CN110031788A - A kind of hollow coil current transformer error environment correlation analysis - Google Patents

A kind of hollow coil current transformer error environment correlation analysis Download PDF

Info

Publication number
CN110031788A
CN110031788A CN201910270802.7A CN201910270802A CN110031788A CN 110031788 A CN110031788 A CN 110031788A CN 201910270802 A CN201910270802 A CN 201910270802A CN 110031788 A CN110031788 A CN 110031788A
Authority
CN
China
Prior art keywords
matrix
air
correlation
core coil
error
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910270802.7A
Other languages
Chinese (zh)
Inventor
范洁
李红斌
黄奇峰
李志新
寇英刚
陈庆
杨世海
卢树峰
徐敏锐
陈文广
陈刚
胡琛
陆子刚
焦洋
程含渺
封春芳
吴桥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
State Grid Corp of China SGCC
State Grid Jiangsu Electric Power Co Ltd
Electric Power Research Institute of State Grid Jiangxi Electric Power Co Ltd
Yangzhou Power Supply Co of Jiangsu Electric Power Co
Electric Power Research Institute of State Grid Jiangsu Electric Power Co Ltd
Original Assignee
Huazhong University of Science and Technology
State Grid Corp of China SGCC
State Grid Jiangsu Electric Power Co Ltd
Electric Power Research Institute of State Grid Jiangxi Electric Power Co Ltd
Yangzhou Power Supply Co of Jiangsu Electric Power Co
Electric Power Research Institute of State Grid Jiangsu Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology, State Grid Corp of China SGCC, State Grid Jiangsu Electric Power Co Ltd, Electric Power Research Institute of State Grid Jiangxi Electric Power Co Ltd, Yangzhou Power Supply Co of Jiangsu Electric Power Co, Electric Power Research Institute of State Grid Jiangsu Electric Power Co Ltd filed Critical Huazhong University of Science and Technology
Priority to CN201910270802.7A priority Critical patent/CN110031788A/en
Publication of CN110031788A publication Critical patent/CN110031788A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • G01R35/02Testing or calibrating of apparatus covered by the other groups of this subclass of auxiliary devices, e.g. of instrument transformers according to prescribed transformation ratio, phase angle, or wattage rating

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Complex Calculations (AREA)

Abstract

本发明公开了一种空心线圈电流互感器误差环境相关性分析方法,包括如下步骤:在评估时间窗内根据采集数据构建原始矩阵;基于卡尔曼滤波器对所述原始矩阵进行扩展,建立高维随机矩阵;对所述高维随机矩阵进行标准化处理,使其转换为行向量均值为0、方差为1的非厄米特矩阵;根据所述非厄米特矩阵获得影响量相关性评估矩阵;根据所述影响量相关性评估矩阵获得空心线圈电流互感器误差环境相关性评估指标,并根据所述影响量相关性评估矩阵和所述相关性评估指标对空心线圈电流互感器误差与环境参量之间的相关性进行评估。优点:可以实时获得互感器运行误差与一个或者多个环境参量的关联程度,有利于控制以及评估互感器运行中的误差状态稳定性。

The invention discloses a method for analyzing the error environment correlation of an air-core coil current transformer, comprising the following steps: constructing an original matrix according to collected data within an evaluation time window; expanding the original matrix based on a Kalman filter to establish a high-dimensional matrix random matrix; standardize the high-dimensional random matrix to convert it into a non-Hermitian matrix with a row vector mean value of 0 and a variance of 1; obtain an impact correlation evaluation matrix according to the non-Hermitian matrix; Obtain the air-core coil current transformer error environment correlation evaluation index according to the influence quantity correlation evaluation matrix, and determine the relationship between the air-core coil current transformer error and the environmental parameters according to the influence quantity correlation evaluation matrix and the correlation evaluation index. The correlation between them was evaluated. Advantages: The degree of correlation between the operating error of the transformer and one or more environmental parameters can be obtained in real time, which is beneficial to control and evaluate the stability of the error state in the operation of the transformer.

Description

一种空心线圈电流互感器误差环境相关性分析方法An error environment correlation analysis method for air-core coil current transformers

技术领域technical field

发明属于输配电设备状态评估领域,更具体地,涉及一种基于高维矩阵理论的空心线圈电流互感器误差环境相关性分析方法。The invention belongs to the field of state evaluation of power transmission and distribution equipment, and more particularly relates to an error environment correlation analysis method of air-core coil current transformers based on high-dimensional matrix theory.

背景技术Background technique

压电流互感器是为变电站电能计量系统提供电流信息的重要测量设备,其运行性能关系到计量装置的准确性。目前广泛采用的传统电磁式电流不但绝缘结构复杂、体积大,造价高,还存在磁饱和、动态范围小等缺点,难以满足电力系统的技术需求。电子式电流互感器具有动态范围大、频响范围宽、体积小、质量轻等优点,顺应了电力系统数字化、智能化和网络化的发展方向。空心线圈电流互感器是电子式电流互感器的一种,近年来随着智能变电站的建设得到迅速的发展,经过多年的探索和实践,取得了一系列成果。Piezoelectric current transformer is an important measurement device that provides current information for the power metering system of substations, and its operation performance is related to the accuracy of the metering device. At present, the traditional electromagnetic current widely used not only has complex insulation structure, large volume and high cost, but also has shortcomings such as magnetic saturation and small dynamic range, which makes it difficult to meet the technical requirements of power systems. Electronic current transformers have the advantages of large dynamic range, wide frequency response range, small size and light weight, and conform to the development direction of digitalization, intelligence and networking of power systems. Air-core coil current transformer is a kind of electronic current transformer. In recent years, with the rapid development of intelligent substation construction, after years of exploration and practice, a series of achievements have been achieved.

然而,空心线圈电流互感器结构较为复杂,包含环节众多,运行过程中受到温度、湿度、振动、磁场以及一次负荷电流等环境参量的影响。从现场运行问题来看,空心线圈电流互感器的准确度问题仍然占据较大的比例。影响了电能贸易结算的公平性,导致空心线圈电流互感器的推广应用受到阻碍。揭示互感器误差与各种环境参量的内在联系和影响规律,明确主要影响量,为空心线圈电流互感器的设计和工艺提供指导,对空心线圈电流互感器误差稳定性控制和评估具有重要意义。However, the structure of the air-core coil current transformer is relatively complex, including many links, and is affected by environmental parameters such as temperature, humidity, vibration, magnetic field and primary load current during operation. From the point of view of on-site operation, the accuracy of the air-core coil current transformer still occupies a large proportion. It affects the fairness of electric energy trade settlement and hinders the popularization and application of air-core coil current transformers. It is of great significance to reveal the inherent relationship and influence law between the transformer error and various environmental parameters, and to clarify the main influence quantities, which can provide guidance for the design and process of air-core coil current transformers, and is of great significance to the error stability control and evaluation of air-core coil current transformers.

现有技术包括基于模型的相关性分析方法,根据环境参量对空心线圈电流互感器作用的机理模型,分析环境参量对互感器误差影响的机制和规律,该方法高度依赖模型的准确性,各种假设和前提也会影响分析结果,针对不同的环境参量需要建立不同的机理模型,通用性较差,而且无法得到相关性定量评价指标。The prior art includes a model-based correlation analysis method, which analyzes the mechanism and law of the influence of environmental parameters on the error of the transformer according to the mechanism model of the effect of environmental parameters on the air-core coil current transformer. This method is highly dependent on the accuracy of the model. Assumptions and premise also affect the analysis results. Different mechanism models need to be established for different environmental parameters, which are less versatile and cannot obtain quantitative evaluation indicators of correlation.

现有技术还包括基于数据驱动的分析方法,不需要构建精确的机理模型,通过挖掘、处理和分析互感器的误差数据以及环境参量数据,获取互感器误差和环境参量的相关性。然而,在运空心线圈电流互感器误差与环境参量之间的关系呈现了多耦合和高随机的特征,确定互感器误差和环境参量的相关程度较为困难,上述分析方法并不适用。The prior art also includes a data-driven analysis method, which does not need to build an accurate mechanism model, and obtains the correlation between the transformer error and the environmental parameters by mining, processing and analyzing the error data of the transformer and the environmental parameter data. However, the relationship between the current transformer error and environmental parameters in the air-core coil presents the characteristics of multi-coupling and high randomness. It is difficult to determine the degree of correlation between the transformer error and the environmental parameters, and the above analysis methods are not applicable.

发明内容SUMMARY OF THE INVENTION

本发明所要解决的技术问题是克服现有技术的缺陷,提供一种不依赖机理模型的基于高维矩阵理论的空心线圈电流互感器误差环境相关性分析方法,可以为空心线圈电流互感器误差的控制方法提供参考。The technical problem to be solved by the present invention is to overcome the defects of the prior art, and to provide a high-dimensional matrix theory-based air-core coil current transformer error environment correlation analysis method that does not rely on the mechanism model, which can be used for the error analysis of the air-core coil current transformer. The control method provides a reference.

为解决上述技术问题,本发明提供一种空心线圈电流互感器误差环境相关性分析方法,其特征在于,包括如下步骤:In order to solve the above technical problems, the present invention provides a method for analyzing the error environment correlation of an air-core coil current transformer, which is characterized in that it includes the following steps:

S1:采集环境参量数据以及空心线圈电流互感器误差数据,在评估时间窗内根据采集的环境参量数据和误差数据构建原始矩阵;S1: Collect environmental parameter data and air-core coil current transformer error data, and construct an original matrix according to the collected environmental parameter data and error data within the evaluation time window;

S2:基于卡尔曼滤波器对所述原始矩阵进行扩展,建立高维随机矩阵;S2: Expand the original matrix based on the Kalman filter to establish a high-dimensional random matrix;

S3:对所述高维随机矩阵进行标准化处理,使其转换为行向量均值为0、方差为1的非厄米特矩阵;S3: Standardize the high-dimensional random matrix to convert it into a non-Hermitian matrix with a row vector mean of 0 and a variance of 1;

S4:根据所述非厄米特矩阵获得影响量相关性评估矩阵;S4: obtaining the influence quantity correlation evaluation matrix according to the non-Hermitian matrix;

S5:根据所述影响量相关性评估矩阵获得空心线圈电流互感器误差环境相关性评估指标,并根据所述影响量相关性评估矩阵和所述相关性评估指标对空心线圈电流互感器误差与环境参量之间的相关性进行评估。S5: Obtain the air-core coil current transformer error environment correlation evaluation index according to the influence amount correlation evaluation matrix, and determine the air-core coil current transformer error and environment according to the influence amount correlation evaluation matrix and the correlation evaluation index. The correlation between the parameters is evaluated.

进一步地,在步骤S1中,通过采集的环境参量数据构建环境参量矩阵其中,元素Pij表示第i个可测环境参量在j时刻的测量值,i为可测环境参量的序号,i=1,2,……M,M为环境参量的数目,j为测量的序号,j=1,2,……T,T为测量次数;通过采集的误差数据构建误差状态矩阵其中,元素Qij表示第i个互感器误差参量在j 时刻的测量值,i为互感器误差参量的序号,i=1,2,……N,N为互感器误差参量的数目,j为测量的序号,j=1,2,……T,构建的原始矩阵为其中,k=M+N。Further, in step S1, an environmental parameter matrix is constructed through the collected environmental parameter data Among them, the element P ij represents the measured value of the i-th measurable environmental parameter at time j, i is the serial number of the measurable environmental parameter, i=1, 2, ... M, M is the number of environmental parameters, and j is the measured environmental parameter. Serial number, j=1, 2,...T, T is the number of measurements; build the error state matrix by the collected error data Among them, the element Q ij represents the measured value of the ith transformer error parameter at time j, i is the serial number of the transformer error parameter, i=1, 2,...N, N is the number of transformer error parameters, and j is the number of transformer error parameters. The serial number of the measurement, j=1, 2,...T, the original matrix constructed is where k=M+N.

进一步地,在步骤S2中,经过扩展后获得的高维随机矩阵为k'为扩展后的状态参量的数目,N'的取值范围满足k'/T∈(0,1],T为测量次数。Further, in step S2, the high-dimensional random matrix obtained after expansion is k' is the number of expanded state parameters, the value range of N' satisfies k'/T∈(0,1], and T is the number of measurements.

进一步地,在步骤S3中,所述非厄米特矩阵为其中 表示样本xi的平均值,σ(xij)表示样本xi的标准差,xi为高维随机矩阵D3的行向量,xi=(xi1,xi2,...,xiT),1≤i≤k',k'为扩展后的状态参量的数目,T为测量次数,yij为高维随机矩阵D3中的变量xij经过该标准化方式后得到的新的变量。Further, in step S3, the non-Hermitian matrix is in Represents the mean value of the sample x i , σ(x ij ) represents the standard deviation of the sample x i , x i is the row vector of the high-dimensional random matrix D 3 , x i =(x i1 ,x i2 ,...,x iT ), 1≤i≤k', k' is the number of expanded state parameters, T is the number of measurements, and y ij is a new variable obtained by the standardization method of the variable x ij in the high-dimensional random matrix D 3 .

进一步地,所述步骤S4具体为:Further, the step S4 is specifically:

计算所述非厄米特矩阵的奇异值等价矩阵DuCalculate the singular value equivalent matrix Du of the non - Hermitian matrix;

根据所述奇异值等价矩阵Du计算矩阵乘积Z;Calculate the matrix product Z according to the singular value equivalent matrix Du;

根据所述矩阵乘积Z获得误差状态评估矩阵Z2An error state evaluation matrix Z 2 is obtained from the matrix product Z.

进一步地,所述矩阵乘积L=1,所述误差状态评估矩阵其中,zi为矩阵Z的行向量,zi=(zi1,zi2,...,ziT),1≤i≤k',为矩阵Z2的行向量,σ(zi)表示zi的标准差,k'为扩展后的状态参量的数目,T为测量次数。Further, the matrix product L=1, the error state evaluation matrix in, z i is the row vector of matrix Z, z i =(z i1 ,z i2 ,...,z iT ), 1≤i≤k', is the row vector of matrix Z 2 , σ(z i ) represents the standard deviation of zi, k' is the number of state parameters after expansion, and T is the number of measurements.

进一步地,在步骤S5中,所述相关性评估指标包括dMSR和IMSR,其中 dMSR=εevref,dMSR对时间的积分为IMSR其中,t1和t2表示评估的起始时刻和结束时刻,λi为对应的原始矩阵的特征值,λwi为对应参考矩阵的特征值,n和n2分别为对应的原始矩阵和参考矩阵的特征值个数,E()表示特征值样本期望,所述参考矩阵参考矩阵由空心线圈误差状态矩阵和高斯白噪声矩阵构成,其中,D1为环境参量矩阵;DN为噪声矩阵,其维度和环境参量矩阵相同,元素为服从标准正态分布的随机变量,幅值和矩阵扩展中叠加的高斯白噪声幅值相同。Further, in step S5, the correlation evaluation index includes d MSR and I MSR , where d MSRevref , and the integral of d MSR over time is I MSR : Among them, t 1 and t 2 represent the start time and end time of the evaluation, λi is the eigenvalue of the corresponding original matrix, λwi is the eigenvalue of the corresponding reference matrix, n and n2 are the number of eigenvalues of the corresponding original matrix and reference matrix, respectively, E() represents the expected eigenvalue sample, so the reference matrix The reference matrix is composed of an air-core coil error state matrix and a Gaussian white noise matrix, where D 1 is the environmental parameter matrix; D N is the noise matrix, whose dimensions are the same as the environmental parameter matrix, and the elements are random variables obeying standard normal distribution. The value is the same as the magnitude of the white Gaussian noise superimposed in the matrix expansion.

一种空心线圈电流互感器误差状态监测系统,其特征在于,包括原始矩阵构建模块、高维随机矩阵构建模块、标准化处理模块、影响量相关性评估矩阵模块以及相关性评估模块;An error state monitoring system for an air-core coil current transformer, characterized in that it includes an original matrix building module, a high-dimensional random matrix building module, a standardized processing module, an influence quantity correlation evaluation matrix module, and a correlation evaluation module;

所述原始矩阵构建模块用于采集环境参量数据以及空心线圈电流互感器误差数据,在评估时间窗内根据采集的环境参量数据和误差数据构建原始矩阵;The original matrix building module is used to collect environmental parameter data and air-core coil current transformer error data, and build an original matrix according to the collected environmental parameter data and error data within the evaluation time window;

所述高维随机矩阵构建模块用于基于卡尔曼滤波器对所述原始矩阵进行扩展,建立高维随机矩阵;The high-dimensional random matrix building module is used to expand the original matrix based on the Kalman filter to establish a high-dimensional random matrix;

所述标准化处理模块用于对所述高维随机矩阵进行标准化处理,使其转换为行向量均值为0、方差为1的非厄米特矩阵;The standardization processing module is used to standardize the high-dimensional random matrix to convert it into a non-Hermitian matrix with a row vector mean of 0 and a variance of 1;

所述影响量相关性评估矩阵模块用于根据所述非厄米特矩阵获得影响量相关性评估矩阵;The influence quantity correlation assessment matrix module is used to obtain the influence quantity correlation assessment matrix according to the non-Hermitian matrix;

所述相关性评估模块用于根据所述影响量相关性评估矩阵获得空心线圈电流互感器误差环境相关性评估指标,并根据所述影响量相关性评估矩阵和所述相关性评估指标对空心线圈电流互感器误差与环境参量之间的相关性进行评估。The correlation evaluation module is used to obtain the air-core coil current transformer error environment correlation evaluation index according to the influence amount correlation evaluation matrix, and to evaluate the air-core coil according to the influence amount correlation evaluation matrix and the correlation evaluation index. The correlation between current transformer errors and environmental parameters is evaluated.

进一步地,所述原始矩阵构建模块用于通过采集的环境参量数据构建环境参量矩阵其中,元素Pij表示第i个可测环境参量在j 时刻的测量值,i为可测环境参量的序号,i=1,2,……M,M为环境参量的数目,j为测量的序号,j=1,2,……T,T为测量次数;通过采集的误差数据构建误差状态矩阵其中,元素Qij表示第i个互感器误差参量在j时刻的测量值,i为互感器误差参量的序号,i=1,2,……N,N为互感器误差参量的数目,j为测量的序号,j=1,2,……T,构建的原始矩阵为其中,k=M+N。Further, the original matrix building module is used to build the environmental parameter matrix by the collected environmental parameter data Among them, the element P ij represents the measured value of the i-th measurable environmental parameter at time j, i is the serial number of the measurable environmental parameter, i=1, 2, ... M, M is the number of environmental parameters, and j is the measured environmental parameter. Serial number, j=1, 2,...T, T is the number of measurements; build the error state matrix by the collected error data Among them, the element Q ij represents the measured value of the ith transformer error parameter at time j, i is the serial number of the transformer error parameter, i=1, 2, ... N, N is the number of transformer error parameters, and j is the The serial number of the measurement, j=1, 2,...T, the original matrix constructed is where k=M+N.

进一步地,所述高维随机矩阵构建模块建立的高维随机矩阵为k'为扩展后的状态参量的数目,N'的取值范围满足k'/T∈(0,1],T为测量次数。Further, the high-dimensional random matrix established by the high-dimensional random matrix building module is k' is the number of expanded state parameters, the value range of N' satisfies k'/T∈(0,1], and T is the number of measurements.

进一步地,所述标准化处理模块处理得到的非厄米特矩阵为所述非厄米特矩阵为其中 表示样本xi的平均值,σ(xij)表示样本xi的标准差,xi为高维随机矩阵D3的行向量,xi=(xi1,xi2,...,xiT),1≤i≤k',k'为扩展后的状态参量的数目,T为测量次数,yij为高维随机矩阵D3中的变量xij经过该标准化方式后得到的新的变量。Further, the non-Hermitian matrix obtained by the standardized processing module is that the non-Hermitian matrix is in Represents the mean value of the sample x i , σ(x ij ) represents the standard deviation of the sample x i , x i is the row vector of the high-dimensional random matrix D 3 , x i =(x i1 ,x i2 ,...,x iT ), 1≤i≤k', k' is the number of expanded state parameters, T is the number of measurements, and y ij is a new variable obtained by the standardization method of the variable x ij in the high-dimensional random matrix D 3 .

进一步地,所述影响量相关性评估矩阵模块用于计算所述非厄米特矩阵的奇异值等价矩阵Du,根据所述奇异值等价矩阵Du计算矩阵乘积Z,根据所述矩阵乘积Z获得误差状态评估矩阵Z2Further, the influence quantity correlation evaluation matrix module is used to calculate the singular value equivalent matrix D u of the non-Hermitian matrix, and calculate the matrix product Z according to the singular value equivalent matrix D u , and according to the matrix The product Z obtains the error state evaluation matrix Z 2 ;

所述矩阵乘积所述误差状态评估矩阵其中,zi为矩阵Z的行向量,zi=(zi1,zi2,...,ziT),1≤i≤k',为矩阵Z2的行向量,σ(zi) 表示zi的标准差,k'为扩展后的状态参量的数目,T为测量次数the matrix product The error state evaluation matrix in, z i is the row vector of matrix Z, z i =(z i1 ,z i2 ,...,z iT ), 1≤i≤k', is the row vector of matrix Z 2 , σ(z i ) is the standard deviation of zi, k' is the number of state parameters after expansion, and T is the number of measurements

进一步地,所述相关性评估指标包括dMSR和IMSR,其中dMSR=εevref,dMSR对时间的积分为IMSR其中,t1和t2表示评估的起始时刻和结束时刻,λi为对应的原始矩阵的特征值,λwi为对应参考矩阵的特征值,n和n2分别为对应的原始矩阵和参考矩阵的特征值个数,E()表示特征值样本期望,所述参考矩阵参考矩阵由空心线圈误差状态矩阵和高斯白噪声矩阵构成,其中,D1为环境参量矩阵;DN为噪声矩阵,其维度和环境参量矩阵相同,元素为服从标准正态分布的随机变量,幅值和矩阵扩展中叠加的高斯白噪声幅值相同Further, the correlation evaluation index includes d MSR and I MSR , where d MSRevref , and the integral of d MSR over time is I MSR : Among them, t 1 and t 2 represent the start time and end time of the evaluation, λi is the eigenvalue of the corresponding original matrix, λwi is the eigenvalue of the corresponding reference matrix, n and n2 are the number of eigenvalues of the corresponding original matrix and reference matrix, respectively, E() represents the expected eigenvalue sample, so the reference matrix The reference matrix is composed of an air-core coil error state matrix and a Gaussian white noise matrix, where D 1 is the environmental parameter matrix; D N is the noise matrix, whose dimensions are the same as the environmental parameter matrix, and the elements are random variables obeying standard normal distribution. The value is the same as the magnitude of the white Gaussian noise superimposed in the matrix expansion

本发明所达到的有益效果:Beneficial effects achieved by the present invention:

本发明无需建立任何物理模型,没有假设条件和简化条件,仅根据空心线圈电流互感器误差数据和环境参量数据,将互感器误差与环境参量的内在联系量化为相关性评价指标,根据相关性评价指标的大小和变化趋势,可以实时获得互感器运行误差与一个或者多个环境参量的关联程度,有利于控制以及评估互感器运行中的误差状态稳定性。The invention does not need to establish any physical model, has no assumptions and simplified conditions, and only quantifies the internal relationship between the transformer error and the environmental parameters as a correlation evaluation index according to the error data of the air-core coil current transformer and the environmental parameter data, and evaluates according to the correlation. The size and change trend of the index can obtain the correlation degree between the operating error of the transformer and one or more environmental parameters in real time, which is beneficial to control and evaluate the stability of the error state in the operation of the transformer.

附图说明Description of drawings

图1是本发明的评估流程示意图;Fig. 1 is the evaluation flow schematic diagram of the present invention;

图2是空心线圈电流互感器误差状态在线监测平台示意图;Figure 2 is a schematic diagram of an online monitoring platform for the error state of an air-core coil current transformer;

图3是影响量相关性评估矩阵Dev1的特征值分布图;Fig. 3 is the eigenvalue distribution diagram of the influence quantity correlation evaluation matrix Dev1 ;

图4是影响量相关性评估矩阵Dev2的特征值分布图;Fig. 4 is the eigenvalue distribution diagram of the influence quantity correlation evaluation matrix Dev2 ;

图5是对应影响量相关性评估矩阵Dev1的相关性评估指标变化趋势图;Fig. 5 is the change trend diagram of the correlation evaluation index of the correlation evaluation matrix D ev1 corresponding to the influence amount;

图6是对应影响量相关性评估矩阵Dev2的相关性评估指标变化趋势图。FIG. 6 is a change trend diagram of the correlation evaluation index corresponding to the correlation evaluation matrix D ev2 of the influence amount.

其中,1为空心线圈电流互感器,2为电磁式电流互感器,3为环境监测单元,4为光纤远传单元,5为信号采集单元,6为数据处理单元,7为时间同步单元,8为交换机,9为服务器。Among them, 1 is an air-core coil current transformer, 2 is an electromagnetic current transformer, 3 is an environmental monitoring unit, 4 is an optical fiber remote transmission unit, 5 is a signal acquisition unit, 6 is a data processing unit, 7 is a time synchronization unit, 8 is the switch and 9 is the server.

具体实施方式Detailed ways

下面结合附图对本发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。The present invention will be further described below in conjunction with the accompanying drawings. The following examples are only used to illustrate the technical solutions of the present invention more clearly, and cannot be used to limit the protection scope of the present invention.

本发明仅需根据空心线圈电流互感器的误差数据及环境参量数据建立高维随机矩阵,由高维随机矩阵获取相关性评估指标,相关性评估指标反映了高维随机矩阵元素的统计分布规律,可以用来表征互感器误差状态与环境参量之间的相关性,据此可以对互感器误差状态的相关性进行分析。The invention only needs to establish a high-dimensional random matrix according to the error data and environmental parameter data of the air-core coil current transformer, and obtain the correlation evaluation index from the high-dimensional random matrix, and the correlation evaluation index reflects the statistical distribution law of the elements of the high-dimensional random matrix. It can be used to characterize the correlation between the error state of the transformer and the environmental parameters, according to which the correlation of the error state of the transformer can be analyzed.

本发明中,基于高维矩阵理论的空心线圈电流互感器误差环境相关性分析方法,包括以下步骤:In the present invention, the method for analyzing the error environment correlation of the air-core coil current transformer based on the high-dimensional matrix theory includes the following steps:

步骤1:空心线圈电流互感器误差和环境参量的在线监测,在评估时间窗内,构建环境参量矩阵、误差状态矩阵以及原始矩阵;Step 1: Online monitoring of air-core coil current transformer errors and environmental parameters, within the evaluation time window, construct the environmental parameter matrix, the error state matrix and the original matrix;

由于在线监测得到的时间序列数据具有时变特征,采用滑动时间窗实时处理方法,即前一时刻时间窗的终止时间为下一时刻时间窗的起始时间,获取当前时刻以及历史时刻的环境参量和误差数据,将各个采样时刻的数据按照时间序列排列,当前时刻和历史时刻的数据可以包含在原始矩阵中。滑动时间窗长度取值范围为100~∞(s),优选地,滑动时间窗长度可以选择为1800s。Since the time series data obtained by online monitoring has time-varying characteristics, the real-time processing method of sliding time window is adopted, that is, the end time of the previous time window is the start time of the next time window, and the environmental parameters of the current time and historical time are obtained. and error data, arrange the data at each sampling moment in time series, and the data at the current moment and historical moment can be included in the original matrix. The length of the sliding time window ranges from 100 to ∞(s). Preferably, the length of the sliding time window can be selected to be 1800s.

空心线圈电流互感器的误差类型包括比差和角差,环境参量类型包括非电气参量和电气参量,电气参量可以分为磁场参量和一次负荷电流参量(简称为负荷参量),非电气参量可以分为温度参量、湿度参量和振动参量。在每一个截取的评估时间窗内,对M个环境参量测量了T次,对N个互感器误差数据测量了T次。M的取值范围为1~5,优选地,M选择为5;N的取值范围为1~2,优选地,N选择为2;T的取值范围为300~∞,优选地,T选择为360。所有测量数据可以构成原始矩阵D:The error types of air-core coil current transformers include ratio difference and angular difference, and the types of environmental parameters include non-electrical parameters and electrical parameters. Electrical parameters can be divided into magnetic field parameters and primary load current parameters (referred to as load parameters), and non-electrical parameters can be divided into are temperature parameters, humidity parameters and vibration parameters. In each intercepted evaluation time window, M environmental parameters are measured T times, and N transformer error data are measured T times. The value range of M is 1 to 5, preferably, M is selected to be 5; the value range of N is 1 to 2, preferably, the value of N is selected to be 2; the value range of T is 300 to ∞, preferably, T The selection is 360. All measurement data can form the original matrix D:

其中,k=M+N,xij表示第i个参量第j次测量的值,i为参量的序号,i=1, 2,……k,j为测量次数的序号,j=1,2,……T。Among them, k=M+N, x ij represents the value of the jth measurement of the i-th parameter, i is the serial number of the parameter, i=1, 2, ... k, j is the serial number of the measurement times, j=1, 2 , ... T.

步骤2:基于单状态量的卡尔曼滤波器对原始矩阵D进行扩展,获得高维随机矩阵D3Step 2: Expand the original matrix D based on the single-state Kalman filter to obtain a high-dimensional random matrix D 3 ;

由于空心线圈电流互感器的误差数据和环境参量的类型较少,即使将两者组合后,所构建的影响量相关性评估矩阵的维数依然较少,无法满足高维随机矩阵的构建条件。为了解决这一问题,采用了基于单状态量的卡尔曼滤波方程的矩阵扩充方法。Since there are few types of error data and environmental parameters of the air-core coil current transformer, even after combining the two, the dimension of the constructed influence quantity correlation evaluation matrix is still small, which cannot meet the construction conditions of high-dimensional random matrix. In order to solve this problem, the matrix expansion method based on the single-state Kalman filter equation is adopted.

基于卡尔曼滤波方程,测量系统的准确测量值估计为: 其中,xk为当前时刻系统状态空间量,xk+1为下一时刻系统状态空间量, yk为系统测量值;ξk为0均值模型噪声;ηk为0均值测量噪声。Based on the Kalman filter equation, the accurate measurement value of the measurement system is estimated as: Among them, x k is the system state space quantity at the current moment, x k+1 is the system state space quantity at the next moment, y k is the system measurement value; ξ k is the 0-mean model noise; η k is the 0-mean measurement noise.

改变测量噪声ηk的值,可以得到多组卡尔曼滤波器的输出值,ηk的取值范围可以为0.1Vrms~10Vrms,其中,Vrms为卡尔曼滤波器输入信号的有效值。将卡尔曼滤波器的输出作为矩阵行,状态参量由k个变为k’个,扩充矩阵的维数,k’的取值范围需要保证k'/T∈(0,1],优选地,k’选择为20,据此构建高维随机矩阵D3By changing the value of the measurement noise η k , the output values of multiple sets of Kalman filters can be obtained, and the value range of η k can be 0.1V rms ~ 10V rms , where V rms is the effective value of the Kalman filter input signal. The output of the Kalman filter is taken as a matrix row, the state parameters are changed from k to k', the dimension of the matrix is expanded, and the value range of k' needs to ensure k'/T∈(0,1], preferably, k' is chosen to be 20, and a high-dimensional random matrix D 3 is constructed accordingly:

步骤3:对高维随机矩阵D3进行标准化处理,使其转换为行向量均值为0、方差为1的非厄米特矩阵;Step 3 : Standardize the high-dimensional random matrix D3 to convert it into a non-Hermitian matrix with a row vector mean of 0 and a variance of 1;

对矩阵D3进行如下标准化操作后变为非厄米特矩阵Dstd其中 表示样本xi的平均值,σ(xij)表示样本xi的标准差,xi=(xi1,xi2,...,xiT),1≤i≤N'为矩阵D3的行向量。使得标准化操作之后的矩阵Dstd=(yij)k'×T满足其中, yi=(yi1,yi2,...,yiT),1≤i≤N’。The matrix D 3 becomes a non-Hermitian matrix D std after the following normalization operation: in Represents the mean value of the sample x i , σ(x ij ) represents the standard deviation of the sample x i , x i =(x i1 ,x i2 ,...,x iT ), 1≤i≤N' is the matrix D 3 row vector. Make the matrix D std =(y ij ) k'×T after the normalization operation satisfy Wherein, y i =(y i1 , y i2 ,...,y iT ), 1≤i≤N'.

步骤4:通过奇异值等价矩阵计算、矩阵乘积计算和评估矩阵计算环节,建立影响量相关性评估矩阵;Step 4: Establish the influence quantity correlation evaluation matrix through the calculation of singular value equivalent matrix, the calculation of matrix product and the calculation of evaluation matrix;

首先,求取非厄米特矩阵的奇异值等价矩阵DuFirst, find the singular value equivalent matrix D u of the non-Hermitian matrix:

其中,表示矩阵Dstd的共轭装置,U为哈尔酉矩阵。 in, represents the conjugate device of the matrix D std , where U is the Haar unitary matrix.

随后,计算矩阵乘积Z:其中,Du,i表示各独立的奇异值等价矩阵,L的取值范围为1~∞,优选地,L取为 1。Then, compute the matrix product Z: Wherein, D u,i represents each independent singular value equivalent matrix, and the value range of L is 1~∞, preferably, L is 1.

最后,基于矩阵乘积Z,获取影响量相关性评估矩阵Z2Finally, based on the matrix product Z, the influence quantity correlation evaluation matrix Z 2 is obtained:

其中,zi=(zi1,zi2,...,ziT),1≤i≤k'为矩阵Z的行向量,为矩阵Z2的行向量,σ(zi)表示zi的标准差。 in, z i =(z i1 ,z i2 ,...,z iT ), 1≤i≤k' is the row vector of matrix Z, is the row vector of matrix Z 2 , and σ(z i ) represents the standard deviation of z i .

步骤5:建立空心线圈电流互感器误差环境相关性评估指标,评估指标用线性特征值统计量表示;根据影响量相关性评估矩阵Z2和相关性评估指标对空心线圈电流互感器误差与环境参量之间的相关性进行分析。Step 5: Establish an evaluation index of the air-core coil current transformer error environment correlation, and the evaluation index is represented by a linear eigenvalue statistic; according to the influence quantity correlation evaluation matrix Z 2 and the correlation evaluation index, the air-core coil current transformer error and environmental parameters are determined. correlations between them were analyzed.

线性特征值统计量能够反映一个随机矩阵的特征值分布情况,对于一个随机矩阵而言,单个特征值无法反映评估时间窗内矩阵元素的统计规律,而矩阵的迹能够反映矩阵元素的统计特征。由空心线圈误差状态矩阵和高斯白噪声矩阵可以构成参考矩阵其中,DN为噪声矩阵,维度和环境参量矩阵相同,元素为服从标准正态分布的随机变量,幅值和矩阵扩展中叠加的高斯白噪声幅值相同。参考矩阵的特征值可以构成特征值样本误差状态评估矩阵Z2特征值可以构成特征值样本V={λ12,…λn},计算矩阵的中心矩其中,λwi为对应参考矩阵的特征值,λi为对应原始矩阵的特征值,n和n2分别为对应原始矩阵和参考矩阵的特征值个数。E()表示特征值样本期望。定义相关性评估指标dMSR: dMSR=εevref,dMSR对时间的积分为IMSR其中t1和t2表示评估的起始时刻和结束时刻。The linear eigenvalue statistic can reflect the eigenvalue distribution of a random matrix. For a random matrix, a single eigenvalue cannot reflect the statistical law of the matrix elements in the evaluation time window, while the trace of the matrix can reflect the statistical characteristics of the matrix elements. The reference matrix can be formed by the air-core coil error state matrix and the Gaussian white noise matrix Among them, D N is the noise matrix, the dimension is the same as the environment parameter matrix, the elements are random variables obeying the standard normal distribution, and the amplitude is the same as that of the Gaussian white noise superimposed in the matrix expansion. The eigenvalues of the reference matrix can constitute a sample of eigenvalues The eigenvalues of the error state evaluation matrix Z 2 can constitute the eigenvalue samples V={λ 12 ,...λ n }, and the central moment of the matrix is calculated. and Among them, λwi is the eigenvalue corresponding to the reference matrix, λi is the eigenvalue corresponding to the original matrix, and n and n2 are the number of eigenvalues corresponding to the original matrix and the reference matrix, respectively. E() represents the eigenvalue sample expectation. Define the correlation evaluation index d MSR : d MSRevref , the integral of d MSR over time is I MSR : where t 1 and t 2 represent the start time and end time of the evaluation.

若空心线圈电流互感器的误差与环境参量之间存在相关性,由互感器误差数据和环境参量数据构建的随机矩阵的奇异值等价矩阵将满足单环定理,特征值会均匀分布在具有特定内外半径的环内;否则特征值分布会发生变化,分布不再均匀。If there is a correlation between the error of the air-core coil current transformer and the environmental parameters, the singular value equivalent matrix of the random matrix constructed by the transformer error data and the environmental parameter data will satisfy the single-loop theorem, and the eigenvalues will be uniformly distributed in certain Inside the ring of inner and outer radii; otherwise, the eigenvalue distribution will change and the distribution will no longer be uniform.

为进一步理解本发明,下面对本发明中单环定理进行简要阐述:In order to further understand the present invention, the single ring theorem in the present invention is briefly described below:

在实际应用中,若矩阵为非厄米特矩阵,且矩阵A的行向量满足均值为0、方差为1。对于多个非厄米特矩阵Ai,定义矩阵乘积其中,Au,i为Ai的奇异值等价矩阵。将矩阵A2标准化为Astd,使其满足σ2(ai)=1/n,其中,ai为矩阵Astd的行向量,则Astd的极限谱分布依概率1收敛到概率密度函数为:公式(12)中,c=m/n∈(0,1], m,n→∞。Astd的特征值在复平面的分布是一个圆环,内环的半径为(1-c)L/2,外环的半径为1。在设备状态正常的情况下,矩阵Astd满足如下性质:奇异值等价矩阵通过哈尔酉矩阵变换得到的标准化乘积矩阵应满足单环定理。In practical applications, if the matrix is a non-Hermitian matrix, and the row vector of matrix A satisfies the mean of 0 and the variance of 1. For multiple non-Hermitian matrices A i , define the matrix product Among them, A u,i is the singular value equivalent matrix of A i . Normalize the matrix A 2 to A std so that it satisfies σ 2 ( ai )=1/n, where a i is the row vector of the matrix A std , then the limit spectral distribution of A std converges to the probability density function according to probability 1 for: In formula (12), c=m/n∈(0,1], m,n→∞. The distribution of the eigenvalues of A std in the complex plane is a ring, and the radius of the inner ring is (1-c) L /2 , the radius of the outer ring is 1. In the normal condition of the equipment, the matrix A std satisfies the following properties: the standardized product matrix obtained by the singular value equivalent matrix through Haar unitary matrix transformation should satisfy the single ring theorem.

下面结合附图和具体实施例对本发明作进一步说明。实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。The present invention will be further described below with reference to the accompanying drawings and specific embodiments. The embodiments are exemplary and are intended to explain the present invention and should not be construed as limiting the present invention.

如图1所示,本发明按照以下步骤对空心线圈电流互感器误差和环境参量之间的相关性进行分析:As shown in Figure 1, the present invention analyzes the correlation between the air-core coil current transformer error and environmental parameters according to the following steps:

(1)搭建如图2所示的空心线圈电流互感器误差状态监测平台,平台包括:环境监测单元3、光纤远传单元4、信号采集单元5、数据处理单元6、时间同步单元7。平台中安装有一台0.2级的空心线圈电流互感器1和一台0.2级的电磁式电流互感器2。以电磁式电流互感器2输出为标准信号,可以得到空心线圈电流互感器1误差的比对结果。环境监测单元3可对互感器安装处的环境参量进行采集,包括温度、湿度、振动、磁场等参量;光纤远传单元4则将环境监测单元3的数据标准化,发送给一台数据处理单元6;数据处理单元6将数据通过交换机8传输给服务器9,监测数据在服务器9中进行存储;信号采集单元5 可以采集数字化电磁式电流互感器的输出数据;数据处理单元6同时接收信号采集单元5的输出数据和空心线圈电流互感器1的采样值报文数据。根据环境参量和空心线圈电流互感器1的误差数据构建原始随机矩阵D;时钟同步单元7 构建了整个系统的同步时钟系统,负责同步光纤远传单元4、数据处理单元6以及信号采集单元5。(1) Build the air-core coil current transformer error state monitoring platform as shown in Figure 2. The platform includes: an environmental monitoring unit 3, an optical fiber remote transmission unit 4, a signal acquisition unit 5, a data processing unit 6, and a time synchronization unit 7. A 0.2-class air-core coil current transformer 1 and a 0.2-class electromagnetic current transformer 2 are installed in the platform. Taking the output of the electromagnetic current transformer 2 as the standard signal, the comparison result of the error of the air-core coil current transformer 1 can be obtained. The environmental monitoring unit 3 can collect the environmental parameters at the installation place of the transformer, including parameters such as temperature, humidity, vibration, and magnetic field; the optical fiber remote transmission unit 4 standardizes the data of the environmental monitoring unit 3 and sends it to a data processing unit 6 The data processing unit 6 transmits the data to the server 9 through the switch 8, and the monitoring data is stored in the server 9; the signal acquisition unit 5 can collect the output data of the digital electromagnetic current transformer; the data processing unit 6 receives the signal acquisition unit 5 simultaneously The output data and the sampled value message data of the air-core coil current transformer 1. The original random matrix D is constructed according to the environmental parameters and the error data of the air core coil current transformer 1;

(2)基于卡尔曼滤波器,对矩阵D进行扩展后形成高维随机矩阵D3。利用空心线圈电流互感器的比差数据、角差数据、非电气参量数据、电气参量数据构成原始矩阵,采用基于卡尔曼滤波器的矩阵扩展方法对各原始矩阵进行扩展,原始矩阵和扩展矩阵的规模如表1所示。空心线圈电流互感器误差和环境参量每10min计算一次,滑动时间窗长度为24h,共计算144次,这即为原始矩阵的列数,利用卡尔曼滤波器扩展后,构成了一个20×144的扩展矩阵。(2) Based on the Kalman filter, the matrix D is expanded to form a high-dimensional random matrix D 3 . The ratio difference data, angular difference data, non-electrical parameter data, and electrical parameter data of the air-core coil current transformer are used to form the original matrix, and the matrix expansion method based on Kalman filter is used to expand each original matrix. The scale is shown in Table 1. The air-core coil current transformer error and environmental parameters are calculated every 10min, and the sliding time window length is 24h, and a total of 144 calculations are performed. This is the number of columns of the original matrix. After expansion by Kalman filter, a 20×144 Extended matrix.

由于只计算电子式互感器相位,原始矩阵的行数为1,而电子式互感器相位每10s计算1次,滑动时间窗长度为1h,共计算360次,这即为原始矩阵的列数,利用卡尔曼滤波器扩展后,构成了一个150×360的扩展矩阵。Since only the phase of the electronic transformer is calculated, the row number of the original matrix is 1, while the phase of the electronic transformer is calculated once every 10s, the sliding time window length is 1h, and a total of 360 calculations are performed, which is the number of columns of the original matrix, After expansion by Kalman filter, a 150×360 expansion matrix is formed.

表1高维矩阵规模Table 1 High-dimensional matrix scale

(3)利用公式(4)对矩阵D3进行标准化转换得到矩阵Dstd(3) The matrix D std is obtained by normalizing the matrix D 3 by using the formula (4).

(4)利用公式(6)~公式(8)求取影响量相关性评估矩阵Z2(4) Use formula (6) to formula (8) to obtain the influence quantity correlation evaluation matrix Z 2 .

(5)利用空心线圈电流互感器的比差数据构成误差状态矩阵,利用温度参量数据构成环境参量矩阵,将误差状态矩阵和环境参量矩阵合并为影响量相关性评估矩阵Dev1,矩阵规模为40×144;利用空心线圈电流互感器的比差数据和湿度参量数据构成影响量相关性评估矩阵Dev2,矩阵规模同样为40×144。滑动时间窗选取为1800s,图3和图4分别为Dev1和Dev2的特征值分布,对比图3和图4,可以看出Dev1的奇异值等价矩阵的特征值分布较为分散,部分特征值超出了圆环的限制;Dev2的奇异值等价矩阵的特征值分布更为集中,基本分布在一个圆环内。(5) Use the ratio difference data of the air-core coil current transformer to form the error state matrix, use the temperature parameter data to form the environmental parameter matrix, and combine the error state matrix and the environmental parameter matrix into the influence quantity correlation evaluation matrix D ev1 , and the matrix size is 40 ×144; using the ratio difference data of the air-core coil current transformer and the humidity parameter data to form the influence quantity correlation evaluation matrix Dev2 , and the matrix size is also 40×144. The sliding time window is selected as 1800s. Figures 3 and 4 are the eigenvalue distributions of Dev1 and Dev2 respectively . Comparing Figures 3 and 4, it can be seen that the eigenvalue distribution of the singular value equivalent matrix of Dev1 is relatively scattered. The eigenvalues exceed the limit of the ring; the eigenvalue distribution of the singular value equivalent matrix of Dev2 is more concentrated and basically distributed within a ring.

依照公式(9)~公式(10)计算相关性评估指标,图5和图6分别为据Dev1和Dev2得到的相关性评估指标变化趋势图,可以看出对于评估矩阵Dev1而言,评价指标dMSR的最大值上升到0.35附近,IMSR达到273.15;对于评估矩阵Dev2而言,评价指标dMSR始终保持在0附近,IMSR为43.8,远小于矩阵Dev1的IMSR,这表明了空心线圈电流互感器的比差和温度的相关性较强,和湿度的相关性较弱。The correlation evaluation index is calculated according to formula (9) to formula (10). Figure 5 and Figure 6 are the change trend diagrams of the correlation evaluation index obtained according to Dev1 and Dev2 respectively . It can be seen that for the evaluation matrix Dev1 , The maximum value of the evaluation index d MSR rises to around 0.35, and the I MSR reaches 273.15; for the evaluation matrix Dev2 , the evaluation index d MSR always remains around 0, and the I MSR is 43.8, which is much smaller than the I MSR of the matrix Dev1 . It shows that the relative difference of the air-core coil current transformer has a strong correlation with temperature, and a weak correlation with humidity.

本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、 CD-ROM、光学存储器等)上实施的计算机程序产品的形式。As will be appreciated by those skilled in the art, the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.

本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/ 或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present application is described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the present application. It will be understood that each flow and/or block in the flowchart illustrations and/or block diagrams, and combinations of flows and/or blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to the processor of a general purpose computer, special purpose computer, embedded processor or other programmable data processing device to produce a machine such that the instructions executed by the processor of the computer or other programmable data processing device produce Means for implementing the functions specified in a flow or flow of a flowchart and/or a block or blocks of a block diagram.

这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions The apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.

这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。These computer program instructions can also be loaded on a computer or other programmable data processing device to cause a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process such that The instructions provide steps for implementing the functions specified in the flow or blocks of the flowcharts and/or the block or blocks of the block diagrams. The above are only the preferred embodiments of the present invention. It should be pointed out that for those skilled in the art, without departing from the technical principle of the present invention, several improvements and modifications can also be made. These improvements and modifications It should also be regarded as the protection scope of the present invention.

Claims (13)

1.一种空心线圈电流互感器误差环境相关性分析方法,其特征在于,包括如下步骤:1. an air-core coil current transformer error environment correlation analysis method, is characterized in that, comprises the steps: S1:采集环境参量数据以及空心线圈电流互感器误差数据,在评估时间窗内根据采集的环境参量数据和误差数据构建原始矩阵;S1: Collect environmental parameter data and air-core coil current transformer error data, and construct an original matrix according to the collected environmental parameter data and error data within the evaluation time window; S2:基于卡尔曼滤波器对所述原始矩阵进行扩展,建立高维随机矩阵;S2: Expand the original matrix based on the Kalman filter to establish a high-dimensional random matrix; S3:对所述高维随机矩阵进行标准化处理,使其转换为行向量均值为0、方差为1的非厄米特矩阵;S3: Standardize the high-dimensional random matrix to convert it into a non-Hermitian matrix with a row vector mean of 0 and a variance of 1; S4:根据所述非厄米特矩阵获得影响量相关性评估矩阵;S4: obtaining the influence quantity correlation evaluation matrix according to the non-Hermitian matrix; S5:根据所述影响量相关性评估矩阵获得空心线圈电流互感器误差环境相关性评估指标,并根据所述影响量相关性评估矩阵和所述相关性评估指标对空心线圈电流互感器误差与环境参量之间的相关性进行评估。S5: Obtain the air-core coil current transformer error environment correlation evaluation index according to the influence amount correlation evaluation matrix, and determine the air-core coil current transformer error and environment according to the influence amount correlation evaluation matrix and the correlation evaluation index. The correlation between the parameters is evaluated. 2.根据权利要求1所述的空心线圈电流互感器误差环境相关性分析方法,其特征在于,在步骤S1中,通过采集的环境参量数据构建环境参量矩阵其中,元素Pij表示第i个可测环境参量在j时刻的测量值,i为可测环境参量的序号,i=1,2,……M,M为环境参量的数目,j为测量的序号,j=1,2,……T,T为测量次数;通过采集的误差数据构建误差状态矩阵其中,元素Qij表示第i个互感器误差参量在j时刻的测量值,i为互感器误差参量的序号,i=1,2,……N,N为互感器误差参量的数目,j为测量的序号,j=1,2,……T,构建的原始矩阵为其中,k=M+N。2 . The method for analyzing the error environment correlation of air-core coil current transformers according to claim 1 , wherein, in step S1 , an environment parameter matrix is constructed by the collected environment parameter data. 3 . Among them, the element P ij represents the measured value of the i-th measurable environmental parameter at time j, i is the serial number of the measurable environmental parameter, i=1, 2, ... M, M is the number of environmental parameters, and j is the measured environmental parameter. Serial number, j=1, 2,...T, T is the number of measurements; build the error state matrix by the collected error data Among them, the element Q ij represents the measured value of the ith transformer error parameter at time j, i is the serial number of the transformer error parameter, i=1, 2, ... N, N is the number of transformer error parameters, and j is the The serial number of the measurement, j=1, 2,...T, the original matrix constructed is where k=M+N. 3.根据权利要求1所述的空心线圈电流互感器误差环境相关性分析方法,其特征在于,在步骤S2中,经过扩展后获得的高维随机矩阵为k'为扩展后的状态参量的数目,N'的取值范围满足k'/T∈(0,1],T为测量次数。3. The method for analyzing the error environment correlation of air-core coil current transformers according to claim 1, wherein in step S2, the high-dimensional random matrix obtained after expansion is k' is the number of expanded state parameters, the value range of N' satisfies k'/T∈(0,1], and T is the number of measurements. 4.根据权利要求1所述的空心线圈电流互感器误差环境相关性分析方法,其特征在于,在步骤S3中,所述非厄米特矩阵为其中 表示样本xi的平均值,σ(xij)表示样本xi的标准差,xi为高维随机矩阵D3的行向量,xi=(xi1,xi2,...,xiT),1≤i≤k',k'为扩展后的状态参量的数目,T为测量次数,yij为高维随机矩阵中的变量xij经过该标准化方式后得到的新的变量。4. The method for analyzing air-core coil current transformer error environment correlation according to claim 1, wherein in step S3, the non-Hermitian matrix is in Represents the mean value of the sample x i , σ(x ij ) represents the standard deviation of the sample x i , x i is the row vector of the high-dimensional random matrix D 3 , x i =(x i1 ,x i2 ,...,x iT ), 1≤i≤k', k' is the number of expanded state parameters, T is the number of measurements, y ij is a new variable obtained by the standardization method of the variable x ij in the high-dimensional random matrix. 5.根据权利要求1所述的空心线圈电流互感器误差环境相关性分析方法,其特征在于,所述步骤S4具体为:5. The air-core coil current transformer error environment correlation analysis method according to claim 1, wherein the step S4 is specifically: 计算所述非厄米特矩阵的奇异值等价矩阵DuCalculate the singular value equivalent matrix Du of the non - Hermitian matrix; 根据所述奇异值等价矩阵Du计算矩阵乘积Z;Calculate the matrix product Z according to the singular value equivalent matrix Du; 根据所述矩阵乘积Z获得误差状态评估矩阵Z2An error state evaluation matrix Z 2 is obtained from the matrix product Z. 6.根据权利要求5所述的空心线圈电流互感器误差环境相关性分析方法,其特征在于,所述矩阵乘积所述误差状态评估矩阵其中,zi为矩阵Z的行向量,zi=(zi1,zi2,...,ziT),1≤i≤k',为矩阵Z2的行向量,σ(zi)表示zi的标准差,k'为扩展后的状态参量的数目,T为测量次数。6. The method for analyzing the error environment correlation of air-core coil current transformers according to claim 5, wherein the matrix product The error state evaluation matrix in, z i is the row vector of matrix Z, z i =(z i1 ,z i2 ,...,z iT ), 1≤i≤k', is the row vector of matrix Z 2 , σ(z i ) represents the standard deviation of zi, k' is the number of state parameters after expansion, and T is the number of measurements. 7.根据权利要求1所述的空心线圈电流互感器误差环境相关性分析方法,其特征在于,在步骤S5中,所述相关性评估指标包括dMSR和IMSR,其中dMSR=εevref,dMSR对时间的积分为IMSR其中,t1和t2表示评估的起始时刻和结束时刻,λi为对应的原始矩阵的特征值,λwi为对应参考矩阵的特征值,n和n2分别为对应的原始矩阵和参考矩阵的特征值个数,E()表示特征值样本期望,所述参考矩阵参考矩阵由空心线圈误差状态矩阵和高斯白噪声矩阵构成,其中,D1为环境参量矩阵;DN为噪声矩阵,其维度和环境参量矩阵相同,元素为服从标准正态分布的随机变量,幅值和矩阵扩展中叠加的高斯白噪声幅值相同。7. The method for analyzing air-core coil current transformer error environment correlation according to claim 1, wherein in step S5, the correlation evaluation index comprises d MSR and I MSR , wherein d MSRev − ε ref , the integral of d MSR over time is I MSR : Among them, t 1 and t 2 represent the start time and end time of the evaluation, λi is the eigenvalue of the corresponding original matrix, λwi is the eigenvalue of the corresponding reference matrix, n and n2 are the number of eigenvalues of the corresponding original matrix and reference matrix, respectively, E() represents the expected eigenvalue sample, so the reference matrix The reference matrix is composed of an air-core coil error state matrix and a Gaussian white noise matrix, where D 1 is the environmental parameter matrix; D N is the noise matrix, whose dimensions are the same as the environmental parameter matrix, and the elements are random variables obeying standard normal distribution. The value is the same as the magnitude of the white Gaussian noise superimposed in the matrix expansion. 8.一种空心线圈电流互感器误差状态监测系统,其特征在于,包括原始矩阵构建模块、高维随机矩阵构建模块、标准化处理模块、影响量相关性评估矩阵模块以及相关性评估模块;8. An air-core coil current transformer error state monitoring system, characterized in that it comprises an original matrix building module, a high-dimensional random matrix building module, a standardized processing module, an influence quantity correlation evaluation matrix module and a correlation evaluation module; 所述原始矩阵构建模块用于采集环境参量数据以及空心线圈电流互感器误差数据,在评估时间窗内根据采集的环境参量数据和误差数据构建原始矩阵;The original matrix building module is used to collect environmental parameter data and air-core coil current transformer error data, and build an original matrix according to the collected environmental parameter data and error data within the evaluation time window; 所述高维随机矩阵构建模块用于基于卡尔曼滤波器对所述原始矩阵进行扩展,建立高维随机矩阵;The high-dimensional random matrix building module is used to expand the original matrix based on the Kalman filter to establish a high-dimensional random matrix; 所述标准化处理模块用于对所述高维随机矩阵进行标准化处理,使其转换为行向量均值为0、方差为1的非厄米特矩阵;The standardization processing module is used to standardize the high-dimensional random matrix to convert it into a non-Hermitian matrix with a row vector mean of 0 and a variance of 1; 所述影响量相关性评估矩阵模块用于根据所述非厄米特矩阵获得影响量相关性评估矩阵;The influence quantity correlation assessment matrix module is used to obtain the influence quantity correlation assessment matrix according to the non-Hermitian matrix; 所述相关性评估模块用于根据所述影响量相关性评估矩阵获得空心线圈电流互感器误差环境相关性评估指标,并根据所述影响量相关性评估矩阵和所述相关性评估指标对空心线圈电流互感器误差与环境参量之间的相关性进行评估。The correlation evaluation module is used to obtain the air-core coil current transformer error environment correlation evaluation index according to the influence amount correlation evaluation matrix, and to evaluate the air-core coil according to the influence amount correlation evaluation matrix and the correlation evaluation index. The correlation between current transformer errors and environmental parameters is evaluated. 9.根据权利要求8所述的空心线圈电流互感器误差状态监测系统,其特征在于,所述原始矩阵构建模块用于通过采集的环境参量数据构建环境参量矩阵其中,元素Pij表示第i个可测环境参量在j时刻的测量值,i为可测环境参量的序号,i=1,2,……M,M为环境参量的数目,j为测量的序号,j=1,2,……T,T为测量次数;通过采集的误差数据构建误差状态矩阵其中,元素Qij表示第i个互感器误差参量在j时刻的测量值,i为互感器误差参量的序号,i=1,2,……N,N为互感器误差参量的数目,j为测量的序号,j=1,2,……T,构建的原始矩阵为其中,k=M+N。9 . The air-core coil current transformer error state monitoring system according to claim 8 , wherein the original matrix building module is used to build an environmental parameter matrix by collecting environmental parameter data. 10 . Among them, the element P ij represents the measured value of the i-th measurable environmental parameter at time j, i is the serial number of the measurable environmental parameter, i=1, 2, ... M, M is the number of environmental parameters, and j is the measured environmental parameter. Serial number, j=1, 2,...T, T is the number of measurements; build the error state matrix by the collected error data Among them, the element Q ij represents the measured value of the ith transformer error parameter at time j, i is the serial number of the transformer error parameter, i=1, 2, ... N, N is the number of transformer error parameters, and j is the The serial number of the measurement, j=1, 2,...T, the original matrix constructed is where k=M+N. 10.根据权利要求8所述的空心线圈电流互感器误差状态监测系统,其特征在于,所述高维随机矩阵构建模块建立的高维随机矩阵为k'为扩展后的状态参量的数目,N'的取值范围满足k'/T∈(0,1],T为测量次数。10. The air-core coil current transformer error state monitoring system according to claim 8, wherein the high-dimensional random matrix established by the high-dimensional random matrix building module is: k' is the number of expanded state parameters, the value range of N' satisfies k'/T∈(0,1], and T is the number of measurements. 11.根据权利要求8所述的空心线圈电流互感器误差状态监测系统,其特征在于,所述标准化处理模块处理得到的非厄米特矩阵为所述非厄米特矩阵为其中 表示样本xi的平均值,σ(xij)表示样本xi的标准差,xi为高维随机矩阵D3的行向量,xi=(xi1,xi2,…,xiT),1≤i≤k',k'为扩展后的状态参量的数目,T为测量次数,yij为高维随机矩阵中的变量xij经过该标准化方式后得到的新的变量。11. The air-core coil current transformer error state monitoring system according to claim 8, wherein the non-Hermitian matrix obtained by the standardized processing module is that the non-Hermitian matrix is: in Represents the mean value of the sample x i , σ(x ij ) represents the standard deviation of the sample x i , x i is the row vector of the high-dimensional random matrix D 3 , x i =(x i1 ,x i2 ,...,x iT ), 1≤i≤k', k' is the number of expanded state parameters, T is the number of measurements, and yij is a new variable obtained by the standardization method for the variable x ij in the high-dimensional random matrix. 12.根据权利要求8所述的空心线圈电流互感器误差状态监测系统,其特征在于,所述影响量相关性评估矩阵模块用于计算所述非厄米特矩阵的奇异值等价矩阵Du,根据所述奇异值等价矩阵Du计算矩阵乘积Z,根据所述矩阵乘积Z获得误差状态评估矩阵Z212. The air-core coil current transformer error state monitoring system according to claim 8, wherein the influence quantity correlation evaluation matrix module is used to calculate the singular value equivalent matrix D u of the non-Hermitian matrix , the matrix product Z is calculated according to the singular value equivalent matrix Du, and the error state evaluation matrix Z 2 is obtained according to the matrix product Z; 所述矩阵乘积所述误差状态评估矩阵其中,zi为矩阵Z的行向量,zi=(zi1,zi2,…,ziT),1≤i≤k',为矩阵Z2的行向量,σ(zi)表示zi的标准差,k'为扩展后的状态参量的数目,T为测量次数the matrix product The error state evaluation matrix in, z i is the row vector of matrix Z, z i =(z i1 ,z i2 ,...,z iT ), 1≤i≤k', is the row vector of matrix Z 2 , σ(z i ) represents the standard deviation of zi, k' is the number of state parameters after expansion, T is the number of measurements 13.根据权利要求8所述的空心线圈电流互感器误差状态监测系统,其特征在于,所述相关性评估指标包括dMSR和IMSR,其中dMSR=εevref,dMSR对时间的积分为其中,t1和t2表示评估的起始时刻和结束时刻,λi为对应的原始矩阵的特征值,λwi为对应参考矩阵的特征值,n和n2分别为对应的原始矩阵和参考矩阵的特征值个数,E()表示特征值样本期望,所述参考矩阵参考矩阵由空心线圈误差状态矩阵和高斯白噪声矩阵构成,其中,D1为环境参量矩阵;DN为噪声矩阵,其维度和环境参量矩阵相同,元素为服从标准正态分布的随机变量,幅值和矩阵扩展中叠加的高斯白噪声幅值相同。13. The air-core coil current transformer error state monitoring system according to claim 8, wherein the correlation evaluation index comprises d MSR and I MSR , wherein d MSRevref , d MSR versus time The score is Among them, t 1 and t 2 represent the start time and end time of the evaluation, λi is the eigenvalue of the corresponding original matrix, λwi is the eigenvalue of the corresponding reference matrix, n and n2 are the number of eigenvalues of the corresponding original matrix and reference matrix, respectively, E() represents the expected eigenvalue sample, so the reference matrix The reference matrix is composed of an air-core coil error state matrix and a Gaussian white noise matrix, where D 1 is the environmental parameter matrix; D N is the noise matrix, whose dimensions are the same as the environmental parameter matrix, and the elements are random variables obeying standard normal distribution. The value is the same as the magnitude of the white Gaussian noise superimposed in the matrix expansion.
CN201910270802.7A 2019-04-04 2019-04-04 A kind of hollow coil current transformer error environment correlation analysis Pending CN110031788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910270802.7A CN110031788A (en) 2019-04-04 2019-04-04 A kind of hollow coil current transformer error environment correlation analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910270802.7A CN110031788A (en) 2019-04-04 2019-04-04 A kind of hollow coil current transformer error environment correlation analysis

Publications (1)

Publication Number Publication Date
CN110031788A true CN110031788A (en) 2019-07-19

Family

ID=67237458

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910270802.7A Pending CN110031788A (en) 2019-04-04 2019-04-04 A kind of hollow coil current transformer error environment correlation analysis

Country Status (1)

Country Link
CN (1) CN110031788A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111474510A (en) * 2020-04-25 2020-07-31 华中科技大学 Error evaluation method and system for voltage transformer with non-stable output
CN112014785A (en) * 2020-08-06 2020-12-01 三峡大学 Error compensation method of air-core coil current transformer based on elastic network
CN112485747A (en) * 2020-11-28 2021-03-12 国网江西省电力有限公司供电服务管理中心 Error state evaluation method for capacitor voltage transformer
CN112505386A (en) * 2020-08-25 2021-03-16 中国电力科学研究院有限公司 Method and system for detecting current value of direct current charging pile
CN112713876A (en) * 2020-12-16 2021-04-27 南京大学 Kalman filter-based data processing method applicable to ACCT
CN113792256A (en) * 2021-07-27 2021-12-14 国网河北省电力有限公司营销服务中心 Low-voltage current transformer metering performance evaluation method and device and electronic equipment
CN115480203A (en) * 2022-09-28 2022-12-16 武汉格蓝若智能技术有限公司 Online quantitative evaluation method and system for error state of current transformer
CN116295620A (en) * 2023-02-17 2023-06-23 南通科瑞环境科技有限公司 Environment monitoring, collecting and detecting method
CN116754830A (en) * 2023-06-13 2023-09-15 武汉阿迪克电子股份有限公司 Metering method and device of electric energy meter and storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104062617A (en) * 2014-07-08 2014-09-24 国家电网公司 Merging-unit metrological-characteristic on-site detecting system and method thereof
CN106548021A (en) * 2016-11-03 2017-03-29 华中科技大学 A kind of electronic mutual inductor error state appraisal procedure based on higher-dimension random matrix
CN107133684A (en) * 2016-02-26 2017-09-05 中国电力科学研究院 A kind of random matrix construction method towards GA for reactive power optimization
CN108828405A (en) * 2018-06-06 2018-11-16 西南交通大学 A kind of electric transmission line fault detection method based on random matrix

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104062617A (en) * 2014-07-08 2014-09-24 国家电网公司 Merging-unit metrological-characteristic on-site detecting system and method thereof
CN107133684A (en) * 2016-02-26 2017-09-05 中国电力科学研究院 A kind of random matrix construction method towards GA for reactive power optimization
CN106548021A (en) * 2016-11-03 2017-03-29 华中科技大学 A kind of electronic mutual inductor error state appraisal procedure based on higher-dimension random matrix
CN108828405A (en) * 2018-06-06 2018-11-16 西南交通大学 A kind of electric transmission line fault detection method based on random matrix

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
胡琛: "空心线圈电流互感器可靠性及长期稳定性关键问题研究", 《万方 HTTP://D.WANFANGDATA.COM.CN/CONFERENCE/7064537》 *
胡琛等: "基于随机矩阵理论的电子式互感器误差状态相关性分析方法", 《电力自动化设备》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111474510A (en) * 2020-04-25 2020-07-31 华中科技大学 Error evaluation method and system for voltage transformer with non-stable output
CN112014785A (en) * 2020-08-06 2020-12-01 三峡大学 Error compensation method of air-core coil current transformer based on elastic network
CN112505386B (en) * 2020-08-25 2022-09-02 中国电力科学研究院有限公司 Method and system for detecting current value of direct current charging pile
CN112505386A (en) * 2020-08-25 2021-03-16 中国电力科学研究院有限公司 Method and system for detecting current value of direct current charging pile
CN112485747A (en) * 2020-11-28 2021-03-12 国网江西省电力有限公司供电服务管理中心 Error state evaluation method for capacitor voltage transformer
CN112713876A (en) * 2020-12-16 2021-04-27 南京大学 Kalman filter-based data processing method applicable to ACCT
CN112713876B (en) * 2020-12-16 2023-12-05 南京大学 Kalman filter-based data processing method suitable for ACCT
CN113792256A (en) * 2021-07-27 2021-12-14 国网河北省电力有限公司营销服务中心 Low-voltage current transformer metering performance evaluation method and device and electronic equipment
CN113792256B (en) * 2021-07-27 2024-08-02 国网河北省电力有限公司营销服务中心 Metering performance evaluation method and device for low-voltage current transformer and electronic equipment
CN115480203A (en) * 2022-09-28 2022-12-16 武汉格蓝若智能技术有限公司 Online quantitative evaluation method and system for error state of current transformer
CN116295620A (en) * 2023-02-17 2023-06-23 南通科瑞环境科技有限公司 Environment monitoring, collecting and detecting method
CN116754830A (en) * 2023-06-13 2023-09-15 武汉阿迪克电子股份有限公司 Metering method and device of electric energy meter and storage medium
CN116754830B (en) * 2023-06-13 2024-01-09 武汉阿迪克电子股份有限公司 Metering method and device of electric energy meter and storage medium

Similar Documents

Publication Publication Date Title
CN110031788A (en) A kind of hollow coil current transformer error environment correlation analysis
CN111474510B (en) An error evaluation method and system for a voltage transformer with non-stationary output
CN110095744A (en) A kind of electronic mutual inductor error prediction method
CN106548021B (en) A kind of electronic mutual inductor error state appraisal procedure based on higher-dimension random matrix
CN111523251A (en) A Rapid Evaluation Method of Product Life under Random Environmental Stress
CN109270482B (en) Online evaluation method for metering accuracy of voltage transformer and terminal equipment
CN110222897A (en) A kind of distribution network reliability analysis method
CN110598854A (en) GRU model-based transformer area line loss rate prediction method
CN105117602A (en) Metering apparatus operation state early warning method
CN113297797A (en) XGboost-based electronic transformer measurement error state evaluation method and device
CN112485747A (en) Error state evaluation method for capacitor voltage transformer
CN111814390A (en) Error prediction method of voltage transformer based on transfer entropy and wavelet neural network
CN107103184A (en) A kind of high-voltage cable joint temperature predicting method
CN117233687B (en) CVT initial error assessment method, medium and terminal based on historical data
CN115130764A (en) Power distribution network situation prediction method and system based on state evaluation
CN105406461A (en) Adaptive dynamic load monitoring method for power distribution network power failure events
CN115685045A (en) Online evaluation method for voltage transformer
CN116840767A (en) Electric energy metering device overall error assessment method and device, storage medium and terminal
Zhang et al. Research on data-driven self-diagnosis for measurement errors in capacitor voltage Transformers
CN115374938A (en) A distribution network voltage prediction method based on XGBoost
CN107977730A (en) A kind of wind measurement method of multisensor Data Fusion technology
CN117706452A (en) Online evaluation method of voltage transformer based on KNN-GRU model
CN117421992A (en) Transformer winding hot spot temperature inversion method
CN115951292A (en) Electronic voltage transformer error state online evaluation method and device
CN116224950A (en) Intelligent fault diagnosis method and system for self-organization reconstruction of unmanned production line

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190719

RJ01 Rejection of invention patent application after publication