CN110030036A - 一种涡轮叶片尾缘的冲击劈缝气膜冷却结构 - Google Patents

一种涡轮叶片尾缘的冲击劈缝气膜冷却结构 Download PDF

Info

Publication number
CN110030036A
CN110030036A CN201910388671.2A CN201910388671A CN110030036A CN 110030036 A CN110030036 A CN 110030036A CN 201910388671 A CN201910388671 A CN 201910388671A CN 110030036 A CN110030036 A CN 110030036A
Authority
CN
China
Prior art keywords
trailing edge
impact
laminate
seam
suction surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910388671.2A
Other languages
English (en)
Other versions
CN110030036B (zh
Inventor
李广超
刘野
张钲浩
张魏
寇志海
毛晓东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang Aerospace University
Original Assignee
Shenyang Aerospace University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang Aerospace University filed Critical Shenyang Aerospace University
Priority to CN201910388671.2A priority Critical patent/CN110030036B/zh
Publication of CN110030036A publication Critical patent/CN110030036A/zh
Application granted granted Critical
Publication of CN110030036B publication Critical patent/CN110030036B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/186Film cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/201Heat transfer, e.g. cooling by impingement of a fluid

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

一种涡轮叶片尾缘的冲击劈缝气膜冷却结构,包括压力面、吸力面、压力面层板和吸力面层板,压力面层板和吸力面层板一端在前缘与隔板相连,且压力面层板和吸力面层板在前缘沿叶片高度方向均设置有层板冲击孔,压力面层板和吸力面层板在尾缘相连,且通过层板延伸段与压力面里侧相连,中部的压力面层板与压力面、吸力面层板与吸力面之间均设置有扰流柱,层板延伸段沿叶片高度方向设置有若干尾缘冲击孔或尾缘冲击缝,压力面和吸力面在叶片尾缘部分通过连接肋相连,在压力面尾缘部分设置有劈缝。本发明在层板延伸段设置尾缘冲击孔或尾缘冲击缝代替扰流柱,既减小冷气流动损失,又增加冷气在吸力面内壁处的平均速度。

Description

一种涡轮叶片尾缘的冲击劈缝气膜冷却结构
技术领域
本发明属于燃气轮机涡轮叶片冷却技术领域,尤其是一种涡轮叶片尾缘的冲击劈缝气膜冷却结构。
背景技术
燃气轮机的涡轮入口温度是影响发动机性能的重要参数,提升涡轮入口温度是获得燃气轮机更大输出功率的捷径。当前,航空发动机涡轮入口处的燃气温度高达1500-2000K,远高于涡轮叶片所用材料的耐温极限。高效冷却技术可以有效降低叶片表面温度,延长叶片工作寿命。
涡轮叶片冷却的基本思想是利用低温冷却介质通过持续的热交换或热防护降低热端部件工作温度。经压气机压缩后的高压空气常用作涡轮叶片冷却介质,这样不但会减少本该用于燃烧的气体总量、降低发动机循环热效率,而且空气与主流燃气掺混会导致严重气动损失、降低涡轮气动效率。因此在设计叶片冷却结构时,需要着重考虑如何利用较少的空气达到更好的冷却效果。
根据几何位置或工作环境不同,可将叶片分为多个部位。在工作状况下承受较高流体压力的一侧称为压力面,承受相对较低流体压力的一侧称为吸力面。沿主流燃气流动方向,涡轮叶片可分为前缘、中部和尾缘,尾缘是涡轮叶片最薄的部位,通常只有几毫米厚,用于冷却结构设计的空间十分有限。对于叶片前缘和中部,目前可采用气膜冷却或冲击冷却等多种手段,对于涡轮叶片尾缘,常采用扰流柱劈缝复合冷却结构:冷气流过2-5排扰流柱后,经尾缘劈缝进入主流燃气中。扰流柱可以增加换热面积,提高湍流度,增大换热量;冷气流过劈缝处叶片表面时,可以形成一层气膜,将叶片表面与高温燃气隔开。
现有的扰流柱-劈缝冷却技术,主要局限如下:
1)扰流柱排流阻力大,冷气在扰流柱间交替收缩、扩张的通道中流动会产生较大能量消耗,且沿冷气流向扰流柱排数越多,气体动能损失越大。
2)冷气在劈缝处气膜冷却效率低,流过扰流柱后的冷气平均速度降低,湍流度提高,冷气不能很好的贴在叶片表面上,形成的气膜冷却效率低。
发明内容
本发明提出的一种涡轮叶片尾缘的冲击劈缝气膜冷却结构,结构简单,并且能减小流动损失、增加粘性底层厚度的复合冷却结构。
为了实现上述目的,本发明采用如下技术方案:
一种涡轮叶片尾缘的冲击劈缝气膜冷却结构,包括压力面、吸力面、压力面层板和吸力面层板,且叶片分为三段,分别是前缘、中部和后缘,压力面层板和吸力面层板一端在前缘部分与隔板相连,且压力面层板和吸力面层板在前缘部分沿叶片高度方向均设置有层板冲击孔,压力面层板和吸力面层板在尾缘部分相连,且通过层板延伸段与压力面里侧相连,中部的压力面层板与压力面之间、吸力面层板与吸力面之间均设置有扰流柱,所述层板延伸段沿叶片高度方向设置有若干尾缘冲击孔或尾缘冲击缝,压力面和吸力面在叶片尾缘部分通过连接肋相连,在压力面尾缘部分设置有劈缝,且劈缝使压力面和吸力面内部形成的空腔与外部连通。
所述吸力面与吸力面层板之间的距离、压力面与压力面层板之间的距离相等,均为D。
所述尾缘冲击孔或尾缘冲击缝的个数大于等于1,当尾缘冲击孔或尾缘冲击缝个数大于2时,尾缘冲击孔或尾缘冲击缝沿叶片高度方向等距排列。
所述尾缘冲击孔的截面形状为圆形或方形,当尾缘冲击孔为圆形孔时,直径D1取值范围为0.2D-1.2D;当尾缘冲击孔为方形孔时,边长D2取值范围为0.2D-0.8D。
所述尾缘冲击孔为变截面锥度孔或等截面无锥度孔;当尾缘冲击孔为变截面锥度孔时,大孔端位于层板延伸段靠近压力面一侧,且锥度为1:5-1:100。
所述尾缘冲击缝的截面形状为长方形,尾缘冲击缝沿叶片高度方向的两条边为长边L2,另外两条边为短边L1,且长边L2的长度大于短边L1的长度,所述尾缘冲击缝的短边L1的取值范围为0.2D-0.8D。
所述尾缘冲击孔轴线或尾缘冲击缝中心线与层板延伸段靠近吸力面一侧的表面相交于一点,在这一点上轴线或中心线与层板延伸段表面的面法线夹角为0-60°。
所述尾缘处的压力面内侧表面与吸力面内侧表面平行,且距离为L3,距离L3取值范围为0.2D-1.2D。
所述吸力面里侧为光滑的曲面。
本发明的有益效果为:
1、尾缘部分吸力面内侧表面冷气平均速度提高,冷气流动损失减小。本发明在层板延伸段设置尾缘冲击孔或尾缘冲击缝,取消尾缘部分的扰流柱,既减小冷气流动损失,又增加冷气在吸力面内侧壁面处的平均速度。
2、尾缘部分气膜冷却效率有较大提高。尾缘部分吸力面内侧与压力面内侧形成空腔,冷气流动面积减小。在冷气用量相同的情况下,冷气能更加紧密地贴附在吸力面内侧表面,提高尾缘部分气膜冷却效率。
附图说明
图1为叶片结构俯视图;
图2为叶片三轴视图;
图3为带有尾缘冲击孔的叶片尾缘局部剖视图;
图4为叶片尾缘局部俯视图;
图5为带有倾斜尾缘冲击孔的叶片尾缘局部放大示意图;
图6为带有尾缘冲击孔的叶片尾缘局部放大示意图;
图7为带有尾缘冲击缝隙的叶片尾缘局部放大示意图;
1-压力面,2-吸力面,3-层板延伸段,4-压力面层板,5-吸力面层板,6-扰流柱,7-尾缘冲击孔,8-尾缘冲击缝,9-连接肋,10-层板冲击孔。
具体实施方式
下面结合附图与具体示例对发明进一步详细说明。
如图1-图7所示,一种涡轮叶片尾缘的冲击劈缝气膜冷却结构,包括压力面1、吸力面2、压力面层板4和吸力面层板5,且叶片分为三段,分别是前缘、中部和后缘,压力面层板4和吸力面层板5一端在前缘处与隔板相连,且压力面层板4和吸力面层板5在前缘处沿叶片高度方向均等距分布有层板冲击孔10,压力面层板4和吸力面层板5在尾缘处相连,且通过层板延伸段3与压力面1里侧相连,中部的压力面层板4与压力面1之间设置有三排扰流柱6,每排为20个,且扰流柱6沿叶片高度方向等距分布,中部的吸力面层板5与吸力面2之间均设置有八排扰流柱6,每排为20个,且扰流柱6沿叶片高度方向等距分布,所述层板延伸段3沿叶片高度方向设置有若干等距分布的尾缘冲击孔7或尾缘冲击缝8,用尾缘冲击孔7或尾缘冲击缝8取代扰流柱6,减小冷气流动损失;经过尾缘冲击孔7或尾缘冲击缝8,在吸力面2内侧形成冲击冷却,增大局部换热系数,压力面1和吸力面2在叶片尾缘处通过连接肋9相连,在压力面1尾缘部分设置有劈缝,且劈缝使压力面1和吸力面2内部形成的空腔与外部连通。
所述吸力面2与吸力面层板5之间的距离、压力面1与压力面层板4之间的距离相等,均为D。
所述尾缘冲击孔7或尾缘冲击缝8的个数大于等于1,当尾缘冲击孔7或尾缘冲击缝8个数大于2时,尾缘冲击孔7或尾缘冲击缝8沿叶片高度方向等距排列。尾缘冲击孔7或缝的等距排列能够保证尾缘部分气膜均匀分布,同时保证尾缘部分的工作强度。
所述尾缘冲击孔7的截面形状为圆形或方形,当尾缘冲击孔7为圆形孔时,直径D1取值范围为0.2D-1.2D;当尾缘冲击孔7为方形孔时,边长D2取值范围为0.2D-0.8D。通过对尾缘冲击孔7尺寸的限定,使尾缘冲击孔7或尾缘冲击缝8的截面面积小于层板结构的冷气流通面积,因此可以增加冷气流动速度,形成射流。
所述尾缘冲击孔7为变截面锥度孔或等截面无锥度孔;当尾缘冲击孔7为变截面锥度孔时,大孔端位于层板延伸段3靠近压力面1一侧,且锥度为1:5-1:100。等截面无锥度孔可以形成射流,而变截面锥度孔可以进一步提高射流速度,强化吸力面2上的冲击冷却效果,提高壁面冷气速度。
所述尾缘冲击缝8的截面形状为长方形,尾缘冲击缝8沿叶片高度方向的两条边为长边L2,另外两条边为短边L1,且长边L2的长度大于短边L1的长度,所述尾缘冲击缝8的短边L1的取值范围为0.2D-0.8D。通过限定尾缘冲击缝8的尺寸,使尾缘冲击缝8的截面面积小于层板结构的冷气流通面积,因此可以增加冷气流动速度,形成射流。
所述尾缘冲击孔7轴线或尾缘冲击缝8中心线与层板延伸段3靠近吸力面2一侧的表面相交于一点,在这一点上轴线或中心线与层板延伸段3表面的面法线夹角为0-60°。带偏转角度的尾缘冲击孔7或尾缘冲击缝8,可以进一步减小尾缘部分的冷气流动损失,提高壁面处冷气流动速度。超出0-60°这个范围的角度会降低尾缘部分吸力面2冲击冷却效果。
所述尾缘处的压力面1内侧表面与吸力面2内侧表面平行,且距离为L3,距离L3取值范围为0.2D-1.2D。该处的冷气流通面积小于层板结构的冷气流通面积,能够保持冲击后的冷气速度,同时减小冷气的流通面积,使冷气更加贴近叶片表面,提高尾缘劈缝处气膜冷却效率。
所述吸力面2里侧为光滑的曲面,避免破坏边界层,降低冷却效果。
本发明的工作原理为:冷气由涡轮叶片底部进入叶片内部的冷气腔,经压力面层板4和吸力面层板5上的层板冲击孔10流入叶片内部,压力面1一侧的冷气流经扰流柱6排后,经层板延伸段3上的尾缘冲击孔7或尾缘冲击缝8喷出,并在吸力面2内侧形成冲击冷却;吸力面2一侧的冷气流经扰流柱6排后,与压力面1喷出的冷气掺混,掺混后的冷气进入尾缘部分压力面1与吸力面2形成的空腔,并由尾缘压力面1的劈缝排入到主流燃气中。
实施例1
一种涡轮叶片尾缘的冲击劈缝气膜冷却结构为圆形的尾缘冲击孔7,且尾缘冲击孔7为等截面无锥度孔,圆形的尾缘冲击孔7直径D1=0.5D;尾缘冲击孔7的轴线方向与层板延伸段3靠近吸力面2一侧的表面垂直。本发明与现有技术相比,当冷气的质量流量相同时,尾缘劈缝处叶片表面平均温度降低5%,尾缘部分吸力面2内侧壁面气体平均速度提高6%,尾缘部分叶片表面平均气膜效率提高4%。
实施例2
一种涡轮叶片尾缘的冲击劈缝气膜冷却结构为长方形的尾缘冲击缝8,尾缘冲击缝8的短边L1=0.4D,长边L2=15D;尾缘冲击缝8的轴线方向与层板延伸段3靠近吸力面2一侧的表面垂直。本发明与现有技术相比,当冷气的质量流量相同时,尾缘劈缝处叶片表面平均温度降低8%,尾缘部分吸力面2内侧壁面气体平均速度提高9%,尾缘部分叶片表面平均气膜效率提高9%。
实施例3
一种涡轮叶片尾缘的冲击劈缝气膜冷却结构为圆形的尾缘冲击孔7,且尾缘冲击孔7为变截面锥度孔,圆形的尾缘冲击孔7的大孔端直径D1=1.2D,锥度为1:10,尾缘冲击孔7的轴线方向与层板延伸段3靠近吸力面2一侧的表面法线之间的夹角为30°。本发明与现有技术相比,当冷气的质量流量相同时,尾缘劈缝处叶片表面平均温度降低6%,尾缘部分吸力面2内侧壁面气体平均速度提高7%,尾缘部分叶片表面平均气膜效率提高6%。
通过上述三个实例,叶片尾缘部分用带有尾缘冲击孔7或尾缘冲击缝8的冲击劈缝气膜冷却结构代替了扰流柱6劈缝冷却结构。通过Fluent18.0软件经过仿真计算与分析,并结合三个实施例得出,叶片尾缘劈缝处叶片表面的平均温度降低5%-8%,流体的平均速度提高了6%-9%,叶片尾缘处气膜平均冷却效率提高了4%,本发明能够在不增加冷气用量的前提下,实现提高叶片尾缘劈缝处气膜冷却效率的目的。

Claims (9)

1.一种涡轮叶片尾缘的冲击劈缝气膜冷却结构,其特征在于,包括压力面、吸力面、压力面层板和吸力面层板,且叶片分为三段,分别是前缘、中部和后缘,压力面层板和吸力面层板一端在前缘部分与隔板相连,且压力面层板和吸力面层板在前缘部分沿叶片高度方向均设置有层板冲击孔,压力面层板和吸力面层板在尾缘部分相连,且通过层板延伸段与压力面里侧相连,中部的压力面层板与压力面之间、吸力面层板与吸力面之间均设置有扰流柱,所述层板延伸段沿叶片高度方向设置有若干尾缘冲击孔或尾缘冲击缝,压力面和吸力面在叶片尾缘部分通过连接肋相连,在压力面尾缘部分设置有劈缝,且劈缝使压力面和吸力面内部形成的空腔与外部连通。
2.根据权利要求1所述的一种涡轮叶片尾缘的冲击劈缝气膜冷却结构,其特征在于:所述吸力面与吸力面层板之间的距离、压力面与压力面层板之间的距离相等,均为D。
3.根据权利要求1所述的一种涡轮叶片尾缘的冲击劈缝气膜冷却结构,其特征在于:所述尾缘冲击孔或尾缘冲击缝的个数大于等于1,当尾缘冲击孔或尾缘冲击缝个数大于2时,尾缘冲击孔或尾缘冲击缝沿叶片高度方向等距排列。
4.根据权利要求1所述的一种涡轮叶片尾缘的冲击劈缝气膜冷却结构,其特征在于:所述尾缘冲击孔的截面形状为圆形或方形,当尾缘冲击孔为圆形孔时,直径D1取值范围为0.2D-1.2D;当尾缘冲击孔为方形孔时,边长D2取值范围为0.2D-0.8D。
5.根据权利要求1所述的一种涡轮叶片尾缘的冲击劈缝气膜冷却结构,其特征在于:所述尾缘冲击孔为变截面锥度孔或等截面无锥度孔;当尾缘冲击孔为变截面锥度孔时,大孔端位于层板延伸段靠近压力面一侧,且锥度为1:5-1:100。
6.根据权利要求1所述的一种涡轮叶片尾缘的冲击劈缝气膜冷却结构,其特征在于:所述尾缘冲击缝的截面形状为长方形,尾缘冲击缝沿叶片高度方向的两条边为长边L2,另外两条边为短边L1,且长边L2的长度大于短边L1的长度,所述尾缘冲击缝的短边L1的取值范围为0.2D-0.8D。
7.根据权利要求1所述的一种涡轮叶片尾缘的冲击劈缝气膜冷却结构,其特征在于:所述尾缘冲击孔轴线或尾缘冲击缝中心线与层板延伸段靠近吸力面一侧的表面相交于一点,在这一点上轴线或中心线与层板延伸段表面的面法线夹角为0-60°。
8.根据权利要求1所述的一种涡轮叶片尾缘的冲击劈缝气膜冷却结构,其特征在于:所述尾缘处的压力面内侧表面与吸力面内侧表面平行,且距离为L3,距离L3取值范围为0.2D-1.2D。
9.根据权利要求1所述的一种涡轮叶片尾缘的冲击劈缝气膜冷却结构,其特征在于:所述吸力面里侧为光滑的曲面。
CN201910388671.2A 2019-05-10 2019-05-10 一种涡轮叶片尾缘的冲击劈缝气膜冷却结构 Active CN110030036B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910388671.2A CN110030036B (zh) 2019-05-10 2019-05-10 一种涡轮叶片尾缘的冲击劈缝气膜冷却结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910388671.2A CN110030036B (zh) 2019-05-10 2019-05-10 一种涡轮叶片尾缘的冲击劈缝气膜冷却结构

Publications (2)

Publication Number Publication Date
CN110030036A true CN110030036A (zh) 2019-07-19
CN110030036B CN110030036B (zh) 2021-10-22

Family

ID=67241699

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910388671.2A Active CN110030036B (zh) 2019-05-10 2019-05-10 一种涡轮叶片尾缘的冲击劈缝气膜冷却结构

Country Status (1)

Country Link
CN (1) CN110030036B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110925027A (zh) * 2019-11-29 2020-03-27 大连理工大学 一种涡轮叶片尾缘渐缩型倾斜排气劈缝结构
CN111022127A (zh) * 2019-11-29 2020-04-17 大连理工大学 一种涡轮叶片尾缘曲线式排气劈缝结构
CN114320483A (zh) * 2021-12-27 2022-04-12 北京航空航天大学 一种低压驱动冲击冷却结构
CN114810217A (zh) * 2021-01-27 2022-07-29 中国航发商用航空发动机有限责任公司 涡轮动叶
CN115098958A (zh) * 2022-05-29 2022-09-23 中国船舶重工集团公司第七0三研究所 一种吸力侧排气的气冷涡轮导叶造型方法
CN115130234A (zh) * 2022-05-29 2022-09-30 中国船舶重工集团公司第七0三研究所 一种压力侧排气的气冷涡轮导叶造型方法
CN115875084A (zh) * 2023-03-02 2023-03-31 中国航发四川燃气涡轮研究院 应用于涡轮叶片压力面的层板冷却结构

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5720431A (en) * 1988-08-24 1998-02-24 United Technologies Corporation Cooled blades for a gas turbine engine
EP1267038A2 (en) * 2001-06-14 2002-12-18 Rolls-Royce Plc Air cooled aerofoil
CN101131096A (zh) * 2006-08-21 2008-02-27 通用电气公司 扩口形叶尖涡轮叶片
CN103046967A (zh) * 2012-12-27 2013-04-17 中国燃气涡轮研究院 一种涡轮气冷叶片
CN103277145A (zh) * 2013-06-09 2013-09-04 哈尔滨工业大学 一种燃气涡轮冷却叶片
CN103492677A (zh) * 2011-04-20 2014-01-01 西门子能源有限公司 涡轮发动机中被冷却的翼型件
CN108425705A (zh) * 2018-01-23 2018-08-21 中国科学院工程热物理研究所 一种双层壁冷却与气膜冷却组合式透平叶片结构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5720431A (en) * 1988-08-24 1998-02-24 United Technologies Corporation Cooled blades for a gas turbine engine
EP1267038A2 (en) * 2001-06-14 2002-12-18 Rolls-Royce Plc Air cooled aerofoil
CN101131096A (zh) * 2006-08-21 2008-02-27 通用电气公司 扩口形叶尖涡轮叶片
CN103492677A (zh) * 2011-04-20 2014-01-01 西门子能源有限公司 涡轮发动机中被冷却的翼型件
CN103046967A (zh) * 2012-12-27 2013-04-17 中国燃气涡轮研究院 一种涡轮气冷叶片
CN103277145A (zh) * 2013-06-09 2013-09-04 哈尔滨工业大学 一种燃气涡轮冷却叶片
CN108425705A (zh) * 2018-01-23 2018-08-21 中国科学院工程热物理研究所 一种双层壁冷却与气膜冷却组合式透平叶片结构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
孙瑞嘉 等: "不同叶片尾缘结构对流换热特性实验", 《推进技术》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110925027A (zh) * 2019-11-29 2020-03-27 大连理工大学 一种涡轮叶片尾缘渐缩型倾斜排气劈缝结构
CN111022127A (zh) * 2019-11-29 2020-04-17 大连理工大学 一种涡轮叶片尾缘曲线式排气劈缝结构
CN114810217A (zh) * 2021-01-27 2022-07-29 中国航发商用航空发动机有限责任公司 涡轮动叶
CN114320483A (zh) * 2021-12-27 2022-04-12 北京航空航天大学 一种低压驱动冲击冷却结构
CN115098958A (zh) * 2022-05-29 2022-09-23 中国船舶重工集团公司第七0三研究所 一种吸力侧排气的气冷涡轮导叶造型方法
CN115130234A (zh) * 2022-05-29 2022-09-30 中国船舶重工集团公司第七0三研究所 一种压力侧排气的气冷涡轮导叶造型方法
CN115875084A (zh) * 2023-03-02 2023-03-31 中国航发四川燃气涡轮研究院 应用于涡轮叶片压力面的层板冷却结构
CN115875084B (zh) * 2023-03-02 2023-06-30 中国航发四川燃气涡轮研究院 应用于涡轮叶片压力面的层板冷却结构

Also Published As

Publication number Publication date
CN110030036B (zh) 2021-10-22

Similar Documents

Publication Publication Date Title
CN110030036A (zh) 一种涡轮叶片尾缘的冲击劈缝气膜冷却结构
CN110410158B (zh) 一种燃气轮机的涡轮转子叶片
CN111764967B (zh) 涡轮叶片尾缘冷却结构
CN102128055A (zh) 一种带冠的燃气涡轮冷却叶片
CN113090335A (zh) 一种用于涡轮转子叶片的冲击加气膜双层壁冷却结构
CN104791020A (zh) 一种具有纵向相交肋冷却结构的燃气透平叶片
CN102828781B (zh) 燃气涡轮冷却叶片
CN109441557A (zh) 一种带有冷却结构的船用燃气轮机的高压涡轮导叶
CN202023597U (zh) 一种带冠的燃气涡轮冷却叶片
CN105673089A (zh) 一种燃气轮机涡轮无冠气膜冷却转子叶片
CN107503801A (zh) 一种高效阵列射流冷却结构
CN111120008A (zh) 一种新型透平叶片旋流冷却结构
CN113047912A (zh) 一种带梅花形扰流柱的层板冷却结构
CN111852575A (zh) 涡轮转子叶片及包括其的燃气轮机
CN105275499B (zh) 一种具有离心增压和封严效果的双辐板涡轮盘盘心进气结构
CN112302727A (zh) 一种涡轮叶片前缘冷却结构
CN102588000A (zh) 涡轮叶片前缘沉槽肋内冷结构及其方法
CN112922674B (zh) 一种具有气膜冷却凹槽的涡轮叶片
CN204609950U (zh) 一种具有纵向相交肋冷却结构的燃气透平叶片
CN113550794A (zh) 一种涡轮转子叶片的多腔高效冷却结构及其冷却方法
CN209129675U (zh) 一种涡轮冷却叶片尾缘结构
CN112282860A (zh) 一种涡轮转子叶片平台冷却结构
CN210289846U (zh) 一种带冠有冷涡轮转子叶片前缘冷却结构
CN114109515B (zh) 一种涡轮叶片吸力面冷却结构
CN112746872B (zh) 适用于涡轮叶片尾缘部分的贯通式连续折板结构

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant