CN110044020B - 计及空调用户舒适度的需求侧响应方法 - Google Patents

计及空调用户舒适度的需求侧响应方法 Download PDF

Info

Publication number
CN110044020B
CN110044020B CN201910249057.8A CN201910249057A CN110044020B CN 110044020 B CN110044020 B CN 110044020B CN 201910249057 A CN201910249057 A CN 201910249057A CN 110044020 B CN110044020 B CN 110044020B
Authority
CN
China
Prior art keywords
load
air conditioner
room temperature
scheduling
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910249057.8A
Other languages
English (en)
Other versions
CN110044020A (zh
Inventor
徐林
罗平
闫文乐
姜淏予
韩露杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Dianzi University
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN201910249057.8A priority Critical patent/CN110044020B/zh
Publication of CN110044020A publication Critical patent/CN110044020A/zh
Application granted granted Critical
Publication of CN110044020B publication Critical patent/CN110044020B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/20Feedback from users

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本发明公开了一种计及空调用户舒适度的需求侧响应方法。本发明首先通过近邻传播聚类算法对分体空调群和中央空调群进行聚类,并利用温湿度指数来考虑空调用户的舒适度对空调群对应室温范围的影响,从而得到不同空调负荷聚合商在日前电力市场中能提供的最大可调度时长及最大可调度容量。各空调负荷聚集商根据聚合的结果参与电力公司调度中心的削峰调度招标计划。电力公司通过对比各负荷聚合商的投标方案,在综合考虑各聚合商的信誉度指数和报价之后,选择削峰成本最低的方案,合理分配调度容量。

Description

计及空调用户舒适度的需求侧响应方法
技术领域
本发明属于需求侧响应技术领域,具体涉及考虑中央、分体空调负荷用户舒适度的需求侧响应方法。
背景技术
为了应对能源危机、环境污染带来的巨大挑战,许多国家积极倡导发展智能配电网技术以推动后石油时代经济转型、发展低碳经济。随着智能配电网和电力市场的不断发展,需求侧资源在电力市场中的作用也越发重要。在电力市场竞争中引入需求响应机制,高效整合供给侧和需求侧的资源,构建供需互动的智能配电网已然成为发展趋势。
空调负荷属于温控负荷,其具有热存储能力,因此可以在满足用户舒适度要求的前提下,通过有效的控制手段,达到快速响应电网侧调度的目的。合理控制空调负荷不仅可以缓解高峰时段的电力供需矛盾,改善负荷曲线峰谷差;而且与传统削峰方式相比,空调负荷的调度成本较低。聚合后的空调负荷可调度潜力巨大,属于非常重要的需求侧资源。
由于人体对室内环境有一定的舒适度要求,因此空调负荷在参与调度时,室温上下限必须控制在热舒适度范围之内。一旦超过特定阈值,用户将不再允许空调负荷参与调控。因此,当聚类后的空调负荷参与电力公司的削峰运行时,如何在不影响用户舒适度的情况选择合适的空调负荷聚合商使得电网调度的成本最小依然是个亟待解决的问题。
发明内容
本发明以某区域分体空调和中央空调负荷集群为研究对象,提出计及空调用户舒适度的需求侧响应方法。本发明首先通过近邻传播聚类算法对不同初始条件和不同类型的用户分体空调群和中央空调群进行聚类,并利用温湿度指数来考虑空调用户的舒适度,从而修正空调群对应的室温限制范围,在此基础上得到不同空调负荷聚合商在日前电力市场中能提供的最大可调度时长及最大可调度容量。另一方面,电力公司调度中心根据日前电力负荷短期预测结果,制定包含削峰时段、削峰容量和削峰时长等信息的调度计划,并公开招投标。各负荷聚合商在接收到招标信息以后,从预先聚合的全部空调负荷集群中筛选出满足该削峰时段调度时长的部分,并根据历史激励响应情况预估可调度容量参与日前电力市场招投标。电力公司通过对比各负荷聚合商的投标方案,在综合考虑各聚合商的信誉度指数和报价之后,选择削峰成本最低的方案,合理分配调度容量。具体按照以下步骤实施:
步骤1、考虑不同类型的空调用户对于价格的敏感程度,当不考虑用户舒适度的限制时,将空调用户群体分为以下三种类型进行讨论:
1)该类空调用户属于对价格不太敏感的类型,对室温环境的要求比较高,因此假设其室温允许范围是[23,25]℃;
2)该类空调用户属于对价格敏感程度一般的类型,对室温环境的要求适中,因此假设其室温允许范围是[23,27]℃;
3)该类空调用户属于对价格比较敏感的类型,对室温环境的要求比较低,因此假设其室温允许范围是[23,29]℃;
步骤2、在考虑空调负荷群体初始状态差异性和不同类型用户的室温允许范围要求的基础上,通过近邻传播聚类算法对分散的空调负荷群体进行聚合;
1)根据式(1)和(2)计算相似度和偏向参数p,构建相似度矩阵S;令 k=1,将吸引度R(i,j)和归属度A(i,j)初始化为零;
s(i,j)=-d2(xi,xj)=-||xi-xj||2,i≠j (1)
p=median(S(i,j)) i≠j (2)
式中,median表示对数据取中值;
2)令k=k+1,利用式(3)到式(6)的公式对吸引度R(i,j)和归属度A(i, j)进行迭代更新,并计算两者加权和,得到最终吸引度、归属度和聚类中心;
Figure BDA0002011854140000021
Figure BDA0002011854140000022
Rt+1(i,j′)=(1-λ)×Rt+1(i,j′)+λ×Rt(i,j′) (5)
At+1(i,j′)=(1-λ)×At+1(i,j′)+λ×At(i,j′) (6)
式中,λ为阻尼系数,把它引入吸引度R(i,j)和归属度A(i,j)的迭代计算中,以加快算法的收敛速度;
3)当算法达到最大迭代次数,或聚类中心在连续迭代过程中不再发生变化,或相邻两次迭代结果中,吸引度R(i,j)和归属度A(i,j)变化量小于给定阈值则认为算法收敛,则输出最终结果;如果不收敛,则转到2);
步骤3、综合考虑室内温度和相对湿度这两个指标,利用温湿指数来衡量空调用户的舒适度;温湿指数THI通常按公式(7)计算:
THI=1.8t-0.55(1-RH)(1.8t-26)+32 (7)
式中,t表示摄氏温度,℃;RH表示空气相对湿度,%;
当THI值超出[45,75]时,人们普遍感觉不舒适;当THI值在[45,75]之内时,绝大多数人感到些许不舒适,但是还可以承受;当THI值在[55,70]之内时,大部分人感到很舒适,在此环境下生活工作时,心情会很愉悦;
根据《民用建筑供暖通风与空气调节设计规范》规定,人员长期逗留区域空调室内相对湿度应保持在40%~60%;当室内相对湿度为40%,温湿指数 THI在55~72之间时,室温的允许范围是[12.0,26.1]℃;当室内相对湿度为 60%,温湿指数THI在55~72之间时,室温的允许范围是[12.3,24.4]℃;对比以上两种场景下的室温允许范围可知,当室内相对湿度越大时,人体对于室温的要求越严苛;
根据温湿指数修正三类空调负荷工作的室温范围,以室内相对湿度40%为例,第三类用户的室温允许范围从[23,29]℃进一步缩小为[23,26.1]℃,第二类用户的室温允许范围从[23,27]℃缩小为[23,26.1]℃,第一类用户的室温上下限范围没有受到影响;
步骤4、对分体空调采用直接启停控制策略,中央空调选用轮停控制策略;由步骤2中决定的室内温度范围,分别计算得到考虑用户舒适度情况下分体空调负荷群和中央空调负荷群的最大可参与调度时长和最大可调度容量;
1)利用公式(8)计算分体空调负荷集群最大可参与调度时长
Figure BDA0002011854140000031
式中,
Figure BDA0002011854140000032
表示t+1时刻的室内温度,℃;
Figure BDA0002011854140000033
表示t+1时刻的室外温度,℃;
Figure BDA0002011854140000034
表示t时刻的室内温度,℃;R为等效热阻,℃/W;C为等效热容,J/℃;通过式(8)利用室外温度和室温允许的范围得到分体空调负荷集群允许停止的最长可参与调度时长Δt;
分体空调负荷集群的最大可参与调度容量由公式(9)计算得到;
QHA=n·PHA (9)
式中,QHA表示分体空调负荷集群的最大可参与调度容量,n表示可参与调度的分体空调数量,PHA表示分体空调的额定功率;
2)由于中央空调采用轮停控制,由等效热参数法的空调负荷模型可得室温允许上下限为[Tmin,Tmax]时,中央空调启停时间应该满足的关系如式(10) 所示:
Figure BDA0002011854140000041
进一步可推导出制冷机启/停周期内停机期和制冷期的允许时长分别为:
Figure BDA0002011854140000042
式中:τoff为制冷机组停机期时长,min;τon为制冷机组制冷期时长,min;τc为启/停周期时长,min;To为室外温度,℃;R为建筑围护结构等效热阻,℃ /kW;Q为制冷机的制冷量,kW;cop为空调能效比,
Figure BDA0002011854140000043
为空调额定功率,kW;
最大可参与调度容量如式(12)所示:
Figure DEST_PATH_IMAGE001
式中,QCA表示中央空调负荷集群的最大可参与调度容量,n表示参与轮停的中央空调数量;
步骤5、以电力公司的削峰成本最小为目标建立计及负荷聚合商信誉度的日前优化调度模型;电力公司的削峰成本包括电力公司支付给各负荷聚合商的调度费用;储能设备的投资和运行维护等费用和各负荷聚合商的违约处罚金;该优化问题的目标函数的表达式如式(13)所示:
Figure BDA0002011854140000045
式中:U为电力公司的削峰成本,ηi为负荷聚合商i的信誉度值,Ci为负荷聚合商i所上报的响应调度费用,
Figure BDA0002011854140000046
为负荷聚合商i所报激励价格,Qi'为负荷聚合商实际中标电量,Ki为聚合商i所对应的储能设备成本,k为储能设备的单位价格,Fi为负荷聚合商i的违约处罚金,βi为负荷聚合商i的违约率,s为电力公司针对负荷聚合商违约电量的处罚金单价;
该优化问题的约束条件为:各削峰时段所有负荷聚合商的总中标电量不小于电力公司计划削峰量;每个负荷聚合商的中标电量不大于投标电量;投标电量不能超出该负荷聚合商的调度潜力和负荷聚合商的可调控时长不小于电力公司计划调度时长;上述约束条件如式(14)所示:
Figure BDA0002011854140000051
式中:Qi'为负荷聚合商i实际中标电量,Q计划为电力公司计划削峰量,Di为负荷聚合商i向电力公司上报的投标电量,Qi为负荷聚合商i的负荷调度潜力,
Figure BDA0002011854140000052
为负荷聚合商i的可调控时长,Tload为电力公司计划调度时长;
步骤7、采用混沌粒子群优化算法对该优化问题进行求解,得到各负荷聚合商在不同时段中标的容量以及电网公司削峰的成本。
本发明方法具有的优点及有益结果为:
1)本发明考虑了室内温度和湿度对空调用户舒适度影响,并根据用户对舒适度要求的不同将空调用户分为了三类,从而使得室温约束范围的确定更加合理。
2)利用近邻传播聚类算法对不同初始温度分布和不同类型空调负荷群聚合,并在此基础上得到不同类型用户能参与削峰调度的最大时长和最大容量,从而简化了对空调负荷聚集商的最大调度时长和最大可调度容量的计算。
3)考虑因此负荷聚合结果的不确定性,负荷聚合商也存在着违约可能。因此将负荷聚合商信誉度也纳入优化的目标函数中,同等条件下选用信誉度高的负荷聚合商,从而减少违约情况的发生,达到保证电力系统安全、稳定运行以及保护电网利益的目的。
具体实施方式
下面结合具体实施方式对本发明进行详细的说明。
本发明提出的计及空调用户舒适度的需求侧响应方法,按照以下步骤实施。
步骤1、考虑不同类型的空调用户对于价格的敏感程度,当不考虑用户舒适度的限制时,可将空调用户群体分为以下三种类型进行讨论:
1)该类空调用户属于对价格不太敏感的类型,对室温环境的要求比较高,因此假设其室温允许范围是[23,25]℃。
2)该类空调用户属于对价格敏感程度一般的类型,对室温环境的要求适中,因此假设其室温允许范围是[23,27]℃。
3)该类空调用户属于对价格比较敏感的类型,对室温环境的要求比较低,因此假设其室温允许范围是[23,29]℃。
步骤2、在考虑空调负荷群体初始状态差异性和不同类型用户的室温允许范围要求的基础上,通过近邻传播聚类算法对分散的空调负荷群体进行聚合。
1)根据式(1)和(2)计算相似度和偏向参数p,构建相似度矩阵S。令 k=1,将吸引度R(i,j)和归属度A(i,j)初始化为零。
s(i,j)=-d2(xi,xj)=-||xi-xj||2,i≠j (1)
p=median(S(i,j)) i≠j (2)
式中,median表示对数据取中值。
2)令k=k+1,利用式(3)到式(6)的公式对吸引度R(i,j)和归属度A(i, j)进行迭代更新,并计算两者加权和,得到最终吸引度、归属度和聚类中心。
Figure BDA0002011854140000061
Figure BDA0002011854140000062
Rt+1(i,j′)=(1-λ)×Rt+1(i,j′)+λ×Rt(i,j′) (5)
At+1(i,j′)=(1-λ)×At+1(i,j′)+λ×At(i,j′) (6)
式中,λ为阻尼系数,把它引入吸引度R(i,j)和归属度A(i,j)的迭代计算中,以加快算法的收敛速度。
3)当算法达到最大迭代次数,或聚类中心在连续迭代过程中不再发生变化,或相邻两次迭代结果中,吸引度R(i,j)和归属度A(i,j)变化量小于给定阈值则认为算法收敛,则输出最终结果;如果不收敛,则转到2)。
步骤3、综合考虑室内温度和相对湿度这两个指标,利用温湿指数来衡量空调用户的舒适度。温湿指数THI通常按公式(7)计算:
THI=1.8t-0.55(1-RH)(1.8t-26)+32 (7)
式中,t表示摄氏温度,℃;RH表示空气相对湿度,%。
当THI值超出[45,75]时,人们普遍感觉不舒适;当THI值在[45,75]之内时,绝大多数人感到些许不舒适,但是还可以承受;当THI值在[55,70]之内时,大部分人感到很舒适,在此环境下生活工作时,心情会很愉悦。
根据《民用建筑供暖通风与空气调节设计规范》规定,人员长期逗留区域空调室内相对湿度应保持在40%~60%。当室内相对湿度为40%,温湿指数 (THI)在55~72之间时,室温的允许范围是[12.0,26.1]℃;当室内相对湿度为60%,温湿指数(THI)在55~72之间时,室温的允许范围是[12.3,24.4]℃。对比以上两种场景下的室温允许范围可知,当室内相对湿度越大时,人体对于室温的要求越严苛。
根据温湿指数修正三类空调负荷工作的室温范围,以室内相对湿度40%为例,第三类用户的室温允许范围从[23,29]℃进一步缩小为[23,26.1]℃,第二类用户的室温允许范围从[23,27]℃缩小为[23,26.1]℃,第一类用户的室温上下限范围没有受到影响。当然,室内湿度可以根据具体情况进行调整,得到对应情况下不同用户的室温允许范围。
步骤4、本发明对分体空调采用直接启停控制策略,中央空调选用轮停控制策略。由步骤2中决定的室内温度范围,分别计算得到考虑用户舒适度情况下分体空调负荷群和中央空调负荷群的最大可参与调度时长和最大可调度容量。
1)利用公式(8)计算分体空调负荷集群最大可参与调度时长
Figure BDA0002011854140000071
式中,
Figure BDA0002011854140000072
表示t+1时刻的室内温度,℃;
Figure BDA0002011854140000073
表示t+1时刻的室外温度,℃;
Figure BDA0002011854140000077
表示t时刻的室内温度,℃;R为等效热阻,℃/W;C为等效热容,J/℃;通过式(8)利用室外温度和室温允许的范围得到分体空调负荷集群允许停止的最长可参与调度时长Δt;
分体空调负荷集群的最大可参与调度容量由公式(9)计算得到;
QHA=n·PHA (9)
式中,QHA表示分体空调负荷集群的最大可参与调度容量,n表示可参与调度的分体空调数量,PHA表示分体空调的额定功率;
2)由于中央空调采用轮停控制,由等效热参数法的空调负荷模型可得室温允许上下限为[Tmin,Tmax]时,中央空调启停时间应该满足的关系如式(10) 所示:
Figure BDA0002011854140000074
进一步可推导出制冷机启/停周期内停机期和制冷期的允许时长分别为:
Figure BDA0002011854140000075
式中:τoff为制冷机组停机期时长,min;τon为制冷机组制冷期时长,min;τc为启/停周期时长,min;To为室外温度,℃;R为建筑围护结构等效热阻,℃ /kW;Q为制冷机的制冷量,kW;cop为空调能效比,
Figure BDA0002011854140000078
为空调额定功率,kW。
最大可参与调度容量如式(12)所示:
Figure DEST_PATH_IMAGE002
式中,QCA表示中央空调负荷集群的最大可参与调度容量,n表示参与轮停的中央空调数量。
步骤5、以电力公司的削峰成本最小为目标建立计及负荷聚合商信誉度的日前优化调度模型。电力公司的削峰成本包括电力公司支付给各负荷聚合商的调度费用;储能设备的投资和运行维护等费用和各负荷聚合商的违约处罚金。该优化问题的目标函数的表达式如式(13)所示:
Figure BDA0002011854140000081
式中:U为电力公司的削峰成本,ηi为负荷聚合商i的信誉度值,Ci为负荷聚合商i所上报的响应调度费用,
Figure BDA0002011854140000082
为负荷聚合商i所报激励价格,Qi'为负荷聚合商实际中标电量,Ki为聚合商i所对应的储能设备成本,k为储能设备的单位价格,Fi为负荷聚合商i的违约处罚金,βi为负荷聚合商i的违约率,s为电力公司针对负荷聚合商违约电量的处罚金单价。
该优化问题的约束条件为:各削峰时段所有负荷聚合商的总中标电量不小于电力公司计划削峰量;每个负荷聚合商的中标电量不大于投标电量;投标电量不能超出该负荷聚合商的调度潜力和负荷聚合商的可调控时长不小于电力公司计划调度时长。上述约束条件如式(14)所示:
Figure BDA0002011854140000083
式中:Qi'为负荷聚合商i实际中标电量,Q计划为电力公司计划削峰量,Di为负荷聚合商i向电力公司上报的投标电量,Qi为负荷聚合商i的负荷调度潜力,
Figure BDA0002011854140000084
为负荷聚合商i的可调控时长,Tload为电力公司计划调度时长。
步骤7、采用混沌粒子群优化算法对该优化问题进行求解,得到各负荷聚合商在不同时段中标的容量以及电网公司削峰的成本。
实施例
为了更好介绍本发明对考虑用户舒适度情况下分体空调和中央空调群可调度时长和可调度容量的计算方法,分别选取了600台参数分体空调和600台中央空调,这些空调具有相同或者相近的参数,分体空调和中央空调的额定功率分别为2.5kW和160kW。假设空调所属建筑的等效热容C服从N(0.18,0.22) 随机正态分布,等效热阻R服从N(5.56,12)随机正态分布,空调用户的初始室内温度在[22,24]℃之间均匀分布。由于中央空调采用轮停控制策略,因此不用考虑初始室温的影响。具体的空调台数、空调类型和空调特性可以根据不同负荷聚集商所辖范围的资源决定,本发明给出的计算方法不受影响。
综合考虑不同类型的空调用户对于价格的敏感程度,可将空调用户群体分为以下三种类型进行讨论:
1)该类空调用户属于对价格不太敏感的类型,对室温环境的要求比较高,因此假设其室温允许范围是[23,25]℃。
2)该类空调用户属于对价格敏感程度一般的类型,对室温环境的要求适中,因此假设其室温允许范围是[23,27]℃。
3)该类空调用户属于对价格比较敏感的类型,对室温环境的要求比较低,因此假设其室温允许范围是[23,29]℃。
利用近邻传播聚类算法对三类分体空调用户和中央空调用户进行聚类。聚类的结果为600台分体空调中三类用户的空调数目分别为192台、206台和202 台;600台中央空调中三类用户的空调数分别为196台、204台和200台。三个聚类中心坐标如表1所示。
表1聚类中心的坐标数值
Figure BDA0002011854140000091
考虑温湿度指标,并认为室内湿度为40%时,第三类用户的室温允许范围从[23,29]℃进一步缩小为[23,26.1]℃,第二类用户的室温允许范围从[23, 27]℃缩小为[23,26.1]℃,第一类用户的室温上下限范围没有受到影响。
根据更新后的室温允许范围,由聚类的结果可以得到分体空调群和中央空调群可参与调度时长和可参与调度容量分别如表2和表3所示:
表2三类分体空调用户的可参与调度时长和容量
Figure BDA0002011854140000092
表3三类中央空调用户的可参与调度时长和容量
Figure BDA0002011854140000093
以深圳某新区2018年夏季7月份某天为例,由于持续高温导致负荷峰值不断攀升,造成电力短缺,电力公司为保证电力系统安全稳定运行,根据辖区内电力负荷的历史数据预测得到次日24个时段的电力负荷值,通过对短期负荷预测结果的分析,制定次日早、晚高峰时期内10个时段的调度计划。每个时段的削峰容量和调度时长如表4所示:
表4各时段削峰容量和调度时长
Figure BDA0002011854140000101
假设共有6个聚合商参与日前市场投标,负荷聚合商从预先聚合的全部空调负荷集群中筛选出满足该削峰时段调度时长的部分,并根据历史激励响应情况预估出投标容量,投标价格则参考江苏、山东等省发布的《电力需求响应的实施细则》中补贴标准,其具体投标信息如表5和表6所示。
表5各负荷聚合商投标信息
Figure BDA0002011854140000102
表6负荷聚合商的违约率及信誉度值
Figure BDA0002011854140000103
电力公司综合考虑各聚合商的信誉度指数、报价和可参与调度时长等因素,在满足计划调节总电量的前提下,优化调度计划,达到各聚合商调度容量合理分配、电力公司削峰成本最小的目的。所有负荷聚合商在各削峰时段的中标情况如表7所示。
表7负荷聚合商中标情况
Figure BDA0002011854140000104
结合表5中各负荷聚合商的投标价格、表6中各负荷聚合商的信誉度值和表7中各负荷聚合商的中标情况,以第1个削峰和第5个削峰时段为例,通过分析可以得到以下结论:在电力公司公开招标的第1个削峰时段,虽然负荷聚合商E的报价偏高,在6个负荷聚合商的价格竞争中处于劣势,但是在信誉度值方面,负荷聚合商E拥有很大的优势。因此,电力公司在衡量各负荷聚合商的性价比之后,最终选择能让自己削峰成本最低的负荷聚合商E。
在电力公司公开招标的第5个削峰时段,虽然负荷聚合商A的报价最低,但是最高的违约率直接导致其信誉度值在各聚合商中居于末尾,若电力公司选择负荷聚合商A参与该时段的调峰,为了保证削峰计划能顺利完成,就需要较多的蓄电池作为备用以填补负荷聚合商A产生的违约电量。负荷聚合商F 虽然报价最高,但是其信誉度值也同样高居首位,因此所需储能装置的备用容量很小。电力公司通过对比A、F两个负荷聚合商投标方案的经济性,最终选择对自己更为有利的负荷聚合商F作为该削峰时段的需求侧资源供应商。

Claims (1)

1.计及空调用户舒适度的需求侧响应方法,其特征在于:该方法具体包括以下步骤:
步骤1、考虑不同类型的空调用户对于价格的敏感程度,当不考虑用户舒适度的限制时,将空调用户群体分为以下三种类型进行讨论:
1)该类空调用户属于对价格不太敏感的类型,对室温环境的要求比较高,因此假设其室温允许范围是[23,25]℃;
2)该类空调用户属于对价格敏感程度一般的类型,对室温环境的要求适中,因此假设其室温允许范围是[23,27]℃;
3)该类空调用户属于对价格比较敏感的类型,对室温环境的要求比较低,因此假设其室温允许范围是[23,29]℃;
步骤2、在考虑空调负荷群体初始状态差异性和不同类型用户的室温允许范围要求的基础上,通过近邻传播聚类算法对分散的空调负荷群体进行聚合;
1)根据式(1)和(2)计算相似度和偏向参数p,构建相似度矩阵S;将吸引度R(i,j)和归属度A(i,j)初始化为零;
S(i,j)=-d2(xi,xj)=-||xi-xj||2,i≠j (1)
p=median(S(i,j))i≠j (2)
式中,median表示对数据取中值;
2)利用式(3)到式(6)的公式对吸引度R(i,j)和归属度A(i,j)进行迭代更新,并计算两者加权和,得到最终吸引度、归属度和聚类中心;
Figure FDA0002916149900000011
Figure FDA0002916149900000012
Rt+1(i,j′)=(1-λ)×Rt+1(i,j′)+λ×Rt(i,j′) (5)
At+1(i,j′)=(1-λ)×At+1(i,j′)+λ×At(i,j′) (6)
式中,λ为阻尼系数,把它引入吸引度R(i,j)和归属度A(i,j)的迭代计算中,以加快算法的收敛速度;
3)当算法达到最大迭代次数,或聚类中心在连续迭代过程中不再发生变化,或相邻两次迭代结果中,吸引度R(i,j)和归属度A(i,j)变化量小于给定阈值则认为算法收敛,则输出最终结果;如果不收敛,则转到2);
步骤3、综合考虑室内温度和相对湿度这两个指标,利用温湿指数来衡量空调用户的舒适度;温湿指数THI通常按公式(7)计算:
THI=1.8t-0.55(1-RH)(1.8t-26)+32 (7)
式中,t表示摄氏温度,℃;RH表示空气相对湿度,%;
当THI值超出[45,75]时,人们普遍感觉不舒适;当THI值在[45,75]之内时,绝大多数人感到些许不舒适,但是还可以承受;当THI值在[55,70]之内时,大部分人感到很舒适,在此环境下生活工作时,心情会很愉悦;
根据《民用建筑供暖通风与空气调节设计规范》规定,人员长期逗留区域空调室内相对湿度应保持在40%~60%;当室内相对湿度为40%,温湿指数THI在55~72之间时,室温的允许范围是[12.0,26.1]℃;当室内相对湿度为60%,温湿指数THI在55~72之间时,室温的允许范围是[12.3,24.4]℃;对比以上两种场景下的室温允许范围可知,当室内相对湿度越大时,人体对于室温的要求越严苛;
根据温湿指数修正三类空调负荷工作的室温范围,以室内相对湿度40%为例,第三类用户的室温允许范围从[23,29]℃进一步缩小为[23,26.1]℃,第二类用户的室温允许范围从[23,27]℃缩小为[23,26.1]℃,第一类用户的室温上下限范围没有受到影响;
步骤4、对分体空调采用直接启停控制策略,中央空调选用轮停控制策略;由步骤2中决定的室内温度范围,分别计算得到考虑用户舒适度情况下分体空调负荷群和中央空调负荷群的最大可参与调度时长和最大可调度容量;
1)利用公式(8)计算分体空调负荷集群最大可参与调度时长
Figure FDA0002916149900000021
式中,
Figure FDA0002916149900000022
表示t+1时刻的室内温度,℃;
Figure FDA0002916149900000023
表示t+1时刻的室外温度,℃;
Figure FDA0002916149900000024
表示t时刻的室内温度,℃;R为等效热阻,℃/W;C为等效热容,J/℃;通过式(8)利用室外温度和室温允许的范围得到分体空调负荷集群允许停止的最长可参与调度时长△t;
分体空调负荷集群的最大可参与调度容量由公式(9)计算得到;
QHA=n·PHA (9)
式中,QHA表示分体空调负荷集群的最大可参与调度容量,n表示可参与调度的分体空调数量,PHA表示分体空调的额定功率;
2)由于中央空调采用轮停控制,由等效热参数法的空调负荷模型可得室温允许上下限为[Tmin,Tmax]时,中央空调启停时间应该满足的关系如式(10)所示:
Figure FDA0002916149900000031
进一步可推导出制冷机启/停周期内停机期和制冷期的允许时长分别为:
Figure FDA0002916149900000032
式中:τoff为制冷机组停机期时长,min;τon为制冷机组制冷期时长,min;τc为启/停周期时长,min;To为室外温度,℃;Q为制冷机的制冷量,kW;cop为空调能效比,
Figure FDA0002916149900000034
为空调额定功率,kW;
最大可参与调度容量如式(12)所示:
Figure FDA0002916149900000033
式中,QCA表示中央空调负荷集群的最大可参与调度容量,n表示参与轮停的中央空调数量;
步骤5、以电力公司的削峰成本最小为目标建立计及负荷聚合商信誉度的日前优化调度模型;电力公司的削峰成本包括电力公司支付给各负荷聚合商的调度费用;储能设备的投资和运行维护费用和各负荷聚合商的违约处罚金;该优化问题的目标函数的表达式如式(13)所示:
Figure FDA0002916149900000041
式中:U为电力公司的削峰成本,ηi为负荷聚合商i的信誉度值,Ci为负荷聚合商i所上报的响应调度费用,
Figure FDA0002916149900000042
为负荷聚合商i所报激励价格,Q′i为负荷聚合商实际中标电量,Ki为聚合商i所对应的储能设备成本,k为储能设备的单位价格,Fi为负荷聚合商i的违约处罚金,βi为负荷聚合商i的违约率,s为电力公司针对负荷聚合商违约电量的处罚金单价;
该优化问题的约束条件为:各削峰时段所有负荷聚合商的总中标电量不小于电力公司计划削峰量;每个负荷聚合商的中标电量不大于投标电量;投标电量不能超出该负荷聚合商的调度潜力和负荷聚合商的可调控时长不小于电力公司计划调度时长;上述约束条件如式(14)所示:
Figure FDA0002916149900000043
式中:Q′i为负荷聚合商i实际中标电量,Q计划为电力公司计划削峰量,Di为负荷聚合商i向电力公司上报的投标电量,Qi为负荷聚合商i的负荷调度潜力,
Figure FDA0002916149900000044
为负荷聚合商i的可调控时长,Tload为电力公司计划调度时长;
步骤6、采用混沌粒子群优化算法对该优化问题进行求解,得到各负荷聚合商在不同时段中标的容量以及电网公司削峰的成本。
CN201910249057.8A 2019-03-29 2019-03-29 计及空调用户舒适度的需求侧响应方法 Active CN110044020B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910249057.8A CN110044020B (zh) 2019-03-29 2019-03-29 计及空调用户舒适度的需求侧响应方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910249057.8A CN110044020B (zh) 2019-03-29 2019-03-29 计及空调用户舒适度的需求侧响应方法

Publications (2)

Publication Number Publication Date
CN110044020A CN110044020A (zh) 2019-07-23
CN110044020B true CN110044020B (zh) 2021-03-30

Family

ID=67275605

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910249057.8A Active CN110044020B (zh) 2019-03-29 2019-03-29 计及空调用户舒适度的需求侧响应方法

Country Status (1)

Country Link
CN (1) CN110044020B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110425706B (zh) * 2019-07-29 2021-03-26 南京理工大学 面向电网削峰的聚合空调负荷调控方法
CN110864414B (zh) * 2019-10-30 2021-09-24 郑州电力高等专科学校 基于大数据分析的空调用电负荷智能控制调度方法
US11457776B2 (en) 2020-03-19 2022-10-04 Lg Electronics Inc. Drying apparatus and related methods
KR20210117879A (ko) * 2020-03-19 2021-09-29 엘지전자 주식회사 건조장치
CN111555274B (zh) * 2020-05-08 2022-06-03 燕山大学 一种空调负荷需求响应能力动态评估方法
CN112365184B (zh) * 2020-11-26 2022-09-16 国电南瑞科技股份有限公司 一种计及负荷集成商历史调控性能的需求响应调度方法
CN113483479B (zh) * 2021-05-31 2022-07-26 国网浙江省电力有限公司 一种变频空调与储能电池联合的辅助服务方法及系统
CN114050644A (zh) * 2021-10-21 2022-02-15 国电南瑞科技股份有限公司 一种电采暖设备参与电网互动系统
CN116976150B (zh) * 2023-09-22 2023-12-12 国网浙江省电力有限公司 计及多用户不确定性和需求多样性的空调负荷优化方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104636987A (zh) * 2015-02-06 2015-05-20 东南大学 一种公共楼宇空调负荷广泛参与的电网负荷调度方法
US20150355650A1 (en) * 2014-06-06 2015-12-10 Innovari, Inc. Real Time Capacity Monitoring For Measurement and Verification of Demand Side Management
CN105356604A (zh) * 2015-11-18 2016-02-24 四川慧盈科技有限责任公司 用户侧需求响应方法
CN105576665A (zh) * 2016-03-03 2016-05-11 国网江苏省电力公司电力科学研究院 一种计及用户舒适度的智能化低频减载控制方法
CN105990838A (zh) * 2016-05-17 2016-10-05 杭州电子科技大学 一种计及可调度和可平移负荷的海岛微电网优化调度方法
CN107563547A (zh) * 2017-08-18 2018-01-09 国网天津市电力公司 一种新型用户侧用能纵深优化综合能源管控方法
CN107748944A (zh) * 2017-08-14 2018-03-02 国网浙江省电力公司经济技术研究院 一种售电侧放开环境下用户侧需求响应方法
CN108039710A (zh) * 2017-11-13 2018-05-15 国网辽宁省电力有限公司 一种基于阶跃特性的空调负荷参与的电网日前调度方法
CN108988348A (zh) * 2018-07-04 2018-12-11 东南大学 一种大功率缺额下的可控负荷双层调度方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150355650A1 (en) * 2014-06-06 2015-12-10 Innovari, Inc. Real Time Capacity Monitoring For Measurement and Verification of Demand Side Management
CN104636987A (zh) * 2015-02-06 2015-05-20 东南大学 一种公共楼宇空调负荷广泛参与的电网负荷调度方法
CN105356604A (zh) * 2015-11-18 2016-02-24 四川慧盈科技有限责任公司 用户侧需求响应方法
CN105576665A (zh) * 2016-03-03 2016-05-11 国网江苏省电力公司电力科学研究院 一种计及用户舒适度的智能化低频减载控制方法
CN105990838A (zh) * 2016-05-17 2016-10-05 杭州电子科技大学 一种计及可调度和可平移负荷的海岛微电网优化调度方法
CN107748944A (zh) * 2017-08-14 2018-03-02 国网浙江省电力公司经济技术研究院 一种售电侧放开环境下用户侧需求响应方法
CN107563547A (zh) * 2017-08-18 2018-01-09 国网天津市电力公司 一种新型用户侧用能纵深优化综合能源管控方法
CN108039710A (zh) * 2017-11-13 2018-05-15 国网辽宁省电力有限公司 一种基于阶跃特性的空调负荷参与的电网日前调度方法
CN108988348A (zh) * 2018-07-04 2018-12-11 东南大学 一种大功率缺额下的可控负荷双层调度方法

Also Published As

Publication number Publication date
CN110044020A (zh) 2019-07-23

Similar Documents

Publication Publication Date Title
CN110044020B (zh) 计及空调用户舒适度的需求侧响应方法
CN110619425B (zh) 一种考虑源网荷储差异特性的多功能区综合能源系统协同规划方法
CN107906675B (zh) 一种基于用户需求的中央空调集群优化控制方法
CN108494012B (zh) 一种计及电转气技术的区域综合能源系统在线优化方法
CN112036934A (zh) 考虑热电协调运行的负荷聚合商参与需求响应的报价方法
CN112733236A (zh) 面向综合舒适度的建筑内温控负荷优化方法及系统
CN113991655A (zh) 定频空调负荷聚合需求响应潜力评估方法、装置及介质
Han et al. Economic evaluation of micro-grid system in commercial parks based on echelon utilization batteries
CN110535142B (zh) 基于改进离散型pso算法的用电智能控制方法及计算机可读存储介质
CN116826752A (zh) 一种台区用能多目标低碳降损优化调度策略方法
CN105243445A (zh) 基于电器用电效用分级和用户用电行为识别的削峰方法
CN113344273B (zh) 基于建筑用能的区域配电网峰谷差调节优化方法及系统
CN113988590A (zh) 一种电力需求响应调度方法及装置
Yuan et al. Two-level collaborative demand-side management for regional distributed energy system considering carbon emission quotas
Zhou et al. Flexible load optimal regulation strategy of commercial buildings under the environment of electricity market
CN114825371B (zh) 基于调节前后节点电压约束的聚合温控负荷多层调控方法
CN111080014A (zh) 基于负荷聚合商非合作博弈的负荷曲线优化方法
Joseph et al. Demand response program for smart grid through real time pricing and home energy management system
CN113673830B (zh) 基于非侵入式负荷监测技术的自适应家庭能量管理方法
Yu et al. Study on power network planning in consideration of demand response of aggregate inverter air-conditioner load
CN112629072A (zh) 煤改电用户空气源热泵节能控制装置
Hu et al. Demand Response Optimization Strategy for Multi-Level Intelligent Regulation under the Power Internet of Things
CN117833372B (zh) 基于平均场博弈的虚拟电厂实时调峰优化调控方法及系统
Lujie et al. The Load Aggregation Strategy of Central Air-conditioning for Smoothing Wind Power Fluctuation
CN117196173B (zh) 一种考虑运行风险和网络传输的虚拟电厂分布式调度方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant