CN110029041B - 基因检测芯片区域设计装置 - Google Patents

基因检测芯片区域设计装置 Download PDF

Info

Publication number
CN110029041B
CN110029041B CN201810255892.8A CN201810255892A CN110029041B CN 110029041 B CN110029041 B CN 110029041B CN 201810255892 A CN201810255892 A CN 201810255892A CN 110029041 B CN110029041 B CN 110029041B
Authority
CN
China
Prior art keywords
exon
gene
patients
exons
selecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810255892.8A
Other languages
English (en)
Other versions
CN110029041A (zh
Inventor
荆瑞琳
王娟
李大为
玄兆伶
王海良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Annoroad Gene Technology Beijing Co ltd
Beijing Annoroad Medical Laboratory Co ltd
Original Assignee
Annoroad Gene Technology Beijing Co ltd
Annoroad Yiwu Medical Inspection Co ltd
Zhejiang Annoroad Bio Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Annoroad Gene Technology Beijing Co ltd, Annoroad Yiwu Medical Inspection Co ltd, Zhejiang Annoroad Bio Technology Co ltd filed Critical Annoroad Gene Technology Beijing Co ltd
Publication of CN110029041A publication Critical patent/CN110029041A/zh
Application granted granted Critical
Publication of CN110029041B publication Critical patent/CN110029041B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • C12Q1/6874Methods for sequencing involving nucleic acid arrays, e.g. sequencing by hybridisation

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明涉及一种基因检测芯片区域设计装置,所述基因检测芯片区域设计装置包括特征提取模块、外显子区域选取模块以及选取结果输出模块。

Description

基因检测芯片区域设计装置
技术领域
本发明涉及基于新一代测序(NGS)的基因检测领域,具体涉及一种实时 动态反应患者肿瘤进展信息的基因检测芯片的设计装置。
背景技术
基于捕获芯片的二代测序已经广泛应用于体细胞突变的检测。大部分癌 种对于在人体基因上的体细胞突变具有相对大的异质性。在大多数患者中, 只有少量患者会在相同基因上发生体细胞突变,而且仅有少数几个癌种能通 过少数经常发生的突变判断。
现有芯片在设计上主要是针对高频率发生突变的基因,然而大部分癌症 患者在该区域并不存在突变,导致这种芯片只能检测少数病人中的突变。现 有芯片设计、制造方法存在低敏感性、覆盖病人范围小、高消费等不足之处。
发明内容
本发明所要解决的技术问题
现有芯片在设计上主要是针对高频率发生突变的基因,导致覆盖患者少; 同时由于这种芯片覆盖的目标基因(非必要的)的范围广,导致检测成本高。
鉴于现有技术中存在的上述问题,本发明开发了一种新的基因检测芯片 区域设计装置与现有基因检测芯片的设计方法相比,本发明的装置充分利用 了癌症患者样本的检测结果,以各外显子单位长度所覆盖的患者数为依据, 力求以最小的区域覆盖最大的患者数目,最大程度地增加芯片覆盖患者数目 及减小芯片大小。
即,本发明包括:
1.一种基因检测芯片区域设计装置,所述基因检测芯片区域设计装置包 括:
特征提取模块,用于导入与患者对应的突变集,统计每个外显子(exon) 上存在变异的患者个数、患者编号、外显子长度,计算每个外显子的RI值, 统计每个患者发生突变的个数以及发生突变所在的基因和外显子区域;
外显子区域选取模块,其与所述特征提取模块相连接,用于选取所述探 针分子针对的外显子区域;以及
选取结果输出模块,用于输出所述外显子区域的选取结果;
其中,所述外显子区域选取模块包括下述子模块:
热点基因选取子模块,用于选取COSMIC数据库认定的已知驱动基因;
最大覆盖外显子选取子模块:用于在所述热点基因选取子模块选剩的外 显子中选取最大覆盖外显子,直至不存在满足下述条件的最大覆盖外显子, 统计选取的所有外显子及其所覆盖的患者编号;
最大RI值外显子选取子模块:用于在最大覆盖外显子选取子模块选剩 的外显子中选取最大RI值外显子,直至不存在满足下述条件的最大RI值外 显子,统计选取的所有外显子及其所覆盖的患者编号;
潜在驱动基因选取子模块,用于选取具有潜在驱动突变的外显子(所述 具有潜在驱动突变的外显子是本领域技术人员能够容易地确定的,可参考例 如文献1、6);
融合基因选取子模块,用于选取具备临床意义的融合基因、及其中发生 高频融合的内含子和外显子。
2.根据项1所述的基因检测芯片区域设计装置,其中,所述热点基因选 取子模块选取的热点基因满足下述条件:患者中该驱动基因发生突变的比例 大于9%;或者,虽然患者中该驱动基因发生突变的比例为9%以下,但是其 为驱动突变的外显子区域(所述驱动突变的外显子区域是本领域技术人员能 够容易地确定的,可参考例如文献2~5);统计符合该条件的外显子区域及其 所覆盖的患者的编号;
3.根据项1所述的基因检测芯片区域设计装置,其中,所述最大覆盖外 显子选取子模块选取的最大覆盖外显子满足下述条件:
i至少5名患者在该外显子区域发生变异,
ii该外显子覆盖的患者编号中至少包含一个之前未覆盖的新的患者编 号,以及
iii在待选的所有外显子中,该外显子具有最高的RI值,若多个外显子 的RI值相同,则选取覆盖新患者编号最多的外显子;若RI值与覆盖患者编 号数均相同,则同时选取。
4.根据项1所述的基因检测芯片区域设计装置,其中,所述最大RI值 外显子选取子模块选取的最大RI值外显子满足下述条件:
iRI值大于指定值(例如20~30),
ii覆盖的患者编号的数目大于3,
iii该外显子覆盖的只发生1个SNV的患者编号中包含最多的之前未覆 盖的新的患者编号;以及
iv若包含的新的患者编号的数目相同,则选取RI值最大的外显子;若 RI值与覆盖患者编号数均相同,则同时选取。
5.根据项1所述的基因检测芯片区域设计装置,其中,所述基因检测芯 片用于检测非小细胞肺癌。
6.根据项1所述的基因检测芯片区域设计装置,其中,所述具备临床意 义的融合基因选自ALK、ROS1和RET。
附图说明
图1为显示本发明的基因检测芯片区域设计装置一例的结构的模式图。
发明的具体实施方式
本说明书中提及的科技术语具有与本领域技术人员通常理解的含义相 同的含义,如有冲突以本说明书中的定义为准。
一般而言,本说明书中采用的术语具有如下含义。
COSMIC:the Catalogue of Somatic Mutation in Cancer
NSCLC:non-small-cell lung cancer非小型细胞肺癌
Known divers gene:在大于500例NSCLC患者中,基因发生变异频率大于等 于9%。
RI:每1000个碱基长度的基因中存在体细胞变异的病人个数。
Exon:外显子
Intron:内含子
文献:
1 L. Ding,G.Getz,D.A.Wheeler,E.R.Mardis,M.D.McLellan,K. Cibulskis,C.Sougnez,H.Greulich,D.M.Muzny,M.B.Morgan,L. Fulton,R.S.Fulton,Q.Zhang,M.C.Wendl,M.S.Lawrence,D.E. Larson,K.Chen,D.J.Dooling,A.Sabo,A.C.Hawes,H.Shen,S.N. Jhangiani,L..R.Lewis,O.Hall,Y.Zhu,T.Mathew,Y.Ren,J.Yao,S.E.Scherer,K.Clerc,G.A.Metcalf,B.Ng,A.Milosavljevic,M.L. Gonzalez-Garay,J.R.Osborne,R.Meyer,X.Shi,Y.Tang,D.C.Koboldt, L.Lin,R.Abbott,T.L.Miner,C.Pohl,G.Fewell,C.Haipek,H.Schmidt, B.H.Dunford-Shore,A.Kraja,S.D.Crosby,C.S.Sawyer,T.Vickery,S. Sander, J.Robinson,W.Winckler,J.Baldwin,L.R.Chirieac,A.Dutt,T. Fennell,M.Hanna,B.E.Johnson,R.C.Onofrio,R.K.Thomas,G.Tonon,B.A.Weir,X.Zhao,L.Ziaugra,M.C.Zody,T.Giordano,M.B.Orringer, J.A.Roth,M.R.Spitz,Wistuba,II,B.Ozenberger,P.J.Good,A.C. Chang,D.G.Beer,M.A.Watson,M.Ladanyi,S.Broderick,A.Yoshizawa,W.D.Travis,W.Pao,M.A.Province,G.M.Weinstock,H.E.Varmus,S. B.Gabriel,E.S.Lander,R.A.Gibbs,M.Meyerson,andR.K.Wilson, ′Somatic Mutations Affect Key Pathways in Lung Adenocarcinoma′,Nature,455(2008),1069-75.
2 G.Jin,M.J.Kim,H.S.Jeon,J.E.Choi,D.S.Kim,E.B.Lee,S.I.Cha,G. S.Yoon,C.H.Kim,T.H.Jung,and J.Y.Park,′Pten Mutations and Relationship to Egfr,Erbb2,Kras,and Tp53 Mutations in Non-Small Cell Lung Cancers′,Lung Cancer,69(2010),279-83.
3 Donatella Malanga,Marianna Scrima,Carmela De Marco,FernandaFabiani,Nicola De Rosa,Silvia de Gisi,Natalia Malara,Rocco Savino, GaetanoRocco,Gennaro Chiappetta,Renato Franco,Virginia Tirino, Giuseppe Pirozzi,andGiuseppe Viglietto,′Activating E 17k Mutation in the Gene Encoding theProtein Kinase Akt in a Subset of Squamous Cell Carcinoma of the Lung′,CellCycle,7(2014),665-69.
4 P. K.Paik,M.E.Arcila,M.Fara,C.S.Sima,V.A.Miller, M.G.Kris,M.Ladanyi,and G.J.Riely,′Clinical Characteristics of Patients with LungAdenocarcinomas Harboring Braf Mutations′,J Clin Oncol,29 (2011), 2046-51.
5 M.S.Tsao,S.Aviel-Ronen,K.Ding,D.Lau,N.Liu,A.Sakurada,M. Whitehead,C.O.Zhu,R.Livingston,D.H.Johnson,J.Rigas,L.Sevmour, T.Winton,andF.A.Shepherd,′PrognoStic and Predictive Importance of P53 and Ras forAdjuvant Chemotherapy in Non Small-Cell Lung Cancer′, J Clin Oncol,25(2007),5240-7.
6 A.Youn,and R.Simon,′Identifying Cancer Driver Genes in Tumor GenomeSequencing Studies′,Bioinformatics,27(2011),175-81
实施例
以下给出实施例,对本发明进行更具体的说明,但本发明不限于这些实 施例。
1从The Cancer Genome Atlas(TCGA)下载100个non-small-cell lung cancer(NSCLC)患者的全外突变检测数据;统计每个外显子(exon)上存在 变异的患者个数、患者编号、外显子长度,计算每个外显子的RI值,统 计每个患者发生突变的个数以及发生突变所在的基因和外显子区域。
2热点基因选取:选取COSMIC数据库中基因发生突变率大于9%的基因, 如KRAS基因,TP53基因等,和科研成果表明为驱动突变的外显子,如 BRAF exon15。
3最大覆盖度选取:选取结果如下:
Figure BDA0001608930220000051
Figure BDA0001608930220000061
4最大RI值选取:结果如下:
Figure BDA0001608930220000062
5融合基因选取:ALK,EML4。
利用该芯片所研究的200人临床试验结果表明EGFR基因人群突变频率 达到57%,而常规芯片则仅有35%。
工业实用性
根据本发明,提供了一种新的基因检测芯片区域设计装置,利用该基因 检测芯片区域设计装置设计的基因检测芯片具有患者覆盖范围广、探针分子 数量少、成本低的特点。

Claims (3)

1.一种基因检测芯片区域设计装置,所述基因检测芯片区域设计装置包括:
特征提取模块,用于导入与患者对应的突变集,统计每个外显子上存在变异的患者个数、患者编号、外显子长度,计算每个外显子的RI值,统计每个患者发生突变的个数以及发生突变所在的基因和外显子区域;
外显子区域选取模块,其与所述特征提取模块相连接,用于选取探针分子针对的外显子区域;以及
选取结果输出模块,用于输出所述外显子区域的选取结果;
其中,所述外显子区域选取模块包括下述子模块:
热点基因选取子模块,用于选取COSMIC数据库认定的已知驱动基因;
最大覆盖外显子选取子模块:用于在所述热点基因选取子模块选剩的外显子中选取最大覆盖外显子,直至不存在满足下述条件的最大覆盖外显子,统计选取的所有外显子及其所覆盖的患者编号;
最大RI值外显子选取子模块:用于在最大覆盖外显子选取子模块选剩的外显子中选取最大RI值外显子,直至不存在满足下述条件的最大RI值外显子,统计选取的所有外显子及其所覆盖的患者编号;
潜在驱动基因选取子模块,用于选取有研究表明具有潜在驱动突变的外显子;
融合基因选取子模块,用于选取具备临床意义的融合基因、及其中发生高频融合的内含子和外显子,
其中,所述最大覆盖外显子选取子模块选取的最大覆盖外显子满足下述条件:
i)至少5名患者在该外显子区域发生变异,
ii)该外显子覆盖的患者编号中至少包含一个之前未覆盖的新的患者编号,以及
iii)在待选的所有外显子中,该外显子具有最高的RI值,若多个外显子的RI值相同,则选取覆盖新患者编号最多的外显子,
所述最大RI值外显子选取子模块选取的最大RI值外显子满足下述条件:
i)RI值大于指定值,
ii)覆盖的患者编号的数目大于3,
iii)该外显子覆盖的只发生1个SNV的患者编号中包含最多的之前未覆盖的新的患者编号;以及
iv)若包含的新的患者编号的数目相同,则选取RI值最大的外显子;
所述热点基因选取子模块选取的热点基因满足下述条件:患者中该驱动基因发生突变的比例大于9%;或者,虽然患者中该驱动基因发生突变的比例为9%以下,但是存在证据表明其为驱动突变的外显子区域;统计符合该条件的外显子区域及其所覆盖的患者的编号。
2.根据权利要求1所述的基因检测芯片区域设计装置,其中,所述基因检测芯片用于检测非小细胞肺癌。
3.根据权利要求1所述的基因检测芯片区域设计装置,其中,所述具备临床意义的融合基因选自ALK、ROS1和RET。
CN201810255892.8A 2018-01-12 2018-03-27 基因检测芯片区域设计装置 Active CN110029041B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810028456 2018-01-12
CN2018100284567 2018-01-12

Publications (2)

Publication Number Publication Date
CN110029041A CN110029041A (zh) 2019-07-19
CN110029041B true CN110029041B (zh) 2022-07-12

Family

ID=67234593

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810255892.8A Active CN110029041B (zh) 2018-01-12 2018-03-27 基因检测芯片区域设计装置

Country Status (1)

Country Link
CN (1) CN110029041B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105063208A (zh) * 2015-08-10 2015-11-18 北京吉因加科技有限公司 一种血浆中游离的目标dna低频突变富集测序方法
CN105550538A (zh) * 2016-02-03 2016-05-04 苏州大学 一种人类基因启动子识别方法和系统
CN106570349A (zh) * 2016-10-28 2017-04-19 深圳华大基因科技服务有限公司 用于目标区域捕获高通量测序的特异性肿瘤探针区域设计方法和装置以及探针
CN106919808A (zh) * 2017-02-28 2017-07-04 哈尔滨工业大学深圳研究生院 基于变步长最小均方误差自适应滤波器的基因识别系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100601937B1 (ko) * 2003-12-26 2006-07-14 삼성전자주식회사 분별 프로브와 암플리콘 프로브가 고정화되어 있는 dna칩을 이용하여 유전자형을 판별하는 강건한 방법 및 이에사용되는 dna 칩
US8997034B2 (en) * 2012-07-30 2015-03-31 Synopsys, Inc. Emulation-based functional qualification

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105063208A (zh) * 2015-08-10 2015-11-18 北京吉因加科技有限公司 一种血浆中游离的目标dna低频突变富集测序方法
CN105550538A (zh) * 2016-02-03 2016-05-04 苏州大学 一种人类基因启动子识别方法和系统
CN106570349A (zh) * 2016-10-28 2017-04-19 深圳华大基因科技服务有限公司 用于目标区域捕获高通量测序的特异性肿瘤探针区域设计方法和装置以及探针
CN106919808A (zh) * 2017-02-28 2017-07-04 哈尔滨工业大学深圳研究生院 基于变步长最小均方误差自适应滤波器的基因识别系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TP53、KRAS和EGFR基因在非小细胞肺癌顺铂辅助化疗中肿瘤标记物的研究;孙海基;《中国博士学位论文全文数据库 (医药卫生科技辑)》;20090915(第09期);E072-14 *

Also Published As

Publication number Publication date
CN110029041A (zh) 2019-07-19

Similar Documents

Publication Publication Date Title
Jia et al. Mining TCGA database for genes of prognostic value in glioblastoma microenvironment
Timar et al. Molecular epidemiology and diagnostics of KRAS mutations in human cancer
Zhu et al. A long non-coding RNA signature to improve prognosis prediction of gastric cancer
Simbolo et al. Lung neuroendocrine tumours: deep sequencing of the four World Health Organization histotypes reveals chromatin‐remodelling genes as major players and a prognostic role for TERT, RB1, MEN1 and KMT2D
Tan et al. Genomic alteration during metastasis of lung adenocarcinoma
Lerner et al. Bladder cancer molecular taxonomy: summary from a consensus meeting
Daemen et al. Modeling precision treatment of breast cancer
EP2536854B1 (en) Personalized tumor biomarkers
Comtesse et al. Frequent overexpression of the genes FXR1, CLAPM1 and EIF4G located on amplicon 3q26‐27 in squamous cell carcinoma of the lung
Jabs et al. Integrative analysis of genome-wide gene copy number changes and gene expression in non-small cell lung cancer
Antonov et al. PPISURV: a novel bioinformatics tool for uncovering the hidden role of specific genes in cancer survival outcome
Smeets et al. Genetic classification of oral and oropharyngeal carcinomas identifies subgroups with a different prognosis
van Beers et al. Array-CGH and breast cancer
Fekete et al. Meta‐analysis of gene expression profiles associated with histological classification and survival in 829 ovarian cancer samples
Alvi et al. Comprehensive molecular pathology analysis of small bowel adenocarcinoma reveals novel targets with potential for clinical utility
Regner et al. A multi-omic single-cell landscape of human gynecologic malignancies
Jesinghaus et al. Genotyping of colorectal cancer for cancer precision medicine: results from the IPH Center for Molecular Pathology
Evelönn et al. DNA methylation associates with survival in non-metastatic clear cell renal cell carcinoma
Oshi et al. Immune cytolytic activity is associated with reduced intra-tumoral genetic heterogeneity and with better clinical outcomes in triple negative breast cancer
Georgescu et al. Molecular characterization of Gleason patterns 3 and 4 prostate cancer using reverse Warburg effect-associated genes
Bucher-Johannessen et al. Cisplatin treatment of testicular cancer patients introduces long-term changes in the epigenome
Kim et al. PIK3CA amplification is associated with poor prognosis among patients with curatively resected esophageal squamous cell carcinoma
Wang et al. Tumor evolution of glioma intrinsic gene expression subtype associates with immunological changes in the microenvironment
Liang et al. Expression of KIF23 and its prognostic role in non-small cell lung cancer: analysis based on the data-mining of Oncomine
CN110029041B (zh) 基因检测芯片区域设计装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20220608

Address after: 322000 1st floor, building 9, standard workshop, No.10 Gaoxin Road, Houjiang street, Yiwu City, Jinhua City, Zhejiang Province

Applicant after: ZHEJIANG ANNOROAD BIO-TECHNOLOGY Co.,Ltd.

Applicant after: ANNOROAD GENE TECHNOLOGY (BEIJING) Co.,Ltd.

Applicant after: ANNOROAD (YIWU) MEDICAL INSPECTION CO.,LTD.

Address before: Room 701, unit 2, building 8, yard 88, Kechuang 6th Street, Daxing District, Beijing 100176

Applicant before: ANNOROAD GENE TECHNOLOGY (BEIJING) Co.,Ltd.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240618

Address after: Room 701, unit 2, building 8, yard 88, Kechuang 6th Street, Daxing District, Beijing 100176

Patentee after: ANNOROAD GENE TECHNOLOGY (BEIJING) Co.,Ltd.

Country or region after: China

Patentee after: BEIJING ANNOROAD MEDICAL LABORATORY Co.,Ltd.

Address before: 322000 1st floor, building 9, standard workshop, No.10 Gaoxin Road, Houjiang street, Yiwu City, Jinhua City, Zhejiang Province

Patentee before: ZHEJIANG ANNOROAD BIO-TECHNOLOGY Co.,Ltd.

Country or region before: China

Patentee before: ANNOROAD GENE TECHNOLOGY (BEIJING) Co.,Ltd.

Patentee before: ANNOROAD (YIWU) MEDICAL INSPECTION CO.,LTD.