刻差。
3.3搜索所有满足周期约束的候选点获得下一个峰值(谷值)的预测范围RP
所述步骤4的特征在于以下步骤:
4.1构造匹配序列:
Figure BDA0002047337190000022
其中
Figure BDA0002047337190000023
Figure BDA0002047337190000024
分别为第i-1个峰值(谷值)所处时刻和第i个峰值(谷值)所处时刻。a为预处理过后的加速度序列。
4.2构造测试序列集合:
V={v1,v2,…,vj,…,vk}
其中,vj为第j个测试序列,由上一个峰值(谷值)时刻到预测范围RP中的第j个点之间的加速度数据组成。
4.3计算DTW距离集合:
D={DTW(μ,v1),DTW(μ,v2),…DTW(μ,vj),…DTW(μ,vk)}
其中DTW(μ,vj)为匹配序列μi-1和测试序列vj根据DTW计算得到的距离值。
4.4根据如下DTW约束获得更加精确的峰谷值预测范围RD
Figure BDA0002047337190000031
其中
Figure BDA0002047337190000032
和τ为预测范围RD的长度控制参数。Dmin为DTW距离集合D中的最小值。
4.5 DTW约束建立在行人于同一运动模式下每一步加速度波形具有相似性的基础上。若行人改变运动模式,那么在运动模式改变的过渡区这种相似性难以满足,RD将会是空集。通过观察RD是否为空集来判断行人是否改变运动模式,完成行人在进行连续不同的运动模式情况下的计步。
所述步骤5的特征在于:
当进行峰值检测时,在预测范围RD内寻找对应加速度最大的值做为下一个峰值时刻。当进行谷值检测时,在预测范围RD内寻找对应加速度最小的值做为下一个谷值时刻。
所述步骤6的特征在于:
根据如下公式将峰值和谷值的检测结果转化为零点的检测结果:
Figure BDA0002047337190000033
其中tzero,i为第i+1个预测零点,tpeak,i为第i+1个峰值时刻,tvalley,i为第i个谷值时刻。
所述步骤7的特征在于:
根据如下公式剔除S1中的假零点:
Figure BDA0002047337190000034
其中t(i)为假零点集合S1中的第i个零点,tzero为预测零点,S2为真实零点集合。S2中每两个零点记为一步。
本发明有益效果如下:
本发明提出了一种新的计步方法,通过建立周期约束和DTW约束来预测每步加速度值的峰值(谷值)范围,在该范围内通过峰值(谷值)检测真峰值(谷值),根据真峰/谷值预测真零点,最后在通过零点检测法得到的零点集合中找与预测真零点最接近的点作为行人每步的起始时刻和终止时刻,提高计步精度。本发明的有益效果在于解决了行人在不同运动模式的计步问题,同上,本发明的计步结果也优于传统的计步法,如基于阈值的峰值检测法。因此,本发明在现实中具有很好的实用性和应用前景。
附图说明
图1是本发明的总流程示意图;
图2是数据预处理流程示意图;
图3是实施例示意图;
图4是假零点消除示意图;
具体实施方式
下面结合实施例和附图对本发明做进一步的说明。
如图1所示,本发明提出的计步方法,具体包括下面7个步骤:
步骤1.加速度数据的预处理;
步骤2.根据过零检测法获得加速度数据的零点集合S1;
步骤3.根据周期约束,获得下一个峰谷值的预测范围;
步骤4.根据动态时间规整(DTW)约束,精炼步骤3获得的预测范围;
步骤5.在步骤获得的预测范围内搜索最值,即为下一个峰值或谷值;
步骤6.将峰值和谷值的检测结果转化为零点的检测结果,获得预测零点;
步骤7.根据预测零点,剔除S1中的假零点获得真实零点集合S2,S2中每两个零点记为一步。
步骤1.数据的预处理如图2所示,其具体步骤如下:
1.1通过由智能终端设备内置的三轴加速度计采集得到的加速度数据计算平均加速度atotal
Figure BDA0002047337190000041
其中ax,ay,az分别表示三轴加速度计采集到的X轴,Y轴和Z轴的加速度数据。
1.2为了应用于后续的过零检测以及每一步的起始点和终止点的检测,移除平均加速度atotal中的重力加速度分量:
a′=atotal-g
其中g表示重力加速度,a′表示移除重力加速度分量后的加速度数据。
1.3加速度计的原始加速度数据含有大量的高斯噪声信号,影响计步的准确性,故而需要一个滤波阶段,尽可能多的消除各种噪声和毛刺。用一个数字域截止频率fLP=0.2π的4阶巴特沃斯数字低通滤波器对移除重力分量后的加速度值a′进行滤波:
a=filter(a′)
其中filter表示巴特沃斯数字低通滤波器,a表示过滤噪声后的加速度数据用于后续的计步。
步骤2.通过过零检测法得到零点集合S1,S1中的零点均为正向零点,即:
S1={t|at-1≤0,at≥0}
其中at-1和at分别表示t和t-1时刻加速度的大小。
下面结合一个具体实施例来阐述上述步骤3至步骤7。由于计步过程中加速度谷值的检测和峰值的检测相似,本实施例主要以波峰的检测为例。假设最新检测到的峰值时刻为tpeak,i,如图3所示。
步骤3.根据周期约束,获得下一个峰谷值的预测范围,具体包括如下步骤:
3.1考虑当前是否已经获得不少于2个的峰值,若是,则继续后续步骤。否则通过峰值检测法获得峰值。即第一个峰值和第二个峰值是由峰值检测法获得的。
3.2更新周期模板:
Figure BDA0002047337190000051
Figure BDA0002047337190000052
其中,Ti为更新后的周期模板,Ti-1为上一次的周期模板,ti为当前峰值时刻
Figure BDA0002047337190000061
与上一个峰值时刻
Figure BDA0002047337190000062
之间的差值,即当前一步的周期。
由于在同一运动模式下行人每一步周期的是相似的,所以下一个峰值
Figure BDA0002047337190000063
的候选点其所处时刻与当前峰值时刻
Figure BDA0002047337190000064
的差值ti+1应该满足如下周期约束:
ti+1∈((1-γ)*Ti,(1+γ)*Ti)
其中γ为预测范围长度控制参数,根据实验经验设定。
3.3记录所有满足周期约束的候选点获得
Figure BDA0002047337190000065
预测范围RP
步骤4.同一运动模式下行人相邻两步加速度波形是具有相似性的,通过计算这种相似性能够进一步预测下一个峰值所处的时刻。由于智能终端内置的加速度计在行人每一步的收集到的加速度数据数量是不同的,即计算的是两个长度不同序列之间的相似性,所以采用DTW计算这种相似性是一个好的选择。
DTW,即动态时间规整,是一种为计算两个长度不同的时间序列之间的相似性而设计的算法,最早应用于语音序列的识别上。DTW算法的步骤为:1)计算两个序列各个点之间的距离(常用欧式距离),获得距离矩阵D。2)寻找一条从该距离矩阵左上角到右下角的路径,使得该路径上的矩阵元素和最小。该最小值即为两序列的相似度,其路径通过动态规划得到,如下所示:
γ(i,j)=D(i,j)+min{γ(i-1,j-1),γ(i-1,j),γ(i,j-1)}
其中,D(i,j)表示序列1中第i个点和序列2中第j个点的距离。γ(i,j)为当右下角点为(i,j)时的最短路径。本专利利用DTW计算匹配序列和测试序列的相似度。
4.1更新匹配序列:
Figure BDA0002047337190000066
其中
Figure BDA0002047337190000067
Figure BDA0002047337190000068
分别为上一个峰值所处时刻和当前峰值所处时刻。a为预处理过后的加速度序列。
4.2构造测试序列集合,将当前峰值时刻
Figure BDA0002047337190000069
到预测范围RP中的第一个数之间的加速度数据作为首个测试序列,将
Figure BDA00020473371900000610
到预测范围RP中的第二个数之间的加速度数据作为第二个测试序列,以此类推获得一个测试序列集合:
V={v1,v2,…,vj,…,vk}
其中,vj为第j个测试序列,由
Figure BDA0002047337190000071
到RP中的第j个点之间的加速度数据组成,测试序列集合的长度k和预测范围RP的长度一致。
4.3将匹配序列μi和每一个测试序列进行DTW计算,获得DTW距离集合,:
D={DTW(μ,v1),DTW(μ,v2),…DTW(μ,vj),…DTW(μ,vk)}
其中DTW(μ,vj)为匹配序列μi-1和测试序列vj根据DTW计算得到的距离值。
4.4DTW约束:(1)预测范围RD内的点其DTW值小于设定的阈值φ;(2)预测范围RD内的点其DTW值和该预测范围内的最小其DTW值之间的差值小于设定的阈值τ。根据DTW约束获得更加精确的峰谷值预测范围RD
Figure BDA0002047337190000072
其中
Figure BDA0002047337190000073
和τ为预测范围RD的长度控制参数,Dmin为DTW距离集合D中的最小值。
4.5 DTW约束建立在行人于同一运动模式下每一步加速度波形的相似性的基础上。若行人改变运动模式,那么在运动模式改变的过渡区这种相似性难以满足,RD将会是空集。当RD为空集时,行人改变了运动模式,周期约束和DTW约束需要重新建立,返回步骤3;否则继续步骤5。
步骤5.在预测范围RD内寻找对应加速度最大的值做为下一个峰值时刻tpeak,i+1
步骤6.为了消除集合S1中的假零点,将波峰和波谷的检测结果转化为零点的检测结果。如图4所示,转化过程如下:
Figure BDA0002047337190000074
其中tzero,i+1为第i+1个预测零点,tpeak,i+1为第i+1个峰值时刻,tvalley,i为第i个谷值时刻。
步骤7.根据如下公式剔除S1中的假零点:
Figure BDA0002047337190000075
其中t(i)为假零点集合中的第i个零点,S2为真实零点集合。
S2中每两个零点记为一步,即{ti,ti+1}记为一步,ti,ti+1∈S2,i=1,2,3,…。

Claims (7)

1.一种基于加速度计的新型计步方法,其特征在于包括如下步骤:
步骤1.加速度数据的预处理;
步骤2.根据过零检测法获得加速度数据的零点集合S1;
步骤3.根据周期约束,获得下一个峰值或谷值的预测范围;
步骤4.根据动态时间规整DWT约束,精炼步骤3获得的预测范围;
步骤5.在步骤4获得的预测范围内搜索最值,即为下一个峰值或谷值;
步骤6.将峰值和谷值的检测结果转化为零点的检测结果,获得预测零点;
步骤7.根据预测零点,剔除S1中的假零点,获得真实零点集合S2,S2中的每两个零点记为一步。
2.根据权利要求1所述的一种基于加速度计的新型计步方法,其特征在于所述步骤1具体实现如下:
1.1通过加速度计收集的三轴加速度数据ax,ay,az来计算平均加速度atotal
1.2移除平均加速度atotal中的重力加速度分量;
1.3通过一个数字域截止频率fLP=0.2π的4阶巴特沃斯数字低通滤波器过滤加速度中的高频噪声分量,获得最终的加速度序列a。
3.根据权利要求2所述的一种基于加速度计的新型计步方法,其特征在于所述步骤3具体实现如下:
3.1第一个峰值和第二个峰值由峰值检测法获得;当检测到两个峰值后,继续后续步骤;
3.2下一个峰值的候选点其所处时刻
Figure FDA0002627512810000011
与当前峰值时刻
Figure FDA0002627512810000012
的差值
Figure FDA0002627512810000013
应该满足如下周期约束:
Figure FDA0002627512810000014
其中γ为预测范围长度控制参数,根据实验经验设定;Ti为不断更新的周期模板,其更新方式如下:
Figure FDA0002627512810000015
Ti为当前周期模板,Ti-1为前一次的周期模板,ti为当前峰值时刻
Figure FDA0002627512810000016
与上一个峰值时刻
Figure FDA0002627512810000017
之间的时刻差;
3.3搜索所有满足周期约束的候选点获得下一个峰值的预测范围RP
谷值的预测范围计算与峰值一致。
4.根据权利要求3所述的一种基于加速度计的新型计步方法,其特征在于所述步骤4具体实现如下:
4.1构造匹配序列:
Figure FDA0002627512810000021
其中
Figure FDA0002627512810000022
Figure FDA0002627512810000023
分别为第i-1个峰值或谷值所处时刻和第i个峰值或谷值所处时刻;a为预处理过后的加速度序列;
4.2构造测试序列集合:
V={v1,v2,...,vj,...,vk}
其中,vj为第j个测试序列,由上一个峰值或谷值时刻到预测范围RP中的第j个点之间的加速度数据组成;
4.3计算DTW距离集合:
D={DTW(μ,v1),DTW(μ,v2),...DTW(μ,vj),...DTW(μ,vk)}
其中DTW(μ,vj)为匹配序列μi-1和测试序列vj根据DTW计算得到的距离值;
4.4根据如下DTW约束获得更加精确的峰谷值预测范围RD
Figure FDA0002627512810000024
其中
Figure FDA0002627512810000025
和τ为预测范围RD的长度控制参数;Dmin为DTW距离集合D中的最小值;
4.5通过观察RD是否为空集来判断行人是否改变运动模式,完成行人在进行连续不同的运动模式情况下的计步。
5.根据权利要求4所述的一种基于加速度计的新型计步方法,其特征在于所述步骤5具体实现如下:
当进行峰值检测时,在预测范围RD内寻找对应加速度最大的值做为下一个峰值时刻;当进行谷值检测时,在预测范围RD内寻找对应加速度最小的值做为下一个谷值时刻。
6.根据权利要求5所述的一种基于加速度计的新型计步方法,其特征在于所述步骤6具体实现如下:
根据如下公式将峰值和谷值的检测结果转化为零点的检测结果:
Figure FDA0002627512810000031
其中tzero,i+1为第i+1个预测零点,
Figure FDA0002627512810000032
为第i+1个峰值时刻,tvalley,i为第i个谷值时刻。
7.根据权利要求6所述的一种基于加速度计的新型计步方法,其特征在于所述步骤7根据如下公式剔除S1中的假零点:
Figure FDA0002627512810000033
其中t(i)为假零点集合S1中的第i个零点,tzero为预测零点,S2为真实零点集合;S2中每两个零点记为一步。
CN201910362761.4A 2019-04-30 2019-04-30 一种基于加速度计的新型计步方法 Active CN110044375B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910362761.4A CN110044375B (zh) 2019-04-30 2019-04-30 一种基于加速度计的新型计步方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910362761.4A CN110044375B (zh) 2019-04-30 2019-04-30 一种基于加速度计的新型计步方法

Publications (2)

Publication Number Publication Date
CN110044375A CN110044375A (zh) 2019-07-23
CN110044375B true CN110044375B (zh) 2020-12-08

Family

ID=67280630

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910362761.4A Active CN110044375B (zh) 2019-04-30 2019-04-30 一种基于加速度计的新型计步方法

Country Status (1)

Country Link
CN (1) CN110044375B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112729331B (zh) * 2020-12-21 2024-03-08 卡哈科技(深圳)有限公司 基于三轴加速度计的双带通滤波计步方法及电子设备
CN113303789B (zh) * 2021-04-30 2023-01-10 武汉齐物科技有限公司 一种基于加速度的步态事件检测方法及装置
CN113340322B (zh) * 2021-06-25 2023-04-07 歌尔科技有限公司 一种计步方法、装置、电子设备及可读存储介质
CN113790735B (zh) * 2021-08-20 2023-09-12 北京自动化控制设备研究所 一种复杂运动状态下行人单步划分方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110022352A1 (en) * 2008-03-31 2011-01-27 Hidaka Fujita Body movement measuring device, mobile phone, method for controlling the body movement measuring device, body movement measuring device control program, and computer-readable recording medium in which the body movement measuring device control program is recorded
US8694251B2 (en) * 2010-11-25 2014-04-08 Texas Instruments Incorporated Attitude estimation for pedestrian navigation using low cost mems accelerometer in mobile applications, and processing methods, apparatus and systems
US10030993B2 (en) * 2012-11-01 2018-07-24 Verizon Connect Inc. Method and system for determining whether steps have occurred
US10018481B1 (en) * 2014-09-30 2018-07-10 Worldwise, Inc. Multi-band pedometer with mobility mode indicator
CN104949685B (zh) * 2015-05-22 2018-04-27 邓伟廷 能在多模式多部位实现精确计步的方法及其装置
CN106123897B (zh) * 2016-06-14 2019-05-03 中山大学 基于多特征的室内融合定位方法
CN106248100A (zh) * 2016-07-07 2016-12-21 深圳市金立通信设备有限公司 一种计步方法和终端
CN108469268A (zh) * 2018-03-15 2018-08-31 中国兵器工业集团第二四研究所苏州研发中心 一种基于微机械陀螺仪的计步方法

Also Published As

Publication number Publication date
CN110044375A (zh) 2019-07-23

Similar Documents

Publication Publication Date Title
CN110044375B (zh) 一种基于加速度计的新型计步方法
Wang et al. Human activity recognition based on wearable sensor using hierarchical deep LSTM networks
Yao et al. A robust step detection and stride length estimation for pedestrian dead reckoning using a smartphone
CN107810508A (zh) 根据传感器数据推导运动行为
CN110132276B (zh) 一种基于行人运动状态的自适应步长估计方法
CN110163264B (zh) 一种基于机器学习的行走模式识别方法
CN111178155A (zh) 基于惯性传感器的步态特征提取和步态识别方法
CN108510011B (zh) 一种基于手机多传感器的用户出行方式分析方法
CN112464738B (zh) 改进朴素贝叶斯算法基于手机传感器的用户行为识别方法
CN108830170A (zh) 一种基于分层特征表示的端到端目标跟踪方法
CN104103280A (zh) 基于动态时间归整算法的离线语音端点检测的方法和装置
US10578640B2 (en) Determination of a mobility context for a user carrying a device fitted with inertial sensors
Junker et al. Continuous recognition of arm activities with body-worn inertial sensors
CN111603169A (zh) 基于mems惯性传感器的行人步态识别方法
Chen et al. Gait phase segmentation using weighted dynamic time warping and k-nearest neighbors graph embedding
CN111767932B (zh) 动作判定方法及装置、计算机设备及计算机可读存储介质
Kasebzadeh et al. Asynchronous averaging of gait cycles for classification of gait and device modes
CN105512480B (zh) 基于编辑距离的可穿戴设备数据优化处理方法
CN109350072B (zh) 一种基于人工神经网络的步频探测方法
CN116092193A (zh) 一种基于人体运动状态识别的行人航迹推算方法
CN116465412A (zh) 一种基于lstm和注意力机制的改进pdr室内定位方法
CN114821765A (zh) 一种基于融合注意力机制的人体行为识别方法
US20220218230A1 (en) System and method of detecting walking activity using waist-worn inertial sensors
CN114674317A (zh) 基于活动识别和融合滤波的自校正航位推算系统及方法
CN112729331B (zh) 基于三轴加速度计的双带通滤波计步方法及电子设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant