CN110041525B - 一种三元双接枝共聚物及其制备方法 - Google Patents

一种三元双接枝共聚物及其制备方法 Download PDF

Info

Publication number
CN110041525B
CN110041525B CN201810041332.2A CN201810041332A CN110041525B CN 110041525 B CN110041525 B CN 110041525B CN 201810041332 A CN201810041332 A CN 201810041332A CN 110041525 B CN110041525 B CN 110041525B
Authority
CN
China
Prior art keywords
polyvinyl chloride
polyisobutylene
graft copolymer
oxazoline
pvc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810041332.2A
Other languages
English (en)
Other versions
CN110041525A (zh
Inventor
吴一弦
张彦君
杜杰
窦灿煜
王楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN201810041332.2A priority Critical patent/CN110041525B/zh
Publication of CN110041525A publication Critical patent/CN110041525A/zh
Application granted granted Critical
Publication of CN110041525B publication Critical patent/CN110041525B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F259/00Macromolecular compounds obtained by polymerising monomers on to polymers of halogen containing monomers as defined in group C08F14/00
    • C08F259/02Macromolecular compounds obtained by polymerising monomers on to polymers of halogen containing monomers as defined in group C08F14/00 on to polymers containing chlorine
    • C08F259/04Macromolecular compounds obtained by polymerising monomers on to polymers of halogen containing monomers as defined in group C08F14/00 on to polymers containing chlorine on to polymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

本发明属于聚烯烃材料领域,涉及一种三元双接枝共聚物及其制备方法。该三元双接枝共聚物是以聚氯乙烯链段为主链,以聚异丁烯链段和聚噁唑啉链段分别为支链。该三元双接枝共聚物能够充分发挥聚噁唑啉的亲水性、生物相容性、抗菌性等优势性能,同时由于聚氯乙烯链段及聚异丁烯链段的存在,可改善聚噁唑啉性能单一、热稳定性相对较差的缺陷,进一步拓宽三元双接枝共聚物材料在生物医用方面的应用。

Description

一种三元双接枝共聚物及其制备方法
技术领域
本发明属于聚烯烃材料领域,具体地,涉及一种三元双接枝共聚物及其制备方法,更具体地,涉及的双接枝共聚物是以聚氯乙烯链段为主链,聚异丁烯链段和聚噁唑啉链段分别为支链。
背景技术
聚噁唑啉是通过噁唑啉单体进行阳离子开环聚合得到的,它是一种聚氨基酸异构体。2-取代-噁唑啉是阳离子开环聚合中常见的单体,并可以通过改变单体侧链结构来合成性能不同的2-取代-噁唑啉聚合物,如向侧链引入芳香族侧链或脂肪族长链,其中,线性脂肪族长侧链能够使得聚合物结晶,脂肪族短侧链使得聚合物具有亲水性。例如:聚(2-甲基-2-噁唑啉)或聚(2-乙基-2-噁唑啉)具有亲水性,聚(2-异丙基-2-噁唑啉)呈现温敏性、聚(2-丁基-2-噁唑啉)或聚(2-苯基-2-噁唑啉)呈现疏水性,参见Sedlacek O,Monnery B D,Filippov S K,Hoogenboom R,Hruby M.Poly(2-oxazoline)s--are they moreadvantageous for biomedical applications than other polymers,MacromolecularRapid Communication,2012,33(19):1648-1662。聚噁唑啉可以作为添加剂,与非极性聚合物共混,能够增加聚合物的极性,改进粘结性。此外,聚噁唑啉具有良好的生物相容性、化学稳定性、热稳定、无毒性和环境响应性等优点,其中聚(2-乙基-2-噁唑啉)已经被食品药品监管局(FDA)认证,参见:Gaertner F C,Luxenhofer R,Blechert B,Rainer J,Markus E,Synthesis biodistribution and excretion of radiolabeled poly(2-alkyl-2-oxazoline)s,Journal of Controlled Release,2007,119(3):291-300。此外,通过接枝共聚,可以进一步改善聚噁唑啉的性能。采用Grafting onto的方法,通过聚(2-烷基-2-噁唑啉)分子链端基的噁唑啉鎓离子与脱除乙酰基的几丁质上的氨基反应,合成几丁质-g-聚(2-烷基-2-噁唑啉)接枝共聚物,参见:Aoi K,Takasu A,Okada M.Synthesis of novelchitin derivatives having poly(2-alkyl-2-oxazoline)side chains,MacromolecularChemistry and Physics,1994,195(12):3835-3844;采用Grafting from的方法,以N-异丙基丙烯酰胺和4-氯甲基苯乙烯无规共聚物为大分子引发剂,引发2-甲基-2-噁唑啉和2-乙基-2-噁唑啉阳离子开环聚合,可合成出具有温敏性的两亲性接枝共聚物,参见:Carlos RJ,Stefan Z,Hartmut K,Krahl F,Arndt K F,Voit B,New Thermo-Sensitive GraftCopolymers Based on a Poly(N-isopropylacrylamide)Backbone and FunctionalPolyoxazoline Grafts with Random and Diblock Structure,MacromolecularChemistry and Physics,2010,211(6):706-716。因此,通过接枝改性的方法,可以在改善主链性能的同时,提高聚噁唑啉材料的综合性能。
聚氯乙烯(PVC)是全球五大通用合成树脂之一,其拥有优良的阻燃性、耐化学腐蚀性、耐磨性、电绝缘性和机械性能,广泛应用于包装材料、医疗器材、生产型材、板材、电绝缘材料、日常生活用品等领域,其中PVC在医疗器械或医疗制品领域的高分子材料中的比例达到28%,参见:卢晓英,黄强,吴林美,王艳芳,张凤波,医用聚烯烃材料的开发及应用进展,高分子通报,2012,(4),25-29。进一步改善医用PVC的亲水性和生物相容性是十分重要的。对于大多数PVC医用制品表面,需具有一定的亲水性。通过氧气等离子体处理PVC表面,可以明显提升PVC材料表面的亲水性,减少材料表面细菌吸附。参见:Balazs D J,TriandafilluK,Chevolot Y,Aronsson B O,Harms H,Descouts P.Surface modification of PVCendotracheal tubes by oxygen glow discharge to reduce bacterial adhesion,Surface&Interface Analysis,2010,35(3):301-309。通过PVC材料改性的方法,如接枝共聚法,将具有亲水性的聚合物链接枝到制品表面或PVC主链上,改善PVC材料的亲水性。以PVC为大分子引发剂,利用原子转移自由基聚合方法制备聚氯乙烯-g-聚甲基丙烯酸接枝共聚物,该聚合物表现出优良的抗污染性。参见:Fang L F,Zhou M Y,Wang N C,Zhu,B K,ZhuL P.Improving the antifouling property of poly(vinyl chloride)membranes bypoly(vinyl chloride)-g-poly(methacrylic acid)as the additive.Journal ofApplied Polymer Science.2015,132:42745。以PVC为大分子引发剂引发2-甲基-2-噁唑啉阳离子开环聚合,制备聚氯乙烯-g-聚(2-甲基-2-噁唑啉)接枝共聚物,但该接枝共聚物热稳定性有所降低。参见:Trivedi P D,Schulz D N,Synthesis and properties of poly(vinyl chloride-g-2-methyl-2-oxazoline),Polymer Bulletin,1980,3(1):37-44。
聚异丁烯(PIB)具有优异的气密性、化学稳定性、电绝缘性、防水性、弹性、粘性等性能,应用于润滑油或燃油添加剂、粘合剂、软化剂、电绝缘材料、填隙密封材料、口香糖基质胶、防腐内衬等诸多方面。
在现有技术中,以PVC作为骨架大分子引发剂引发异丁烯聚合,即使加入大量路易斯酸共引发剂或加入价格昂贵的质子捕捉剂,如2,6-二叔丁基吡啶,也难以提高PVC-g-聚异丁烯接枝共聚物中聚异丁烯的接枝量,聚异丁烯支链的平均数目非常低,且聚异丁烯支链分子量低,参见:Kennedy J P,Graft Modification of Poly(vinyl Chloride)andRelated Reactions,Journal of Applied Polymer Science,1972,10(9):2507-2525;PiZ,Kennedy J P,Cationic Grafting of Olefins from PVC:The Effect of ReactionConditions,Journal of Applied Polymer Science,2001,39(10):1675-1680。
发明内容
本发明的发明人经研究发现,采用具有活性引发位点的大分子引发剂聚氯乙烯,通过Grafting from的方法分别引发异丁烯单体、噁唑啉单体进行聚合反应,制备出一种以聚氯乙烯为主链、以聚异丁烯和聚噁唑啉分别为支链的三元双接枝共聚物,充分发挥聚噁唑啉的亲水性、生物相容性、抗菌性等优势性能,同时由于聚氯乙烯链段及聚异丁烯链段的存在,可改善聚噁唑啉性能单一、热稳定性相对较差的缺陷,进一步拓宽三元双接枝共聚物材料在生物医用方面的应用。
基于上述发现,本发明的目的是提供一种三元双接枝共聚物及其制备方法。该三元双接枝共聚物是以聚氯乙烯链段为主链,分别以疏水性聚异丁烯和亲水性聚噁唑啉为支链,既能通过链段特性及共聚组成来调节三元双接枝共聚物材料的亲水/疏水性、生物相容性以及抗菌性,又能赋予三元双接枝共聚物材料优良的热稳定性和加工性能。
本发明的第一方面是提供一种三元双接枝共聚物,该三元双接枝共聚物是以聚氯乙烯链段为主链、以聚异丁烯链段和聚噁唑啉链段分别为支链。
优选地,共聚物中主链聚氯乙烯链段的数均分子量(Mn)为30~100kg/mol,聚异丁烯质量含量为5~60%,聚噁唑啉质量含量为4~37%。更优选地,主链聚氯乙烯链段的数均分子量为35~80kg/mol,聚异丁烯质量含量为7%~57%,聚噁唑啉质量含量为5%~35%。
本发明的第二方面提供上述三元双接枝共聚物的制备方法,该方法包括:
(1)聚氯乙烯-g-聚异丁烯接枝共聚物PVC-g-PIB的制备:
以聚氯乙烯为大分子引发剂,采用阳离子聚合方法制备聚氯乙烯-g-聚异丁烯接枝共聚物;
优选地,所述聚氯乙烯-g-聚异丁烯接枝共聚物的制备包括:
A.将聚氯乙烯溶液或聚氯乙烯与单体异丁烯溶液混合,得到反应混合液;
B.向反应混合液中加入共引发剂和电子给体,进行阳离子聚合反应;
C.向反应体系中加入终止剂终止聚合反应,用醇类物质或水析出聚合物,真空干燥后得到所述聚氯乙烯-g-聚异丁烯接枝共聚物。
(2)聚氯乙烯与聚异丁烯及聚噁唑啉三元双接枝共聚物PVC-g1-PIB-g2-PEOX的制备:
A.将步骤(1)中制备好的聚氯乙烯-g-聚异丁烯接枝共聚物与单体噁唑啉混合,加入或不加入有机溶剂,再向体系中加入活化剂,在惰性气体存在下进行本体或溶液聚合反应;
B.向反应体系中加入终止剂终止聚合反应,用醇类物质或水析出聚合物,真空干燥后得到所述三元双接枝聚合物。
根据本发明,所述聚氯乙烯-g-聚异丁烯接枝共聚物的制备中各组分的用量可根据目标产物的结构确定,优选地,反应混合液中,所述单体异丁烯的浓度为0.5~1.5M;聚氯乙烯与单体异丁烯的摩尔比为7.0×10-4~3.0×10-3:1,优选为8.0×10-4~2.0×10-3:1,进一步优选为9.0×10-4~1.8×10-3:1;共引发剂与单体异丁烯的摩尔比为1.0×10-2~8.0×10-2:1,优选为1.3×10-2~7.5×10-2:1,更优选为1.5×10-2~7.0×10-2:1;电子给体与单体异丁烯的摩尔比为1.5×10-2~1.1×10-1:1,优选为1.8×10-2~1.0×10-1:1,更优选为2.0×10-2~9.9×10-2:1。
所述PVC-g-PIB接枝共聚物的制备中的条件也采用常规的阳离子聚合反应条件,优选地,所述阳离子聚合反应的条件包括:温度为-40~-20℃,优选-38~-22℃,更优选-36~-25℃;时间为5~150min,优选10~150min,更优选15~130min。
本发明中,所述共引发剂优选为三氯化铁。
所述电子给体为醇类化合物,优选自下述化合物中的一种或多种:甲醇、乙醇、正丙醇、异丙醇、正丁醇、异丁醇、叔丁醇、正戊醇、异戊醇、季戊醇、正己醇、正庚醇、正辛醇、2,2-二甲基丙醇、2,3-二甲基-2-丁醇、3,3-二甲基-2-丁醇、2-乙基丁醇、2-甲基戊醇、3-乙基-2-戊醇、2,4-二甲基戊醇、2-甲基-2-己醇、2-乙基丁醇、2,3-二甲基戊醇、2,4-二甲基戊醇、2,3,4-三甲基-3-戊醇、2-甲基-3-乙基戊醇、3,4-二甲基己醇、3-甲基庚醇、2-丙基戊醇和2-乙基己醇。
根据本发明,所述聚氯乙烯溶液和单体异丁烯溶液所用溶剂可为阳离子聚合常规的各种溶剂,所述有机溶剂或稀释剂可以为烷烃(如戊烷、己烷、庚烷、辛烷、甲基环己烷等)、卤代烃(如氯甲烷、氯乙烷、氯丙烷、氯丁烷、二氯甲烷、二氯乙烷、氯仿等)或它们两种或两种以上的混合溶剂。根据本发明一种实施方式,所述有机溶剂或稀释剂为二氯乙烷、二氯甲烷、己烷或它们的混合物。
在与聚氯乙烯溶液混合之前,所述单体异丁烯溶液优选预冷到实验条件温度。
根据本发明,所述聚氯乙烯溶液的浓度优选为0.01~0.05g/mL。
本发明的步骤(2)中,单体噁唑啉在与PVC-g-PIB混合之前,先做干燥处理。所述干燥方法例如可以为加入CaH2冷凝回流,进行除水,然后加入分子筛,储存备用。
根据本发明,步骤(2)中,优选地,所述PVC-g-PIB、活化剂与单体噁唑啉的摩尔比为4.0×10-5~9.0×10-4:7.0×10-4~4.0×10-2:1,优选为5.0×10-5~8.0×10-4:8.0×10-4~3.0×10-2:1,更优选为6.0×10-5~7.0×10-4:9.0×10-4~2.0×10-2:1。
所述活化剂优选为固体碘化钾、AgSO3CF3或AgClO4
本发明中,所述单体噁唑啉优选2-取代噁唑啉,更优选2-烷基取代噁唑啉或2-芳基取代噁唑啉,可选自2-甲基-2-噁唑啉、2-乙基-2-噁唑啉、2-丙基-2-噁唑啉、2-异丙基-2-噁唑啉、2-丁基-2-噁唑啉、2-戊基-2-噁唑啉、2-己基-2-噁唑啉、2-环己基-2-噁唑啉、2-壬基-2-噁唑啉、2-苯基-2-噁唑啉中的至少一种。
优选地,本发明步骤(2)中的溶剂可选择N,N-二甲基甲酰胺或N,N-二甲基乙酰胺。
本发明步骤(2)中聚合反应的条件可根据需要确定,优选地,所述聚合反应的条件包括:温度为80~90℃,时间为20~48h。
根据本发明,所述终止剂优选为醇类物质、氨、胺类物质或水。
本发明通过阳离子聚合的方法,将聚异丁烯链段、聚噁唑啉链段接枝到聚氯乙烯主链上,制备出一种新型结构的接枝共聚物材料,并且实现了合成不同接枝量的共聚物材料。该新型材料将三种聚合物的优点有机结合到一起,通过聚噁唑啉链段提高亲水性及抗菌性,通过聚异丁烯链段提高热稳定性、疏水性和弹性,通过PVC链段提高材料极性及强度。此外,通过改变三种链段的分子量和/或比例,可以调节三元双接枝共聚物的性能。
本发明的其它特征和优点将在随后具体实施方式部分予以详细说明。
具体实施方式
下面将更详细地描述本发明的优选实施方式。虽然以下描述了本发明的优选实施方式,然而应该理解,可以以各种形式实现本发明而不应被这里阐述的实施方式所限制。
本发明涉及到的表征方法:
采用Nicolet公司傅里叶变换红外光谱分析仪Nicolet 6700(FTIR)测定接枝共聚物的红外光谱,扫描范围定为400-4000cm-1。建立峰强度与浓度标准曲线测定共聚物中各组成含量。
采用Bruker公司400MHz核磁共振氢谱仪AVANCEⅢ表征该接枝产物分子链结构,能够测出接枝共聚物的化学结构,标准参照物为四甲基硅烷(TMS)。
采用Bruker公司Bruker-Fastscan超快探针(DI)原子力显微镜以及透射电镜TEM测试接枝共聚物的微观结构。
采用德国生产的OCA20接触角测试仪测试接枝共聚物的水接触角。
将不同接枝量的样品配成溶液滴在圆片形滤纸上(D=5.5mm),并将其在超净台的紫外灯下灭菌处理;采用胰酪大豆胨液体培养基配置大肠杆菌的培养液,在37℃恒温条件下震荡培育大肠杆菌E.coli或黑曲霉24h,并接种到胰蛋白胨大豆琼脂固体培养基上;将灭菌后的滴有样品的圆形片滤纸贴在培养基中置于37℃恒温箱中倒置培养24h后观察大肠杆菌与黑曲霉的抑菌圈情况。结合生物抗菌性测试得出的抑菌圈直径可以计算接枝共聚物的抑菌率如下式所示:
Figure BDA0001549595500000081
其中,
D为抑菌圈的直径,采用十字交叉法得出;
D0为滤纸圆片的直径,取D0=5.5mm。
抑菌率数值越大,表明材料的抗菌效果越好。
实施例1
在聚合反应器中加入20g PVC(Mn=42kg/mol)和455mL二氯乙烷,溶解。在-30℃下,与异丁烯45mL混合。搅拌下,加入含三氯化铁(FeCl3)、异丙醇(iPrOH)与二氯甲烷的溶液,引发聚合反应。其中PVC、FeCl3、iPrOH与异丁烯的摩尔比为9.5×10-4:1.8×10-2:2.5×10-2:1。聚合反应20min,加入2mL乙醇溶液终止反应;终止后反应体系用乙醇析出,再依次经乙醇和己烷洗涤后,干燥,得到干燥后的接枝共聚物聚氯乙烯-g-聚异丁烯(PVC-g-PIB),收率为48%,PVC-g-PIB接枝共聚物中聚异丁烯接枝量为18%。
向聚合反应器中加入2-乙基-2-噁唑啉(EtOx)、KI和上述PVC-g-PIB,使得PVC-g-PIB、KI与EtOx的摩尔比为6.5×10-5:1.5×10-2:1。充分搅拌后,使得固体溶解,在85℃及N2气氛中下反应48h,加入1mL乙醇终止反应,聚合产物依次经四氢呋喃和水洗涤,精制提纯后,真空干燥,得到干燥后的聚氯乙烯-g1-聚异丁烯-g2-聚(2-乙基-2-噁唑啉)三元双接枝共聚物,其中:聚异丁烯的接枝量为12%,聚(2-乙基-2-噁唑啉)的接枝量为34%。
聚(2-乙基-2-噁唑啉)可以溶于水;聚氯乙烯的接触角为90°;聚异丁烯是疏水的,其接触角为110°。聚氯乙烯-g1-聚异丁烯-g2-聚(2-乙基-2-噁唑啉)三元双接枝共聚物的接触角为75°,接枝改性后使得三元双接枝共聚物具有一定亲水性,但不溶于水。
所述三元双接枝共聚物在氮气中5%的热分解温度为220℃。与接枝量为35%的PVC-g-PEOX二元单接枝共聚物(对比例1)相比,热稳定性提高了80℃,说明聚异丁烯支链的引入,可明显提高三元双接枝共聚物的热稳定性。
所述三元双接枝共聚物具有抗菌性,抑菌圈尺寸为7mm,抑菌率为1.27。
实施例2
聚氯乙烯-g-聚异丁烯二元接枝共聚物的制备方法同实施例1,只是PVC、FeCl3、iPrOH与异丁烯的摩尔比为1.5×10-3:1.8×10-2:2.5×10-2:1。接枝共聚物收率为48%,其中聚异丁烯接枝量为9%。
聚氯乙烯-g1-聚异丁烯-g2-聚(2-乙基-2-噁唑啉)三元双接枝共聚物的制备方法同实施例1,只是PVC-g-PIB、KI与EtOx的摩尔比为6.5×10-5:7.5×10-3:1,反应24h。所制备的三元双接枝共聚物中,聚异丁烯的接枝量为8%,聚(2-乙基-2-噁唑啉)的接枝量为13%。
聚氯乙烯-g1-聚异丁烯-g2-聚(2-乙基-2-噁唑啉)三元双接枝共聚物形成薄膜的接触角为86°,接枝改性使得三元双接枝共聚物具有亲水性,但不溶于水。
所述三元双接枝共聚物在氮气中热分解温度为190℃。与接枝量为13%的PVC-g-PEOX二元单接枝共聚物(对比例2)相比,热稳定性提高了59℃,这说明聚异丁烯支链的引入,可提三元双接枝共聚物的高热稳定性。
该三元双接枝共聚物具有抗菌性,抑菌圈尺寸为7mm,抑菌率为1.27。
实施例3
在聚合反应器中加入20g PVC(Mn=42kg/mol)和330mL二氯乙烷,溶解。聚氯乙烯-g-聚异丁烯二元接枝共聚物的制备方法同实施例1,只是PVC、FeCl3、iPrOH与异丁烯的摩尔比为1.3×10-3:6.9×10-2:9.7×10-2:1,聚合温度为-27℃,聚合反应20min。终止反应及后处理方法同实施例1,得到干燥后的PVC-g-PIB接枝共聚物,收率为54%,其中聚异丁烯接枝量为14%。
聚氯乙烯-g1-聚异丁烯-g2-聚(2-乙基-2-噁唑啉)三元双接枝共聚物的制备方法同实施例1,只是PVC-g-PIB、KI与EtOx的摩尔比为6.5×10-5:1.8×10-3:1。反应24h。终止聚合反应及后处理方法,同实施例1。接枝共聚物中,聚异丁烯的接枝量为13%,聚(2-乙基-2-噁唑啉)的接枝量为7%。
聚氯乙烯-g1-聚异丁烯-g2-聚(2-乙基-2-噁唑啉)三元双接枝共聚物形成薄膜的接触角为93°,具有疏水性。
所述三元双接枝共聚物在氮气中热分解温度为192℃。与接枝量为8%的二元单接枝共聚物PVC-g-PEOX(对比例3)相比,热稳定性提高了66℃,说明聚异丁烯支链的引入,可大幅提高三元双接枝共聚物的热稳定性。
所述三元双接枝共聚物具有抗菌性,抑菌圈尺寸为6.5mm,抑菌率为1.18。
实施例4
在聚合反应器中加入20g PVC(Mn=42kg/mol)和1L二氯乙烷。聚氯乙烯-g-聚异丁烯二元接枝共聚物的制备方法同实施例1,只是PVC、FeCl3、iPrOH与异丁烯的摩尔比为4.8×10-4:1.6×10-2:2.2×10-2:1,聚合温度为-35℃,聚合反应120min,得到干燥后的接枝共聚物,收率为36%。接枝共聚物中聚异丁烯接枝量为60%。
聚氯乙烯-g1-聚异丁烯-g2-聚(2-乙基-2-噁唑啉)三元双接枝共聚物的制备方法同实施例1,只是PVC-g-PIB、AgClO4与EtOx的摩尔比为6.5×10-5:1.8×10-3:1。83℃下聚合反应24h。终止聚合反应及后处理方法,同实施例1,得到干燥后的三元双接枝共聚物中,聚异丁烯的接枝量为55%,聚(2-乙基-2-噁唑啉)的接枝量为8%。
聚氯乙烯-g1-聚异丁烯-g2-聚(2-乙基-2-噁唑啉)三元双接枝共聚物形成薄膜的接触角为93°,具有疏水性。
所述三元双接枝共聚物在氮气中热分解温度为228℃。与接枝量为8%的二元单接枝共聚物PVC-g-PEOX(对比例3)相比,热稳定性提高了92℃,说明聚异丁烯支链的引入,可大幅提高三元双接枝共聚物的热稳定性。
所述三元双接枝共聚物产物具有良好的抗菌性,抑菌圈尺寸为11mm,抑菌率为2.0。
实施例5
在聚合反应器中加入20g PVC(Mn=42kg/mol)和330mL二氯乙烷。聚氯乙烯-g-聚异丁烯二元接枝共聚物的制备方法同实施例1,只是PVC、FeCl3、iPrOH与异丁烯的摩尔比为1.3×10-3:6.9×10-2:9.7×10-2:1。聚合反应20min。得到干燥后的接枝共聚物,收率为54%,其中聚异丁烯接枝量为14%。
三元双接枝共聚物的制备方法同实施例1,只是PVC-g-PIB、KI与EtOx的摩尔比为6.5×10-4:1.8×10-2:1,83℃下聚合反应48h。终止聚合反应及后处理方法,同实施例1。接枝共聚物中,聚异丁烯的接枝量为13%,聚(2-乙基-2-噁唑啉)的接枝量为8%。
聚氯乙烯-g1-聚异丁烯-g2-聚(2-乙基-2-噁唑啉)三元双接枝共聚物形成薄膜的接触角为97°,具有疏水性。
所述三元双接枝共聚物在氮气中热分解温度为191℃。与接枝量为8%的PVC-g-PEOX二元单接枝共聚物(对比例3)相比,热稳定性提高了55℃,说明聚异丁烯支链的引入,可大幅提高三元双接枝共聚物的热稳定性。
所述三元双接枝共聚物具有良好的抗菌性,抑菌圈尺寸为11mm,抑菌率为2.0。
实施例6
在聚合反应器中加入8g PVC(Mn=42kg/mol)和1L二氯乙烷。聚氯乙烯-g-聚异丁烯二元接枝共聚物的制备方法同实施例1,只是PVC、FeCl3、iPrOH与异丁烯的摩尔比为1.7×10-4:2.1×10-2:2.9×10-2:1。聚合反应90min,得到干燥后的接枝共聚物,收率为36%。接枝共聚物中聚异丁烯接枝量为20%。
聚氯乙烯-g1-聚异丁烯-g2-聚(2-乙基-2-噁唑啉)三元双接枝共聚物的制备方法同实施例1,只是PVC-g-PIB、AgSO3CF3与EtOx的摩尔比为6.5×10-5:1.0×10-3:1,85℃下聚合反应24h。终止聚合反应及后处理方法,同
实施例1,得到干燥后的三元双接枝共聚物中,聚异丁烯的接枝量为18%,聚(2-乙基-2-噁唑啉)的接枝量为9%。
聚氯乙烯-g1-聚异丁烯-g2-聚(2-乙基-2-噁唑啉)三元双接枝共聚物形成薄膜的接触角为86°,接枝改性使得三元双接枝共聚物具有一定亲水性,但不溶于水。
所述三元双接枝共聚物在氮气中热分解温度为222℃。与接枝量为8%的PVC-g-PEOX二元单接枝共聚物(对比例3)相比,热稳定性提高了86℃,说明聚异丁烯支链的引入,可大幅提高三元双接枝共聚物的热稳定性。
所述三元双接枝共聚物具有抗菌性,抑菌圈尺寸为8mm,抑菌率为1.45。
实施例7
聚氯乙烯-g-聚异丁烯二元接枝共聚物的制备方法同实施例6,其中聚异丁烯接枝量为20%。
三元双接枝共聚物的制备方法同实施例1,只是PVC-g-PIB、KI与MeOx的摩尔比为6.5×10-5:1.5×10-2:1,85℃及N2气氛中下反应24h,终止聚合反应及后处理方法,同实施例1,得到干燥后的三元双接枝共聚物聚氯乙烯-g1-聚异丁烯-g2-聚(2-甲基-2-噁唑啉)中,聚异丁烯的接枝量为18%,聚(2-甲基-2-噁唑啉)的接枝量为9%。
聚氯乙烯-g1-聚异丁烯-g2-聚(2-甲基-2-噁唑啉)三元双接枝共聚物形成薄膜的接触角为78°,接枝改性使得三元双接枝共聚物具有亲水性,但不溶于水。
所述三元双接枝聚合物在氮气中热分解温度为227℃。与接枝量为8%的PVC-g-PEOX二元单接枝共聚物(对比例3)相比,热稳定性提高了91℃,说明聚异丁烯支链的引入,可大幅提高三元双接枝共聚物的热稳定性。
所述三元双接枝共聚物具有抗菌性,抑菌圈尺寸为6mm,抑菌率为1.09。
实施例8
聚氯乙烯-g-聚异丁烯二元接枝共聚物的制备方法同实施例6,其中聚异丁烯接枝量为20%。
三元双接枝共聚物的制备方法同实施例1,只是PVC-g-PIB、KI与PhOx的摩尔比为6.5×10-5:1.5×10-2:1。充分搅拌后,使得固体溶解,在85℃及N2气氛中下反应48h,终止聚合反应及后处理方法,同实施例1,得到干燥后的三元双接枝共聚物聚氯乙烯-g1-聚异丁烯-g2-聚(2-苯基-2-噁唑啉),其中:聚异丁烯的接枝量为19%,聚(2-苯基-2-噁唑啉)的接枝量为6%。
聚氯乙烯-g1-聚异丁烯-g2-聚(2-苯基-2-噁唑啉)三元双接枝共聚物形成薄膜的接触角为99°,接枝改性使得三元接枝共聚物疏水性提高。
所述三元双接枝聚合物在氮气中热分解温度为241℃。与接枝量为7%的PVC-g-PEOX二元单接枝共聚物(对比例4)相比,热稳定性提高了105℃,说明聚异丁烯支链的引入,可大幅提高三元双接枝共聚物的热稳定性。
对比例1
在聚合反应器中加入PVC(Mn=42kg/mol)和AgClO4,再加入2-乙基-2-噁唑啉单体,使得PVC、KI与EtOx的摩尔比为6.0×10-5:4.0×10-3:1。充分搅拌后,使得固体溶解,在85℃及N2气氛中下反应48h。终止聚合反应及后处理方法,同实施例1。得到干燥后的聚氯乙烯-g-聚(2-乙基-2-噁唑啉)接枝共聚物,其中聚(2-乙基-2-噁唑啉)的接枝量为35%。该接枝共聚物在氮气中热分解温度为140℃。
对比例2
在聚合反应器中加入PVC(Mn=42kg/mol)、KI和N,N-二甲基甲酰胺,溶解,再加入2-乙基-2-噁唑啉单体,使得PVC、KI与EtOx的摩尔比为2.5×10-4:5.5×10-3:1。充分搅拌后,使得固体溶解,在85℃及N2气氛中下反应48h,终止反应及后处理方法同对比例1,得到干燥后的聚氯乙烯-g-聚(2-乙基-2-噁唑啉)接枝共聚物,其中聚(2-乙基-2-噁唑啉)的接枝量为13%。该接枝共聚物在氮气中热分解温度为131℃。
对比例3
在聚合反应器中加入PVC(Mn=42kg/mol)、KI和N,N-二甲基甲酰胺,溶解,再加入2-乙基-2-噁唑啉单体,使得PVC、KI与EtOx的摩尔比为4.2×10-4:9.2×10-3:1。充分搅拌后,使得固体溶解,在85℃及N2气氛中下反应24h,终止反应及后处理方法同对比例1,得到干燥后的聚氯乙烯-g-聚(2-乙基-2-噁唑啉)接枝共聚物,其中聚(2-乙基-2-噁唑啉)接枝量为8%。该接枝共聚物PVC-g-PEOX在氮气中热分解温度为135℃。
对比例4
在聚合反应器中加入PVC(Mn=42kg/mol)、KI和N,N-二甲基甲酰胺,溶解,再加入干燥后的2-乙基-2-噁唑啉单体,使得PVC、KI与EtOx的摩尔比为3.4×10-4:6.8×10-3:1。充分搅拌后,使得固体溶解,在85℃及N2气氛中下反应24h,终止反应及后处理方法同对比例1,得到干燥后的聚氯乙烯-g-聚(2-乙基-2-噁唑啉)接枝共聚物,其中聚(2-乙基-2-噁唑啉)的接枝量为7%。该接枝共聚物PVC-g-PEOX在氮气中热分解温度为136℃。
以上已经描述了本发明的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。

Claims (9)

1.一种三元双接枝共聚物,其特征在于,该三元双接枝共聚物是以聚氯乙烯链段为主链,以聚异丁烯链段和聚噁唑啉链段分别为支链;其中,主链聚氯乙烯链段的数均分子量为30~100kg/mol,共聚物中聚异丁烯质量含量为5~60%,聚噁唑啉质量含量为4~37%。
2.权利要求1所述的三元双接枝共聚物的制备方法,其特征在于,该方法包括:
(1)聚氯乙烯-g-聚异丁烯接枝共聚物PVC-g-PIB的制备:
以聚氯乙烯为大分子引发剂,采用阳离子聚合方法制备聚氯乙烯-g-聚异丁烯接枝共聚物;
(2)聚氯乙烯与聚异丁烯及聚噁唑啉三元双接枝共聚物PVC-g1-PIB-g2-PEOX的制备:
A.将步骤(1)中制备的聚氯乙烯-g-聚异丁烯接枝共聚物与单体噁唑啉混合,加入或不加入有机溶剂,再向体系中加入活化剂,在惰性气体存在下进行本体或溶液聚合反应;
B.向反应体系中加入终止剂终止聚合反应,用醇类物质或水析出聚合物,真空干燥后得到所述三元双接枝聚合物。
3.根据权利要求2所述的制备方法,其中,所述聚氯乙烯-g-聚异丁烯接枝共聚物的制备包括:
A.将聚氯乙烯溶液或聚氯乙烯与单体异丁烯溶液混合,得到反应混合液;
B.向反应混合液中加入共引发剂和电子给体,进行阳离子聚合反应;
C.向反应体系中加入终止剂终止聚合反应,用醇类物质或水析出聚合物,真空干燥后得到所述聚氯乙烯-g-聚异丁烯接枝共聚物。
4.根据权利要求3所述的制备方法,其中,反应混合液中,所述单体异丁烯的浓度为0.5~1.5M;聚氯乙烯与单体异丁烯的摩尔比为7.0×10-4~3.0×10-3:1;共引发剂与单体异丁烯的摩尔比为1.0×10-2~8.0×10-2:1;电子给体与单体异丁烯的摩尔比为1.5×10-2~1.1×10-1:1。
5.根据权利要求3所述的制备方法,其中,所述阳离子聚合反应的条件包括:温度为-40~-20℃,时间为5~150min。
6.根据权利要求3所述的制备方法,其中,所述共引发剂为三氯化铁;所述电子给体为醇类化合物。
7.根据权利要求2所述的制备方法,其中,所述聚氯乙烯-g-聚异丁烯、活化剂与单体噁唑啉的摩尔比为4.0×10-5~9.0×10-4:7.0×10-4~4.0×10-2:1。
8.根据权利要求2所述的制备方法,其中,所述活化剂为碘化钾、AgSO3CF3或AgClO4
9.根据权利要求2所述的制备方法,其中,步骤(2)中聚合反应的条件包括:温度为80~90℃,时间为20~48h。
CN201810041332.2A 2018-01-16 2018-01-16 一种三元双接枝共聚物及其制备方法 Active CN110041525B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810041332.2A CN110041525B (zh) 2018-01-16 2018-01-16 一种三元双接枝共聚物及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810041332.2A CN110041525B (zh) 2018-01-16 2018-01-16 一种三元双接枝共聚物及其制备方法

Publications (2)

Publication Number Publication Date
CN110041525A CN110041525A (zh) 2019-07-23
CN110041525B true CN110041525B (zh) 2020-08-14

Family

ID=67273506

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810041332.2A Active CN110041525B (zh) 2018-01-16 2018-01-16 一种三元双接枝共聚物及其制备方法

Country Status (1)

Country Link
CN (1) CN110041525B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114196004B (zh) * 2020-09-18 2023-03-21 北京化工大学 一种三元双接枝共聚物及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3933942A (en) * 1968-01-08 1976-01-20 Exxon Research And Engineering Company Process for graft polymerization
US4226746A (en) * 1977-05-16 1980-10-07 The Firestone Tire & Rubber Company Graft copolymers containing polyoxazoline and polyoxazine, and the preparation thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3933942A (en) * 1968-01-08 1976-01-20 Exxon Research And Engineering Company Process for graft polymerization
US4226746A (en) * 1977-05-16 1980-10-07 The Firestone Tire & Rubber Company Graft copolymers containing polyoxazoline and polyoxazine, and the preparation thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Stereoselective Nature of Graft Copolymers Based on Poly(vinyl chloride): Synthesis of PVC-g-PMMA and PVC-g-PIB;Gerardo Martínez等;《Macromol. Chem. Phys.》;20011231;第202卷;第2592-2600页 *
Synthesis and Properties of Poly (Vinyl Chloride-g-2-Methyl-2-Oxazoline);Trivedi PD等;《Polymer Bulletin》;19801231;第3卷;第37-44页 *

Also Published As

Publication number Publication date
CN110041525A (zh) 2019-07-23

Similar Documents

Publication Publication Date Title
Benaglia et al. Poly (glycidyl methacrylate): a highly versatile polymeric building block for post-polymerization modifications
Arredondo et al. Synthesis of CO 2-responsive cellulose nanocrystals by surface-initiated Cu (0)-mediated polymerisation
Audouin et al. Star polymers by cross‐linking of linear poly (benzyl‐l‐glutamate) macromonomers via free‐radical and RAFT polymerization. A simple route toward peptide‐stabilized nanoparticles
Yakimanskii et al. Grafting copolymerization of vinyl monomers on polyimide macroinitiators by the method of atom transfer radical polymerization
Fang et al. Poly (N, N-dimethylaminoethyl methacrylate) grafted poly (vinyl chloride) s synthesized via ATRP process and their membranes for dye separation
KR20040082432A (ko) 중합된 나노스케일 탄화수소 입자, 및 이의 제조방법 및사용방법
Hermanto et al. The preparation and characterization of alginate–chitosan membranes as solid support for btb and urease entrapment
CN110041525B (zh) 一种三元双接枝共聚物及其制备方法
Hu et al. Temperature-responsive porous polycaprolactone-based films via surface-initiated ATRP for protein delivery
AU8710398A (en) Using nitric oxide to reduce reactor fouling during polypropylene graft copolymerization
Pan et al. Dual thermo‐and pH‐sensitive network‐grafted hydrogels formed by macrocrosslinker as drug delivery system
CN111499778A (zh) 抗菌聚烯烃材料及其制备方法和用途
Meleshko et al. Synthesis of graft copolyimides with poly (N, N-dimethylamino-2-ethyl methacrylate) side chains and hybrid nanocomposites with silver nanoparticles
US10927208B2 (en) Functional polymer of styrene derivative and anionic polymerization preparation method thereof
Burkeev et al. New polyampholyte polymers based on polypropylene glycol fumarate with acrylic acid and dimethylaminoethyl methacrylate
Liu et al. Synthesis of polyethylene and polystyrene miktoarm star copolymers using an “in–out” strategy
Bednarz et al. Polymers from biobased-monomers: Macroporous Itaconic xerogels prepared in deep eutectic solvents
US11667733B2 (en) Polyvinyl esters and methods related thereto
CN107108900B (zh) 衍生化聚酰亚胺及其制备和使用方法
Fischer et al. Highly Swellable Hydrogels from Waterborne Poly (Vinylamine‐co‐Acetamide)
Pakhira et al. Development of poly (vinylidene fluoride) graft random copolymer membrane for antifouling and antimicrobial applications
Hosseinzadeh et al. Synthesis, characterization and swelling behavior investigation of gelatin-g-Poly (Acrylic Acid-co-Itaconic Acid)
CN114196004B (zh) 一种三元双接枝共聚物及其制备方法和应用
Jo et al. An efficient chain transfer reaction of the trithiocarbonate unit as a tool to prepare a functional polyolefin: a post-polymerization modification of ethylene–propylene–diene terpolymer for improved oil resistance
WO2021235372A1 (ja) 固体分散体を製造するための可溶化剤及びそれを含有する固体分散体

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant