CN110031876A - A kind of vehicle mounted guidance tracing point offset antidote based on Kalman filtering - Google Patents
A kind of vehicle mounted guidance tracing point offset antidote based on Kalman filtering Download PDFInfo
- Publication number
- CN110031876A CN110031876A CN201810025286.7A CN201810025286A CN110031876A CN 110031876 A CN110031876 A CN 110031876A CN 201810025286 A CN201810025286 A CN 201810025286A CN 110031876 A CN110031876 A CN 110031876A
- Authority
- CN
- China
- Prior art keywords
- point
- tracing point
- navigation
- points
- missing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C25/00—Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/40—Correcting position, velocity or attitude
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Networks & Wireless Communication (AREA)
- Navigation (AREA)
Abstract
本发明公开了一种基于卡尔曼滤波的车载导航轨迹点偏移矫正方法,该方法包括以下步骤:步骤1:对导航轨迹中的轨迹点进行去噪处理;步骤2:对导航轨迹中的缺失点进行补全处理;步骤3:采用卡尔曼滤波对经过去噪和补全后的导航轨迹点,进行偏移矫正;使用卡尔曼滤波算法,将服从高斯分布的偏移点很好地矫正到合理的范围内,通过对历史导航轨迹的偏移点矫正,使得用户定位设备回传的导航轨迹更接近于真实的行车轨迹,提高了历史导航轨迹的可用性。
The invention discloses a vehicle navigation track point offset correction method based on Kalman filtering. The method includes the following steps: step 1: denoising the track points in the navigation track; step 2: removing the missing in the navigation track Step 3: Use Kalman filter to correct the offset of the navigation track points after denoising and completion; use the Kalman filter algorithm to correct the offset points that obey the Gaussian distribution to Within a reasonable range, by correcting the offset points of the historical navigation trajectory, the navigation trajectory returned by the user positioning device is closer to the real driving trajectory, which improves the usability of the historical navigation trajectory.
Description
技术领域technical field
本发明属于路径导航规划领域,特别涉及一种基于卡尔曼滤波的车载导航轨迹点偏移矫正方法。The invention belongs to the field of path navigation planning, and particularly relates to a method for correcting the offset of vehicle navigation track points based on Kalman filtering.
背景技术Background technique
卫星导航是现在使用非常普遍的一种技术,其可在全球范围内提供经度、纬度、海拨高度、速度、航向、时间等导航信息,通过卫星导航可以方便的引导驾驶员到达目的地。导航的核心技术是定位技术,现在主要通过GPS系统或者北斗系统获得数据。对于导航路径规划,需要研究用户导航的历史轨迹以给用户提供更好的出行建议。在用户导航的历史轨迹点中,因为大气层电离层延迟效应,卫星时钟误差,卫星轨道误差以及城市建筑群引起的多径效应会造成GPS定位不准,会导致一些用户导航的轨迹点偏离实际位置的距离比较远,对于这些偏移的点,需要矫正其位置,才能使得历史导航轨迹更接近于用户的行车轨迹,便于对用户的历史轨迹特征进行进一步的研究。目前,国内外有大量关于在导航过程中实时定位偏移矫正的研究,以便及时修正实时导航方案,但是却极少数关注历史导航轨迹点的偏移矫正。对于用户导航的历史轨迹,由于用户定位设备的限制,会存在一些轨迹点偏离了实际位置。在对于用户历史轨迹特征的研究中,如果存在一些点的位置偏离实际位置比较远,将无法准确知道用户行驶轨迹,从而会影响到对于导航轨迹特征的研究。Satellite navigation is a very common technology that can provide navigation information such as longitude, latitude, altitude, speed, heading, time, etc. on a global scale. Through satellite navigation, the driver can be easily guided to the destination. The core technology of navigation is positioning technology, and now data is mainly obtained through GPS system or Beidou system. For navigation path planning, it is necessary to study the historical trajectories of user navigation to provide users with better travel suggestions. In the historical trajectory points of user navigation, due to atmospheric ionospheric delay effect, satellite clock error, satellite orbit error and multipath effect caused by urban buildings, GPS positioning will be inaccurate, which will cause some user navigation trajectory points to deviate from the actual position. For these offset points, it is necessary to correct their positions to make the historical navigation trajectory closer to the user's driving trajectory, which is convenient for further research on the user's historical trajectory characteristics. At present, there are a lot of researches on real-time positioning offset correction in the navigation process at home and abroad in order to correct the real-time navigation scheme in time, but very few focus on the offset correction of historical navigation track points. For the historical trajectory of user navigation, due to the limitation of the user's positioning device, there will be some trajectory points that deviate from the actual position. In the research on the characteristics of the user's historical trajectory, if the positions of some points are far away from the actual position, the user's driving trajectory cannot be accurately known, which will affect the research on the characteristics of the navigation trajectory.
发明内容SUMMARY OF THE INVENTION
本发明提供一种基于卡尔曼滤波的车载导航轨迹点偏移矫正方法,通过使用卡尔曼滤波算法,将服从高斯分布的偏移点很好地矫正到合理的范围内,同时,对于正常点不会引起太远距离的偏移,很好地还原了用户导航历史轨迹,为基于导航轨迹特征的研究提供了很大的帮助。The invention provides a vehicle navigation track point offset correction method based on Kalman filtering. By using the Kalman filtering algorithm, the offset points obeying the Gaussian distribution are well corrected to a reasonable range. It will cause too long distance offset, restore the user's navigation history track well, and provide great help for the research based on the characteristics of the navigation track.
一种基于卡尔曼滤波的车载导航轨迹点偏移矫正方法,包括以下步骤:A vehicle navigation track point offset correction method based on Kalman filtering, comprising the following steps:
步骤1:对导航轨迹中的轨迹点进行去噪处理;Step 1: Denoise the track points in the navigation track;
步骤2:对导航轨迹中的缺失点进行补全处理;Step 2: Complete the missing points in the navigation track;
步骤3:采用卡尔曼滤波对经过去噪和补全后的导航轨迹点,进行偏移矫正;Step 3: Use Kalman filter to perform offset correction on the navigation track points after denoising and completion;
步骤3.1:获取前一个状态的轨迹点的最优估计位置,利用导航系统过程模型预测当前状态的轨迹点的位置,并获取导航系统在当前状态的轨迹点预测位置的协方差;Step 3.1: Obtain the optimal estimated position of the trajectory point of the previous state, use the navigation system process model to predict the position of the trajectory point of the current state, and obtain the covariance of the predicted position of the trajectory point of the navigation system in the current state;
步骤3.2:利用导航系统在当前状态的轨迹点预测位置的协方差,计算导航系统在当前状态的轨迹点预测位置的卡尔曼增益;Step 3.2: Use the covariance of the predicted position of the trajectory point of the navigation system in the current state to calculate the Kalman gain of the predicted position of the trajectory point of the navigation system in the current state;
步骤3.3:基于导航系统在当前轨迹点预测位置及其卡尔曼增益,以及当前状态的轨迹点的位置测量值,采用卡尔曼滤波最优估计,获取当前状态的轨迹点的最优估计位置,以当前状态的轨迹点的最优估计位置作为矫正后的位置;Step 3.3: Based on the predicted position of the navigation system at the current trajectory point and its Kalman gain, as well as the position measurement value of the trajectory point in the current state, use the Kalman filter optimal estimation to obtain the optimal estimated position of the trajectory point in the current state to obtain the optimal estimated position of the trajectory point in the current state. The optimal estimated position of the trajectory point of the current state is used as the corrected position;
其中,导航系统在初始状态下,导航轨迹的第一个轨迹点的最优估计位置值为第一个轨迹点的位置测量值;导航系统在初始状态下,导航轨迹的第一个轨迹点的协方差取值为1。Among them, in the initial state of the navigation system, the optimal estimated position value of the first track point of the navigation track is the position measurement value of the first track point; in the initial state of the navigation system, the value of the first track point of the navigation track The covariance takes a value of 1.
进一步地,所述利用导航系统过程模型预测当前状态的轨迹点的位置按照以下公式进行计算获得预测值;Further, the position of the trajectory point of the current state predicted by the navigation system process model is calculated according to the following formula to obtain the predicted value;
X(k|k-1)=AX(k-1|k-1)X(k|k-1)=AX(k-1|k-1)
其中,X(k|k-1)表示以前一个状态k-1的轨迹点的最优估计位置X(k-1|k-1)预测得到的当前状态k的轨迹点的位置预测值,A表示导航系统增益,取值为1;Among them, X(k|k-1) represents the position prediction value of the trajectory point of the current state k predicted by the optimal estimated position X(k-1|k-1) of the trajectory point of the previous state k-1, A Indicates the gain of the navigation system, the value is 1;
所述获取导航系统在当前状态的轨迹点预测位置的协方差,按照以下公式计算获得:The obtained covariance of the predicted position of the trajectory point of the navigation system in the current state is calculated and obtained according to the following formula:
P(k|k-1)=AP(k-1|k-1)A'+QP(k|k-1)=AP(k-1|k-1)A'+Q
其中,P(k|k-1)和P(k-1|k-1)分别表示X(k|k-1)和X(k-1|k-1)对应的协方差,当k-1=0时,P(k-1|k-1)表示初始点协方差,即导航系统的初始协方差P(0|0)=1;当k-1>0,P(k-1|k-1)=(I-Kg(k-1)H)P(k-1|k-2);A'=A=1,Q表示导航系统的过程协方差,取值为1×10-5,I为单位矩阵。Among them, P(k|k-1) and P(k-1|k-1) represent the covariance corresponding to X(k|k-1) and X(k-1|k-1) respectively, when k- When 1=0, P(k-1|k-1) represents the initial point covariance, that is, the initial covariance of the navigation system P(0|0)=1; when k-1>0, P(k-1| k-1)=(I-Kg(k-1)H)P(k-1|k-2); A'=A=1, Q represents the process covariance of the navigation system, which is 1×10 − 5 , I is the identity matrix.
进一步地,所述采用卡尔曼滤波最优估计,获取当前状态的轨迹点的最优估计位置,采用以下公式计算获得:Further, the Kalman filter optimal estimation is used to obtain the optimal estimated position of the trajectory point of the current state, and the following formula is used to calculate and obtain:
X(k|k)=X(k|k-1)+Kg(k)(Z(k)-HX(k|k-1))X(k|k)=X(k|k-1)+Kg(k)(Z(k)-HX(k|k-1))
Kg(k)=P(k|k-1)H'/(HP(k|k-1)H'+R)Kg(k)=P(k|k-1)H'/(HP(k|k-1)H'+R)
其中,Kg(k)表示卡尔曼增益,Z(k)表示在状态k时轨迹点的测量值,H表示导航系统状态对于导航系统在测量值的增益,取值为1。Among them, Kg(k) represents the Kalman gain, Z(k) represents the measured value of the trajectory point at state k, and H represents the gain of the navigation system state to the measured value of the navigation system, which takes a value of 1.
进一步地,所述对导航轨迹中的轨迹点进行去噪处理的过程如下:Further, the process of denoising the track points in the navigation track is as follows:
步骤1.1:对导航轨迹中的轨迹点进行速度区段划分;Step 1.1: Divide the speed segment for the track points in the navigation track;
对导航轨迹中,将属于相同速度区段的连续轨迹点所在区段进行速度区段划分,每个速度区段中至少包括5个连续轨迹点;In the navigation track, the speed segment is divided into the segment where the continuous track points belonging to the same speed segment are located, and each speed segment includes at least 5 continuous track points;
轨迹点速度区段包括低速区段[0~10)m/s,中速区段[20~30)m/s,高速区段[0~10m/s;Track point speed section includes low speed section [0~10)m/s, medium speed section [20~30)m/s, high speed section [0~10m/s;
步骤1.2:计算每个速度区段中相邻轨迹点之间的距离,判断各速度区段中的相邻轨迹点之间的距离是否超过预设的正常最大距离,若超过,则认为相邻轨迹点中的第二个轨迹点为噪声点,将噪声点删除;Step 1.2: Calculate the distance between adjacent trajectory points in each speed section, and judge whether the distance between adjacent trajectory points in each speed section exceeds the preset normal maximum distance. If it exceeds, it is considered adjacent. The second track point in the track points is a noise point, delete the noise point;
在不存在轨迹点缺失的情况下:In the absence of missing track points:
低速区段,采样时间相隔1s的两个点之间的正常最大距离为20m;In the low-speed section, the normal maximum distance between two points whose sampling time is 1s apart is 20m;
中速区段,采样时间相隔1s的两个点之间的正常最大距离为前一个点的瞬时速度的3倍;In the medium-speed section, the normal maximum distance between two points whose sampling time is 1s apart is 3 times the instantaneous speed of the previous point;
高速区段,采样时间相隔1s的两个点之间的正常最大距离为前一个点的瞬时速度的2倍;In the high-speed section, the normal maximum distance between two points whose sampling time is 1s apart is twice the instantaneous speed of the previous point;
在存在轨迹点缺失的情况下:In the presence of missing track points:
以相邻两个点的采样时间差乘以所在速度区段在不存在轨迹点缺失的情况下相应的最大距离得到的乘积,作为相邻两点之间的预设的正常最大距离。The product obtained by multiplying the sampling time difference of two adjacent points by the corresponding maximum distance of the speed section in the absence of missing track points is taken as the preset normal maximum distance between two adjacent points.
进一步地,所述对导航轨迹中的缺失点进行补全处理的过程如下:Further, the process of completing the missing points in the navigation track is as follows:
步骤2.1:轨迹点缺失程度检测;Step 2.1: Detection of missing degree of trajectory points;
从导航轨迹起始点开始依次遍历每个点的时间戳信息,若后一个轨迹点的采样时刻与前一个轨迹点的采样时刻超过采样时间间隔,则存在缺失点,统计后一个轨迹点后面的连续30个轨迹点中的缺失时间,若缺失时间超过10s,则以后一个轨迹点开始的连续30个点为缺失严重轨迹,删除该轨迹段,否则,继续寻找下一个缺失点;From the starting point of the navigation track, the timestamp information of each point is traversed in turn. If the sampling time of the next track point and the sampling time of the previous track point exceed the sampling time interval, there are missing points. The missing time in the 30 trajectory points, if the missing time exceeds 10s, then 30 consecutive points starting from the next trajectory point are serious missing trajectory, delete the trajectory segment, otherwise, continue to find the next missing point;
步骤2.2:基于分段线性插值的导航轨迹点缺失补全;Step 2.2: Completion of missing navigation track points based on piecewise linear interpolation;
从导航轨迹起始点开始依次遍历每个点的时间戳信息,找到所有有缺失的位置,将某一缺失位置区间记为[xi,xi+1];From the starting point of the navigation track, traverse the timestamp information of each point in turn, find all missing positions, and record a missing position interval as [x i , x i+1 ];
在缺失位置区间[xi,xi+1]前后两个轨迹点的采样时间差为n(s),其中0<n≤10且n为整数;The sampling time difference between the two trajectory points before and after the missing position interval [x i , x i+1 ] is n(s), where 0<n≤10 and n is an integer;
将缺失位置区间[xi,xi+1]进行n等分,补全点位置横坐标分别缺失位置区间的1/n,2/n,3/n,...,(n-1)/n等分点的位置,依次代入以下一次线性方程式计算出纵坐标;Divide the missing position interval [x i , x i+1 ] into n equal parts, and the abscissa of the complement point position is 1/n, 2/n, 3/n, ..., (n-1) of the missing position interval respectively. The position of the bisected point of /n is substituted into the following linear equation in turn to calculate the ordinate;
其中,(x,y)表示补全点的坐标,(xi,yi)和(xi+1,yi+1)分别表示缺失位置取点的前后两个轨迹点的坐标。Among them, (x, y) represents the coordinates of the complement point, and (x i , y i ) and (x i+1 , y i+1 ) represent the coordinates of the two track points before and after the missing location point, respectively.
有益效果beneficial effect
本发明提供了一种基于卡尔曼滤波的车载导航轨迹点偏移矫正方法,使用卡尔曼滤波算法,将服从高斯分布的偏移点很好地矫正到合理的范围内,通过对历史导航轨迹的偏移点矫正,使得用户定位设备回传的导航轨迹更接近于真实的行车轨迹,提高了历史导航轨迹的可用性。The invention provides a Kalman filter-based vehicle navigation track point offset correction method. Using the Kalman filter algorithm, the offset points subject to Gaussian distribution are well corrected to a reasonable range. Offset point correction makes the navigation trajectory returned by the user positioning device closer to the real driving trajectory, improving the usability of historical navigation trajectories.
相对于现有技术而言,具有以下几点优点:Compared with the existing technology, it has the following advantages:
1.本发明采用卡尔曼滤波,使用简单的递推算法,所需的数据存储量较小,便于用计算机进行实时处理;1. The present invention adopts Kalman filtering, uses simple recursive algorithm, and the required data storage capacity is small, which is convenient for real-time processing with a computer;
2.该方案可以使得导航偏移点被矫正,同时不会使正常点造成远距离偏移,很好地还原了用户行驶轨迹;2. This solution can correct the navigation offset points without causing long-distance offsets for normal points, and restore the user's driving trajectory well;
3.本发明通过对导航轨迹点的偏移矫正,使得用户历史轨迹的特征共性凸显出来,使得用户历史导航轨迹有更高的可用性。3. In the present invention, by correcting the offset of the navigation track points, the characteristic commonality of the user's historical track is highlighted, so that the user's historical navigation track has higher usability.
附图说明Description of drawings
图1是基于卡尔曼滤波的车载导航轨迹偏移矫正的流程框图;Fig. 1 is a flow chart of vehicle navigation trajectory offset correction based on Kalman filtering;
图2是导航轨迹按速度分区段示意图;Fig. 2 is a schematic diagram of a navigation track divided into segments by speed;
图3是在对应速度区段的噪声点示意图;Fig. 3 is the schematic diagram of the noise point in the corresponding speed section;
图4是导航轨迹点缺失的线性插值补全示意图;Fig. 4 is the linear interpolation complementing schematic diagram of the missing navigation track point;
图5是卡尔曼滤波前后经纬度变化曲线图;Fig. 5 is the change curve diagram of longitude and latitude before and after Kalman filtering;
图6是卡尔曼滤波前局部导航轨迹示意图;6 is a schematic diagram of a local navigation trajectory before Kalman filtering;
图7是卡尔曼滤波后局部导航轨迹示意图。FIG. 7 is a schematic diagram of the local navigation trajectory after Kalman filtering.
具体实施方式Detailed ways
一种基于卡尔曼滤波的车载导航轨迹点偏移矫正方法,具体流程如图1所示。主要包括以下步骤:A method of vehicle navigation track point offset correction based on Kalman filter, the specific process is shown in Figure 1. It mainly includes the following steps:
步骤1:对导航轨迹中的轨迹点进行去噪处理;Step 1: Denoise the track points in the navigation track;
所述对导航轨迹中的轨迹点进行去噪处理的过程如下:The process of denoising the track points in the navigation track is as follows:
步骤1.1:对导航轨迹中的轨迹点进行速度区段划分;Step 1.1: Divide the speed segment for the track points in the navigation track;
对导航轨迹中,将属于相同速度区段的连续轨迹点所在区段进行速度区段划分,每个速度区段中至少包括5个连续轨迹点;In the navigation track, the speed segment is divided into the segment where the continuous track points belonging to the same speed segment are located, and each speed segment includes at least 5 continuous track points;
轨迹点速度区段包括低速区段[0~10)m/s,中速区段[20~30)m/s,高速区段[0~10m/s;Track point speed section includes low speed section [0~10)m/s, medium speed section [20~30)m/s, high speed section [0~10m/s;
最后得到的速度分区段效果如图2所示。The final result of velocity sub-section is shown in Figure 2.
步骤1.2:计算每个速度区段中相邻轨迹点之间的距离,判断各速度区段中的相邻轨迹点之间的距离是否超过预设的正常最大距离,若超过,则认为相邻轨迹点中的第二个轨迹点为噪声点,将噪声点删除;Step 1.2: Calculate the distance between adjacent trajectory points in each speed section, and judge whether the distance between adjacent trajectory points in each speed section exceeds the preset normal maximum distance. If it exceeds, it is considered adjacent. The second track point in the track points is a noise point, delete the noise point;
在不存在轨迹点缺失的情况下:In the absence of missing track points:
低速区段,采样时间相隔1s的两个点之间的正常最大距离为20m;In the low-speed section, the normal maximum distance between two points whose sampling time is 1s apart is 20m;
中速区段,采样时间相隔1s的两个点之间的正常最大距离为前一个点的瞬时速度的3倍;In the medium-speed section, the normal maximum distance between two points whose sampling time is 1s apart is 3 times the instantaneous speed of the previous point;
高速区段,采样时间相隔1s的两个点之间的正常最大距离为前一个点的瞬时速度的2倍;In the high-speed section, the normal maximum distance between two points whose sampling time is 1s apart is twice the instantaneous speed of the previous point;
在存在轨迹点缺失的情况下:In the presence of missing track points:
以相邻两个点的采样时间差乘以所在速度区段在不存在轨迹点缺失的情况下相应的最大距离得到的乘积,作为相邻两点之间的预设的正常最大距离。导航轨迹中的噪声点如图3所示。The product obtained by multiplying the sampling time difference of two adjacent points by the corresponding maximum distance of the speed section in the absence of missing track points is taken as the preset normal maximum distance between two adjacent points. The noise points in the navigation trajectory are shown in Figure 3.
步骤2:对导航轨迹中的缺失点进行补全处理;Step 2: Complete the missing points in the navigation track;
所述对导航轨迹中的缺失点进行补全处理的过程如下:The process of completing the missing points in the navigation track is as follows:
步骤2.1:轨迹点缺失程度检测;Step 2.1: Detection of missing degree of trajectory points;
从导航轨迹起始点开始依次遍历每个点的时间戳信息,若后一个轨迹点的采样时刻与前一个轨迹点的采样时刻超过采样时间间隔,则存在缺失点,统计后一个轨迹点后面的连续30个轨迹点中的缺失时间,若缺失时间超过10s,则以后一个轨迹点开始的连续30个点为缺失严重轨迹,删除该轨迹段,否则,继续寻找下一个缺失点;From the starting point of the navigation track, the timestamp information of each point is traversed in turn. If the sampling time of the next track point and the sampling time of the previous track point exceed the sampling time interval, there are missing points. The missing time in the 30 trajectory points, if the missing time exceeds 10s, then 30 consecutive points starting from the next trajectory point are serious missing trajectory, delete the trajectory segment, otherwise, continue to find the next missing point;
从导航轨迹起始点开始依次遍历每个点的时间戳信息,从找到第一个有缺失的点,如点P76的时间戳是1512094831s,轨迹中下一个点P77的时间戳是1512094834s,中间缺失时间戳1512094832s和1512094833s对应的点,认为这两个点之间的缺失时间为2s。从该点向后遍历30个点,找到这30个点中所有缺失的总时间,如果总缺失时间超过10s,则认为该轨迹缺失严重,不可采用(实际中该情况出现的概率不超过2%),如果这30个点的总缺失不超过10s,则开始寻找下一个有缺失的点,重复上述步骤,至倒数第30个点为止,这个过程中均未发现缺失严重情况,则认为该轨迹可用。Traverse the timestamp information of each point in turn from the starting point of the navigation track, and find the first missing point. For example, the timestamp of point P76 is 1512094831s, the timestamp of the next point P77 in the trajectory is 1512094834s, and the missing time in the middle The points corresponding to 1512094832s and 1512094833s are stamped, and the missing time between these two points is considered to be 2s. Traverse 30 points backward from this point, and find the total missing time of all the 30 points. If the total missing time exceeds 10s, it is considered that the trajectory is seriously missing and cannot be used (in practice, the probability of this situation does not exceed 2%). ), if the total missing of these 30 points does not exceed 10s, start to look for the next missing point, repeat the above steps until the 30th point from the bottom, if no serious missing is found during this process, it is considered that the trajectory available.
步骤2.2:基于分段线性插值的导航轨迹点缺失补全;Step 2.2: Completion of missing navigation track points based on piecewise linear interpolation;
从导航轨迹起始点开始依次遍历每个点的时间戳信息,找到所有有缺失的位置,将某一缺失位置区间记为[xi,xi+1];From the starting point of the navigation track, traverse the timestamp information of each point in turn, find all missing positions, and record a missing position interval as [x i , x i+1 ];
在缺失位置区间[xi,xi+1]前后两个轨迹点的采样时间差为n(s),其中0<n≤10且n为整数;The sampling time difference between the two trajectory points before and after the missing position interval [x i , x i+1 ] is n(s), where 0<n≤10 and n is an integer;
将缺失位置区间[xi,xi+1]进行n等分,补全点位置横坐标分别缺失位置区间的1/n,2/n,3/n,...,(n-1)/n等分点的位置,依次代入如下一次线性方程式计算出纵坐标;Divide the missing position interval [x i , x i+1 ] into n equal parts, and the abscissa of the complement point position is 1/n, 2/n, 3/n, ..., (n-1) of the missing position interval respectively. The position of the bisected point of /n is substituted into the following linear equation in turn to calculate the ordinate;
其中,(x,y)表示补全点的坐标,(xi,yi)和(xi+1,yi+1)分别表示缺失位置取点的前后两个轨迹点的坐标;Among them, (x, y) represents the coordinates of the complement point, (x i , y i ) and (x i+1 , y i+1 ) respectively represent the coordinates of the two track points before and after the missing position;
如点P76的时间戳是1512094831s,坐标为(x76,y76),轨迹中下一个点P77的时间戳是1512094834s,坐标为(x77,y77),中间缺失时间戳1512094832s和1512094833s对应的点,这两个点的横坐标应取x76+1/3*(x77-x76)和x76+2/3*(x77-x76),将这两个横坐标代入以下方程式:For example, the timestamp of point P76 is 1512094831s, the coordinates are (x 76 , y 76 ), the timestamp of the next point P77 in the trajectory is 1512094834s, the coordinates are (x 77 , y 77 ), and the middle missing timestamps 1512094832s and 1512094833s correspond to Points, the abscissas of these two points should take x 76 +1/3*(x 77 -x 76 ) and x 76 +2/3*(x 77 -x 76 ), and substitute these two abscissas into the following equations :
分别计算所得y值为对应的纵坐标。将所有缺失的位置,均按照该方法进行补全,则该轨迹上不再会有缺失的点。最后使用插值算法补全的效果如图4所示。The calculated y values are the corresponding ordinates. Completing all missing positions according to this method, there will no longer be missing points on the trajectory. Finally, the effect of using the interpolation algorithm to complete is shown in Figure 4.
步骤3:采用卡尔曼滤波对经过去噪和补全后的导航轨迹点,进行偏移矫正;Step 3: Use Kalman filter to perform offset correction on the navigation track points after denoising and completion;
步骤3.1:获取前一个状态的轨迹点的最优估计位置,利用导航系统过程模型预测当前状态的轨迹点的位置,并获取导航系统在当前状态的轨迹点预测位置的协方差;Step 3.1: Obtain the optimal estimated position of the trajectory point of the previous state, use the navigation system process model to predict the position of the trajectory point of the current state, and obtain the covariance of the predicted position of the trajectory point of the navigation system in the current state;
所述利用导航系统过程模型预测当前状态的轨迹点的位置按照以下公式进行计算获得预测值;The position of the trajectory point of the current state predicted by the navigation system process model is calculated according to the following formula to obtain the predicted value;
X(k|k-1)=AX(k-1|k-1)X(k|k-1)=AX(k-1|k-1)
其中,X(k|k-1)表示以前一个状态k-1的轨迹点的最优估计位置X(k-1|k-1)预测得到的当前状态k的轨迹点的位置预测值,A表示导航系统增益,取值为1;Among them, X(k|k-1) represents the position prediction value of the trajectory point of the current state k predicted by the optimal estimated position X(k-1|k-1) of the trajectory point of the previous state k-1, A Indicates the gain of the navigation system, the value is 1;
所述获取导航系统在当前状态的轨迹点预测位置的协方差,按照以下公式计算获得:The obtained covariance of the predicted position of the trajectory point of the navigation system in the current state is calculated and obtained according to the following formula:
P(k|k-1)=AP(k-1|k-1)A'+QP(k|k-1)=AP(k-1|k-1)A'+Q
其中,P(k|k-1)和P(k-1|k-1)分别表示X(k|k-1)和X(k-1|k-1)对应的协方差,当k-1=0时,P(k-1|k-1)表示初始点协方差,即导航系统的初始协方差P(0|0)=1;当k-1>0,P(k-1|k-1)=(I-Kg(k-1)H)P(k-1|k-2);A'=A=1,Q表示导航系统的过程协方差,取值为1×10-5,I为单位矩阵。Among them, P(k|k-1) and P(k-1|k-1) represent the covariance corresponding to X(k|k-1) and X(k-1|k-1) respectively, when k- When 1=0, P(k-1|k-1) represents the initial point covariance, that is, the initial covariance of the navigation system P(0|0)=1; when k-1>0, P(k-1| k-1)=(I-Kg(k-1)H)P(k-1|k-2); A'=A=1, Q represents the process covariance of the navigation system, which is 1×10 − 5 , I is the identity matrix.
步骤3.2:利用导航系统在当前状态的轨迹点预测位置的协方差,计算导航系统在当前状态的轨迹点预测位置的卡尔曼增益;Step 3.2: Use the covariance of the predicted position of the trajectory point of the navigation system in the current state to calculate the Kalman gain of the predicted position of the trajectory point of the navigation system in the current state;
步骤3.3:基于导航系统在当前轨迹点预测位置及其卡尔曼增益,以及当前状态的轨迹点的位置测量值,采用卡尔曼滤波最优估计,获取当前状态的轨迹点的最优估计位置,以当前状态的轨迹点的最优估计位置作为矫正后的位置;Step 3.3: Based on the predicted position of the navigation system at the current trajectory point and its Kalman gain, as well as the position measurement value of the trajectory point in the current state, use the Kalman filter optimal estimation to obtain the optimal estimated position of the trajectory point in the current state to obtain the optimal estimated position of the trajectory point in the current state. The optimal estimated position of the trajectory point of the current state is used as the corrected position;
所述采用卡尔曼滤波最优估计,获取当前状态的轨迹点的最优估计位置,采用以下公式计算获得:The Kalman filter optimal estimation is used to obtain the optimal estimated position of the trajectory point in the current state, and the following formula is used to calculate and obtain:
X(k|k)=X(k|k-1)+Kg(k)(Z(k)-HX(k|k-1))X(k|k)=X(k|k-1)+Kg(k)(Z(k)-HX(k|k-1))
Kg(k)=P(k|k-1)H'/(HP(k|k-1)H'+R)Kg(k)=P(k|k-1)H'/(HP(k|k-1)H'+R)
其中,Kg(k)表示卡尔曼增益,Z(k)表示在状态k时轨迹点的测量值,H表示导航系统状态对于导航系统在测量值的增益,取值为1。Among them, Kg(k) represents the Kalman gain, Z(k) represents the measured value of the trajectory point at state k, and H represents the gain of the navigation system state to the measured value of the navigation system, which takes a value of 1.
其中,导航系统在初始状态下,导航轨迹的第一个轨迹点的最优估计位置值为第一个轨迹点的位置测量值;导航系统在初始状态下,导航轨迹的第一个轨迹点的协方差取值为1。Among them, in the initial state of the navigation system, the optimal estimated position value of the first track point of the navigation track is the position measurement value of the first track point; in the initial state of the navigation system, the value of the first track point of the navigation track The covariance takes a value of 1.
经纬度在滤波前后的变化曲线如图5所示,我们可以看到,其中一个点的纬度位置存在明显偏移。滤波前的局部导航轨迹如图6所示,可以图5中存在纬度位置偏移的点在该局部导航轨迹中属于需要进行偏移矫正的点。滤波后的局部导航轨迹如图7所示,可以看到,使用卡尔曼滤波算法,图6中存在偏移的点位置被矫正,经过矫正后,该局部导航轨迹更接近于真实的行车轨迹。The change curves of latitude and longitude before and after filtering are shown in Figure 5. We can see that the latitude position of one of the points is obviously offset. The local navigation trajectory before filtering is shown in FIG. 6 , and the points with latitude position offset in FIG. 5 may belong to the points that need to be offset corrected in the local navigation trajectory. The filtered local navigation trajectory is shown in Figure 7. It can be seen that using the Kalman filter algorithm, the offset point positions in Figure 6 are corrected. After correction, the local navigation trajectory is closer to the real driving trajectory.
本文中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。The specific embodiments described herein are merely illustrative of the spirit of the invention. Those skilled in the art to which the present invention pertains can make various modifications or additions to the described specific embodiments or substitute in similar manners, but will not deviate from the spirit of the present invention or go beyond the definitions of the appended claims range.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810025286.7A CN110031876A (en) | 2018-01-11 | 2018-01-11 | A kind of vehicle mounted guidance tracing point offset antidote based on Kalman filtering |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810025286.7A CN110031876A (en) | 2018-01-11 | 2018-01-11 | A kind of vehicle mounted guidance tracing point offset antidote based on Kalman filtering |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110031876A true CN110031876A (en) | 2019-07-19 |
Family
ID=67234156
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810025286.7A Pending CN110031876A (en) | 2018-01-11 | 2018-01-11 | A kind of vehicle mounted guidance tracing point offset antidote based on Kalman filtering |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110031876A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110728309A (en) * | 2019-09-27 | 2020-01-24 | 中国铁道科学研究院集团有限公司通信信号研究所 | A traffic trajectory clustering method based on railway signal and Beidou positioning |
CN111105644A (en) * | 2019-11-22 | 2020-05-05 | 京东数字科技控股有限公司 | Vehicle blind area monitoring and driving control method and device and vehicle road cooperative system |
CN111145569A (en) * | 2019-11-22 | 2020-05-12 | 京东数字科技控股有限公司 | Road monitoring and vehicle running control method and device and vehicle-road cooperative system |
CN111615061A (en) * | 2020-05-09 | 2020-09-01 | 国家计算机网络与信息安全管理中心山东分中心 | Denoising method and denoising device for track data of mobile terminal |
CN112422134A (en) * | 2020-11-19 | 2021-02-26 | 中睿信数字技术有限公司 | Method and device for space-time trajectory compression and segmented state expression |
CN112492523A (en) * | 2020-11-05 | 2021-03-12 | 南京大学 | Track constraint method based on ultra wide band real-time positioning |
CN112578419A (en) * | 2020-11-24 | 2021-03-30 | 南京邮电大学 | GPS data reconstruction method based on GRU network and Kalman filtering |
CN113891234A (en) * | 2020-06-16 | 2022-01-04 | 大众问问(北京)信息科技有限公司 | A trajectory data completion method, device, computer equipment and storage medium |
CN114494327A (en) * | 2022-01-19 | 2022-05-13 | 三亚海兰寰宇海洋信息科技有限公司 | Method, device and equipment for processing flight path of target object |
CN114594421A (en) * | 2022-02-15 | 2022-06-07 | 湖北大学 | A moving target position calculation method based on least squares method and Kalman filter |
CN114822028A (en) * | 2022-04-25 | 2022-07-29 | 北京宏瓴科技发展有限公司 | Method and device for correcting vehicle running track and computer equipment |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102519477A (en) * | 2011-11-11 | 2012-06-27 | 深圳市领华卫通数码科技有限公司 | Method and device for quick playback of historical route |
CN102607553A (en) * | 2012-03-06 | 2012-07-25 | 北京建筑工程学院 | Travel track data-based stroke identification method |
CN103256937A (en) * | 2012-02-17 | 2013-08-21 | 北京四维图新科技股份有限公司 | Method and apparatus for path matching |
CN104683948A (en) * | 2015-02-04 | 2015-06-03 | 四川长虹电器股份有限公司 | Self-learning abnormal position tracing point filtering method |
CN104680850A (en) * | 2015-03-19 | 2015-06-03 | 南京大学 | Method for generating ship track curve based on voluntary observation ship (VOS) data |
CN105206108A (en) * | 2015-08-06 | 2015-12-30 | 同济大学 | Early warning method against vehicle collision based on electronic map |
CN105387863A (en) * | 2015-12-09 | 2016-03-09 | 浙江网新恒天软件有限公司 | Method for recognizing unknown roads in current navigation map and carrying out navigation on unknown roads |
ES2612463T3 (en) * | 2008-09-30 | 2017-05-17 | Mbda France | Projectile guidance system |
-
2018
- 2018-01-11 CN CN201810025286.7A patent/CN110031876A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2612463T3 (en) * | 2008-09-30 | 2017-05-17 | Mbda France | Projectile guidance system |
CN102519477A (en) * | 2011-11-11 | 2012-06-27 | 深圳市领华卫通数码科技有限公司 | Method and device for quick playback of historical route |
CN103256937A (en) * | 2012-02-17 | 2013-08-21 | 北京四维图新科技股份有限公司 | Method and apparatus for path matching |
CN102607553A (en) * | 2012-03-06 | 2012-07-25 | 北京建筑工程学院 | Travel track data-based stroke identification method |
CN104683948A (en) * | 2015-02-04 | 2015-06-03 | 四川长虹电器股份有限公司 | Self-learning abnormal position tracing point filtering method |
CN104680850A (en) * | 2015-03-19 | 2015-06-03 | 南京大学 | Method for generating ship track curve based on voluntary observation ship (VOS) data |
CN105206108A (en) * | 2015-08-06 | 2015-12-30 | 同济大学 | Early warning method against vehicle collision based on electronic map |
CN105387863A (en) * | 2015-12-09 | 2016-03-09 | 浙江网新恒天软件有限公司 | Method for recognizing unknown roads in current navigation map and carrying out navigation on unknown roads |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110728309A (en) * | 2019-09-27 | 2020-01-24 | 中国铁道科学研究院集团有限公司通信信号研究所 | A traffic trajectory clustering method based on railway signal and Beidou positioning |
CN110728309B (en) * | 2019-09-27 | 2023-05-02 | 中国铁道科学研究院集团有限公司通信信号研究所 | A traffic trajectory clustering method based on railway signal and Beidou positioning |
CN111105644A (en) * | 2019-11-22 | 2020-05-05 | 京东数字科技控股有限公司 | Vehicle blind area monitoring and driving control method and device and vehicle road cooperative system |
CN111145569A (en) * | 2019-11-22 | 2020-05-12 | 京东数字科技控股有限公司 | Road monitoring and vehicle running control method and device and vehicle-road cooperative system |
CN111615061B (en) * | 2020-05-09 | 2022-02-15 | 国家计算机网络与信息安全管理中心山东分中心 | Denoising method and denoising device for track data of mobile terminal |
CN111615061A (en) * | 2020-05-09 | 2020-09-01 | 国家计算机网络与信息安全管理中心山东分中心 | Denoising method and denoising device for track data of mobile terminal |
CN113891234A (en) * | 2020-06-16 | 2022-01-04 | 大众问问(北京)信息科技有限公司 | A trajectory data completion method, device, computer equipment and storage medium |
CN112492523A (en) * | 2020-11-05 | 2021-03-12 | 南京大学 | Track constraint method based on ultra wide band real-time positioning |
CN112422134A (en) * | 2020-11-19 | 2021-02-26 | 中睿信数字技术有限公司 | Method and device for space-time trajectory compression and segmented state expression |
CN112422134B (en) * | 2020-11-19 | 2022-06-17 | 中睿信数字技术有限公司 | Method and device for space-time trajectory compression and segmented state expression |
CN112578419A (en) * | 2020-11-24 | 2021-03-30 | 南京邮电大学 | GPS data reconstruction method based on GRU network and Kalman filtering |
CN112578419B (en) * | 2020-11-24 | 2023-12-12 | 南京邮电大学 | A GPS data reconstruction method based on GRU network and Kalman filtering |
CN114494327A (en) * | 2022-01-19 | 2022-05-13 | 三亚海兰寰宇海洋信息科技有限公司 | Method, device and equipment for processing flight path of target object |
CN114594421A (en) * | 2022-02-15 | 2022-06-07 | 湖北大学 | A moving target position calculation method based on least squares method and Kalman filter |
CN114594421B (en) * | 2022-02-15 | 2022-11-18 | 湖北大学 | A Calculation Method of Moving Target Position Based on Least Square Method and Kalman Filter |
CN114822028A (en) * | 2022-04-25 | 2022-07-29 | 北京宏瓴科技发展有限公司 | Method and device for correcting vehicle running track and computer equipment |
CN114822028B (en) * | 2022-04-25 | 2023-10-10 | 北京宏瓴科技发展有限公司 | Correction method and device for vehicle running track and computer equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110031876A (en) | A kind of vehicle mounted guidance tracing point offset antidote based on Kalman filtering | |
CN113155139B (en) | Vehicle trajectory correction method, device and electronic device | |
CN106104656B (en) | Map information generating systems, method and program | |
CN105138779B (en) | Vehicle GPS space-time track big data method for optimizing and system | |
CN111862659A (en) | GPS track data matching and complementing method | |
CN107277765A (en) | A kind of mobile phone signaling track preprocess method based on cluster Outlier Analysis | |
CN109708638B (en) | A method for extracting ship trajectory points | |
CN106767836B (en) | AUV terrain matching navigation filtering method | |
CN106855415A (en) | Map-matching method and system | |
CN113447033A (en) | Lane-level map matching method and system | |
CN107728178B (en) | Method and device for processing motion trail | |
CN109917430A (en) | A kind of satellite positioning track drift method for correcting error based on smooth trajectory algorithm | |
CN107560599A (en) | A kind of road grade data processing method of feature based point sampling and curve matching | |
US12055643B2 (en) | Method for real-time position estimate correction of a movable object | |
CN114089390A (en) | Track deviation rectifying algorithm based on weight | |
CN104034337B (en) | Map matching method and device for geographic position point of floating vehicle | |
CN111582317B (en) | Road positioning method and device | |
CN110677140A (en) | Random system filter containing unknown input and non-Gaussian measurement noise | |
CN113052265A (en) | Moving object track simplification algorithm based on feature selection | |
CN110913345A (en) | A cross-sectional passenger flow calculation method based on mobile phone signaling data | |
CN114373321A (en) | Path optimization method, system, device and medium for single trip of individual | |
Barucija et al. | Data-driven approach for anomaly detection of real GPS trajectory data | |
CN112633592A (en) | Vehicle frequent-running route calculation method and system based on machine learning clustering algorithm | |
CN112015840A (en) | GPS track data filtering method for working vehicles in factory | |
CN113393694B (en) | Bus backbone line grabbing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20190719 |
|
WD01 | Invention patent application deemed withdrawn after publication |