CN110033082B - 一种识别ai设备中深度学习模型的方法 - Google Patents

一种识别ai设备中深度学习模型的方法 Download PDF

Info

Publication number
CN110033082B
CN110033082B CN201910206257.5A CN201910206257A CN110033082B CN 110033082 B CN110033082 B CN 110033082B CN 201910206257 A CN201910206257 A CN 201910206257A CN 110033082 B CN110033082 B CN 110033082B
Authority
CN
China
Prior art keywords
data
different
dnn
power data
machine learning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910206257.5A
Other languages
English (en)
Other versions
CN110033082A (zh
Inventor
吴哲夫
方泽彬
江壮壮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201910206257.5A priority Critical patent/CN110033082B/zh
Publication of CN110033082A publication Critical patent/CN110033082A/zh
Application granted granted Critical
Publication of CN110033082B publication Critical patent/CN110033082B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods

Abstract

一种高精度识别AI设备中的深度学习模型的方法,利用树莓派和数据采集卡搭建数据采集平台,检测分为两个阶段:不同DNN模型测试阶段和参数估计模型测试阶段。采集完毕后,对数据进行预处理后排除异常值,对提取的功率数据算其网络特征,对得到的特征数据进行机器学习方法处理。本发明能够以较低的成本,较简便的实际操作,有效实现对不同网络模型的识别区分,本发明在侧信道安全领域具有一定的应用价值。

Description

一种识别AI设备中深度学习模型的方法
技术领域
本发明涉及一种通过对AI设备中的侧信道信息进行收集和处理,使用机器学习的方法进行分类,可以高精度地识别深度学习模型的方法。
背景技术
深度学习网络(Deep Neutral Networks)一直是人们关注的焦点,并广泛应用于许多人工智能(AI)领域,例如图像分类、物体检测、视频识别、自然语言处理等。许多DNN应用程序在嵌入式设备上部署和实现,例如机器人、自动驾驶汽车和智能手机等。随着DNN的小型化和AI芯片的发展,嵌入式硬件上的DNN正在变得越来越多,越来越普遍。
发明内容
为了克服限于DNN网络模型多、分类识别困难的不足,本发明提供一种识别AI设备中深度学习模型的方法,以较低的成本,较简便的实际操作,有效实现对不同网络模型的识别区分。
本发明解决其技术问题所采用的技术方案是:
一种高精度识别AI设备中的深度学习模型的方法,包括以下步骤:
步骤1:搭建DNN(Deep Neutral Networks)模型功率数据采集平台;
步骤2:在树莓派上通过运行不同已经训练完成的DNN模型,来对同一目标图片库的相同尺寸的图片素材进行测试,在测试进行的过程中利用数据采集卡对树莓派实时的电压和电流数据进行采集;
步骤3:对采集到的数据进行处理;
步骤4:采集DNN模型基于不同初始化方式(ckpt)的功率数据;
步骤5:采集DNN模型基于不同超参数(bottleneck的数量)的功率数据;
步骤6:采集DNN模型基于不同稀疏度(dropout_keep_prob)大小的功率数据;
步骤7:对采集到的三类样本分别基于机器学习的方法进行分类,以混淆矩阵的方式呈现测试结果。
进一步,所述步骤3的过程如下:
步骤3-1:通过采集到的实时电流电压数据,得到了不同DNN模型运行过程中的功率数据P,在采集到足够量的数据P的情况下,为了避免实验数据的偶然性,保证实验数据的科学性,以预设数量(例如10000)组功率数据为单位,得到平均值
Figure BDA0001999022060000011
中位数PM、标准差PSD
步骤3-2:利用SVM、朴素贝叶斯、随机森林、KNN这四种常用机器学习的方法,分别对不同DNN模型的功率参数
Figure BDA0001999022060000022
进行分类处理,以增强实验数据的说服力;
步骤3-3:数据分类处理后得到的结果用混淆矩阵的方式呈现,以便于更加直观的表现不同DNN网络之间分类的精确度。
再进一步,所述步骤3中,所述对不同DNN模型功率数据进行采集,用机器学习的方法对数据结果进行分类。
本发明的有益效果是:
1.合理利用自带AI芯片的树莓派作为实验平台,部署简单,抗干扰能力较强,且价格低廉,易于普及。
2.本发明提出的高精度分类的方法对边信道攻击所涉及的安全领域具有一定的参考价值;
3.本发明机器学习算法SVM、朴素贝叶斯、随机森林、KNN,对数据量较大的情况同样具有较好的分类效果。
附图说明
图1是本发明的系统框图;
图2是数据采集平台搭建的位置示意图;
图3-1~3-4是本发明实施方式依次使用SVM、朴素贝叶斯、随机森林、KNN这四种机器学习方法来区分9个不同DNN模型的性能效果图。
具体实施方式
下面结合附图对本发明的较佳实施例进行详细阐述,以使本发明的优点和特征能更易于被本领域技术人员理解,从而对本发明的实际意义做出更为清楚明确的界定。
参照图1~图3,一种高精度识别AI设备中的深度学习模型的方法,包括以下步骤:
步骤1:搭建DNN(Deep Neutral Networks)模型功率数据采集平台;
步骤2:在树莓派上通过运行不同已经训练完成的DNN模型,来对同一目标图片库的相同尺寸的图片素材进行测试,在测试进行的过程中利用数据采集卡对树莓派实时的电压和电流数据进行采集;
步骤3:对采集到的数据进行处理,过程如下:
步骤3-1:通过采集到的实时电流电压数据,得到不同DNN模型运行过程中的功率数据P,在采集到足够量的数据P的情况下,得到平均值P、中位数PM、标准差PSD
步骤3-2:利用SVM、朴素贝叶斯、随机森林、KNN这四种常用机器学习的方法,分别对不同DNN模型的功率参数
Figure BDA0001999022060000021
进行分类处理,以增强实验数据的说服力;
步骤3-3:数据分类处理后得到的结果用混淆矩阵的方式呈现,以便于更加直观的表现不同DNN网络之间分类的精确度;
步骤4:采集DNN模型基于不同初始化方式(ckpt)的功率数据;
步骤5:采集DNN模型基于不同超参数(bottleneck的数量)的功率数据;
步骤6:采集DNN模型基于不同稀疏度(dropout_keep_prob)大小的功率数据;
步骤7:对采集到的三类样本分别基于机器学习的方法进行分类,以混淆矩阵的方式呈现测试结果;
进一步,所述步骤3中,所述对不同DNN模型功率数据进行采集,用机器学习的方法对数据结果进行分类。
本实施例中,实验平台主要包括树莓派和数据采集卡两部分,在树莓派上运行不同DNN模型,再用数据采集卡进行实时的数据采集,具体实施场地为一个实验室。
每次采集的数据都会保存延用,以避免实验数据的偶然性和单一性,不同的DNN模型都在特定时间内识别相同的图片库的内容,每次不同DNN模型的数据采集时间为20分钟,进行3次采集且不连续采集同一模型数据。采集完毕后,都能得到一个.txt文件,再根据.txt文件中的数据进行预处理,排除异常值,对提取的功率数据算其网络特征,平均值、标准差、中位数,对得到的特征数据进行本发明方法处理。
参数估计模型测试阶段,不同的模型也以20分钟为一个实验周期,采集测试数据3次且不连续采集同一模型数据,同样经过上述的处理后,对测试数据进行本发明方法处理。
对每个不同DNN模型或参数估计模型的功率数据,都依次用机器学习算法SVM、朴素贝叶斯、随机森林、KNN进行分类,同时根据发明内容中步骤3~步骤7的详细过程,得到分类精确度及混淆矩阵。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (2)

1.一种高精度识别AI设备中的深度学习模型的方法,其特征在于,所述方法包括以下步骤:
步骤1:搭建DNN模型功率数据采集平台;
步骤2:在树莓派上通过运行不同已经训练完成的DNN模型,来对同一目标图片库的相同尺寸的图片素材进行测试,在测试进行的过程中利用数据采集卡对树莓派实时的电压和电流数据进行采集;
步骤3:对采集到的数据进行处理;
步骤4:采集DNN模型基于不同初始化方式的功率数据;
步骤5:采集DNN模型基于不同超参数的功率数据;
步骤6:采集DNN模型基于不同稀疏度大小的功率数据;
步骤7:对采集到的三类样本功率数据进行基于机器学习的方法进行分类,以混淆矩阵的方式呈现测试结果;
所述步骤3的过程为:
步骤3-1:通过采集到的实时电流电压数据得到不同DNN模型运行过程中的功率数据P,并得到平均值
Figure FDA0002940173640000011
中位数PM、标准差PSD
步骤3-2:利用SVM、朴素贝叶斯、随机森林、KNN四种常用机器学习的方法,分别对不同DNN模型的功率参数
Figure FDA0002940173640000012
PM、PSD进行分类处理;
步骤3-3:分类结果用混淆矩阵方式表现不同DNN网络之间分类的精确度。
2.如权利要求1所述的一种高精度识别AI设备中的深度学习模型的方法,其特征在于,所述步骤3中,所述对不同DNN模型功率数据进行采集,用机器学习的方法对数据结果进行分类。
CN201910206257.5A 2019-03-19 2019-03-19 一种识别ai设备中深度学习模型的方法 Active CN110033082B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910206257.5A CN110033082B (zh) 2019-03-19 2019-03-19 一种识别ai设备中深度学习模型的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910206257.5A CN110033082B (zh) 2019-03-19 2019-03-19 一种识别ai设备中深度学习模型的方法

Publications (2)

Publication Number Publication Date
CN110033082A CN110033082A (zh) 2019-07-19
CN110033082B true CN110033082B (zh) 2021-05-18

Family

ID=67236241

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910206257.5A Active CN110033082B (zh) 2019-03-19 2019-03-19 一种识别ai设备中深度学习模型的方法

Country Status (1)

Country Link
CN (1) CN110033082B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113676311A (zh) * 2021-07-05 2021-11-19 浙江工业大学 一种基于侧信道信息获取深度学习模型结构的方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107122790A (zh) * 2017-03-15 2017-09-01 华北电力大学 基于混合神经网络和集成学习的非侵入式负荷识别算法
CN107239852A (zh) * 2017-05-05 2017-10-10 南京邮电大学 一种基于深度学习的电量消耗预测方法
CN107563414A (zh) * 2017-08-14 2018-01-09 北京航空航天大学 一种基于Kohonen‑SVM的复杂设备退化状态识别方法
WO2018173472A1 (ja) * 2017-03-22 2018-09-27 株式会社デンソー ニューラルネットワーク回路

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105022021B (zh) * 2015-07-08 2018-04-17 国家电网公司 一种基于多智能体的关口电能计量装置的状态识别方法
US10089574B2 (en) * 2016-09-14 2018-10-02 Hewlett Packard Enterprise Development Lp Neuron circuits

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107122790A (zh) * 2017-03-15 2017-09-01 华北电力大学 基于混合神经网络和集成学习的非侵入式负荷识别算法
WO2018173472A1 (ja) * 2017-03-22 2018-09-27 株式会社デンソー ニューラルネットワーク回路
CN107239852A (zh) * 2017-05-05 2017-10-10 南京邮电大学 一种基于深度学习的电量消耗预测方法
CN107563414A (zh) * 2017-08-14 2018-01-09 北京航空航天大学 一种基于Kohonen‑SVM的复杂设备退化状态识别方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Estimation of EV battery SOC based on KF dynamic neural network with GA;Huixin T.等;《2018 Chinese Control And Decision Conference (CCDC)》;20180709;第2720-2724页 *
高性能ADC芯片测试技术研究;王华;《中国集成电路》;20180630;第72-76页 *

Also Published As

Publication number Publication date
CN110033082A (zh) 2019-07-19

Similar Documents

Publication Publication Date Title
CN108846835B (zh) 基于深度可分离卷积网络的图像变化检测方法
Howlader et al. Automatic recognition of guava leaf diseases using deep convolution neural network
CN111651937A (zh) 变工况下类内自适应轴承故障诊断方法
CN109858352B (zh) 一种基于压缩感知与改进多尺度网络的故障诊断方法
CN110108992B (zh) 基于改进随机森林算法的电缆局放故障识别方法、系统
CN111080105A (zh) 基于电压时序数据的台区户变关系识别方法及系统
CN107358259A (zh) 基于GLOH描述子和GVF‑Snake模型的绝缘子覆冰检测方法
CN106951863B (zh) 一种基于随机森林的变电站设备红外图像变化检测方法
Du et al. Convolutional neural network-based data anomaly detection considering class imbalance with limited data
CN110033082B (zh) 一种识别ai设备中深度学习模型的方法
Najibi et al. Towards the success rate of one: Real-time unconstrained salient object detection
CN110874576A (zh) 一种基于典型相关分析融合特征的行人再识别方法
Zheng et al. Benchmarking unsupervised anomaly detection and localization
CN116503612B (zh) 基于多任务关联的风机叶片损伤识别方法与系统
Lin et al. Citrus segmentation for automatic harvester combined with adaboost classifier and Leung-Malik filter bank
CN111191027B (zh) 一种基于高斯混合分布vae的广义零样本识别方法
CN115937492A (zh) 一种基于特征识别的变电设备红外图像识别方法
CN110543675A (zh) 一种输电线路故障识别方法
CN112014821B (zh) 一种基于雷达宽带特征的未知车辆目标识别方法
CN114970601A (zh) 一种电力设备局部放电类型识别方法、设备及存储介质
CN112036472A (zh) 一种电力系统视觉图像分类方法及系统
CN114077663A (zh) 应用日志的分析方法及装置
Zhan Electric Equipment Inspection on High Voltage Transmission Line Via Mobile Net-SSD
Yerunkar et al. The Machine Learning Model with Hybrid Pooling Approach For Transmission Line Insulator Classification and Faults Detection
Liu et al. End-to-end high-speed railway dropper breakage and slack monitoring based on computer vision

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant